1
|
González-Rubio JM, Cascajero A, Baladrón B, González-Camacho F. Characterisation of Legionella Clinical Isolates in Spain from 2012 to 2022. Microorganisms 2024; 12:1253. [PMID: 39065022 PMCID: PMC11278951 DOI: 10.3390/microorganisms12071253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Although cases of Legionnaires' disease are notifiable, data on the phenotypic and genotypic characterisation of clinical isolates are limited. This retrospective study aims to report the results of the characterisation of Legionella clinical isolates in Spain from 2012 to 2022. Monoclonal antibodies from the Dresden panel were used for phenotypic identification of Legionella pneumophila. Genotypic characterisation and sequence type assignment were performed using the Sequence-Based Typing scheme. Of the 1184 samples, 569 were identified as Legionella by culture. Of these, 561 were identified as L. pneumophila, of which 521 were serogroup 1. The most common subgroups were Philadelphia (n = 107) and Knoxville (n = 106). The SBT analysis revealed 130 different STs, with the most common genotypes being ST1 (n = 87), ST23 (n = 57), ST20 (n = 30), and ST42 (n = 29). Knoxville has the highest variability with 32 different STs. ST23 is mainly found in Allentown/France (n = 46) and ST42 in Benidorm (n = 18), whereas ST1 is widely distributed. The results demonstrate that clinical isolates show high genetic diversity, although only a few sequence types (STs) are responsible for most cases. However, outbreaks can also occur with rare genotypes. More data on LD and associated epidemiological studies are needed to establish the risk of an isolate causing outbreak in the future.
Collapse
Affiliation(s)
| | | | | | - Fernando González-Camacho
- Legionella Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain; (J.M.G.-R.); (A.C.)
| |
Collapse
|
2
|
Pijnacker R, Brandsema P, Euser S, Vahidnia A, Kuiter A, Limaheluw J, Schout C, Haj Mohammad G, Raven S. An outbreak of Legionnaires' disease linked to a municipal and industrial wastewater treatment plant, The Netherlands, September-October 2022. Euro Surveill 2024; 29:2300506. [PMID: 38757288 PMCID: PMC11100293 DOI: 10.2807/1560-7917.es.2024.29.20.2300506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/19/2024] [Indexed: 05/18/2024] Open
Abstract
Wastewater treatment plants (WWTPs) are increasingly identified as Legionnaires' disease (LD) sources. An outbreak investigation was initiated following five LD cases reported in September 2022 in Houten, the Netherlands. Case identification was based on the European LD case definition, with symptom onset from 1 September 2022, residence in or within 5 km of Houten, or visit to Houten within the incubation period, without other likely sources. We sampled potential sources and genotyped environmental and clinical isolates. We identified 15 LD cases with onset between 13 September and 23 October 2022. A spatial source identification and wind direction model suggested an industrial (iWWTP) and a municipal WWTP (mWWTP) as potential sources, with the first discharging water into the latter. Both tested positive for Legionella pneumophila serogroups 1 and 6 with multiple sequence types (ST). We detected L. pneumophila sg1 ST42 in the mWWTP, matching with one of three available clinical isolates. Following control measures at the WWTPs, no further cases were observed. This outbreak underlines that municipal and industrial WWTPs can play an important role in community LD cases and outbreaks, especially those with favourable conditions for Legionella growth and dissemination, or even non-favourable conditions for growth but with the influx of contaminated water.
Collapse
Affiliation(s)
- Roan Pijnacker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Infectious Diseases, Public Health Service region Utrecht (GGD), Zeist, the Netherlands
| | - Petra Brandsema
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Sjoerd Euser
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Ali Vahidnia
- Regional Public Health Laboratory Kennemerland, Haarlem, the Netherlands
| | - Arnold Kuiter
- Environmental Services Regarding Authorization and Enforcement (RUD Utrecht), Utrecht, the Netherlands
| | - Jesse Limaheluw
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Christine Schout
- Department of Infectious Diseases, Public Health Service region Utrecht (GGD), Zeist, the Netherlands
| | - Gaaled Haj Mohammad
- Department of Infectious Diseases, Public Health Service region Utrecht (GGD), Zeist, the Netherlands
| | - Stijn Raven
- Department of Infectious Diseases, Public Health Service region Utrecht (GGD), Zeist, the Netherlands
| |
Collapse
|
3
|
Zhan XY, Yang JL, Sun H, Zhou X, Qian YC, Huang K, Leng Y, Huang B, He Y. Presence of Viable, Clinically Relevant Legionella Bacteria in Environmental Water and Soil Sources of China. Microbiol Spectr 2022; 10:e0114021. [PMID: 35438512 PMCID: PMC9241679 DOI: 10.1128/spectrum.01140-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
The distribution of pathogenic Legionella in the environmental soil and water of China has not been documented yet. In this study, Legionella was detected in 129 of 575 water (22.43%) and 41 of 442 soil samples (9.28%) by culture. Twelve Legionella species were identified, of which 11 were disease-associated. Of the Legionella-positive samples, 109 of 129 (84.50%) water and 29 of 41 (70.73%) soil were positive for L. pneumophila, which accounted for about 75% of Legionella isolates in both water and soil, suggesting L. pneumophila was the most frequent species. Soil showed a higher diversity of Legionella spp. as compared with water (0.6279 versus 0.4493). In contrast, serogroup (sg) 1 was more prevalent among L. pneumophila isolates from water than from soil (26.66% versus 12.21%). Moreover, many disease-associated sequence types (STs) of L. pneumophila were found in China. Intragenic recombination was acting on L. pneumophila from both water and soil. Phylogeny, population structure, and molecular evolution analyses revealed a probable existence of L. pneumophila isolates with a special genetic background that is more adaptable to soil or water sources and a small proportion of genetic difference between water and soil isolates. The detection of viable, clinically relevant Legionella demonstrates soil as another source for harboring and dissemination of pathogenic Legionella bacteria in China. Future research should assess the implication in public health with the presence of Legionella in the soil and illustrate the genetic and pathogenicity difference of Legionella between water and soil, particularly the most prevalent L. pneumophila. IMPORTANCE Pathogenic Legionella spp. is the causative agent of Legionnaires' disease (LD), and L. pneumophila is the most common one. Most studies have focused on L. pneumophila from water and clinical samples. However, the soil is another important reservoir for this bacterium, and the distribution of Legionella spp. in water and soil sources has not been compared and documented in China yet. Discovering the distribution of Legionella spp. and L. pneumophila in the two environments may help a deep understanding of the pathogenesis and molecular evolution of the bacterium. Our research systematically uncovered the distributions of Legionella spp. in different regions and sources (e.g., water and soil) of China. Moreover, phylogeny, population structure, and molecular evolution study revealed the possible existence of L. pneumophila with a special genetic background that is more adaptable to soil or water sources, and genetic difference may exist.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jin-Lei Yang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Honghua Sun
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuefu Zhou
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yi-Chao Qian
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ke Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Leng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Bihui Huang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Sakhaee F, Mafi S, Zargar M, Vaziri F, Hajiesmaeili M, Siadat SD, Fateh A. Correlation between Legionella pneumophila serogroups isolated from patients with ventilator-associated pneumonia and water resources: a study of four hospitals in Tehran, Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41368-41374. [PMID: 35089517 PMCID: PMC8796176 DOI: 10.1007/s11356-022-18867-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/21/2022] [Indexed: 05/08/2023]
Abstract
Legionella pneumophila (L. pneumophila) is one of the main pathogens, causing pneumonia and respiratory tract infections, especially in patients with ventilator-associated pneumonia (VAP). This study aimed to approve the hypothesis that the serogroup distribution of L. pneumophila isolates from patients is correlated with Legionella strains in the environment. A total of 280 bronchoalveolar lavage (BAL) samples from VAP patients admitted to the intensive care unit (ICU) as well as 116 water samples from different sources in four hospitals in Tehran, Iran, were evaluated for the presence of L. pneumophila infection by culture, nested polymerase chain reaction (PCR), real-time PCR, and sequencing for genetic diversity. The molecular and culture methods found 24 (8.6%) and 5 (1.8%) samples to be positive for L. pneumophila in VAP patients, while they found 23 (19.8%) and 8 (6.9%) positive samples in water resources, respectively. The sequencing results indicated that all positive clinical samples and 14 (60.8%) environmental samples were belonged to L. pneumophila serogroup 1. Smoking, age, length of ICU stay, and duration of ventilator use had strong relationship with L. pneumophila infectivity. In conclusion, this is the first report from Iran to determine minor differences in the serogroup distribution of environmental and clinical strains. However, further studies are needed to confirm this relationship in different regions of Iran.
Collapse
Affiliation(s)
- Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Shirin Mafi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
A Tale of Four Danish Cities: Legionella pneumophila Diversity in Domestic Hot Water and Spatial Variations in Disease Incidence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052530. [PMID: 35270223 PMCID: PMC8909801 DOI: 10.3390/ijerph19052530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 01/27/2023]
Abstract
Denmark has one of the highest Legionnaires' disease notification rates within Europe, averaging 4.7 cases per 100,000 population annually (2017 to 2020). The relatively high incidence of disease is not uniform across the country, and approximately 70% of all domestically acquired cases in Denmark are caused by Legionella pneumophila (LP) strains that are considered less virulent. The aim of this study was to investigate if colonization rates, levels of colonization, and/or types of LP present in hot water systems were associated with geographic differences in Legionnaires' disease incidence. Domestic water systems from four cities in Denmark were analyzed via culture and qPCR. Serogrouping and sequence typing was performed on randomly selected isolates. Single nucleotide polymorphism was used to identify clonal relationship among isolates from the four cities. The results revealed a high LP colonization rate from 68% to 87.5% among systems, composed primarily of non-serogroup 1. LP serogroup 1 reacting with the monoclonal antibody (MAb) 3/1 was not identified in any of the systems tested, while MAb 3/1 negative serogroup 1 strains were isolated from 10 systems (9.6%). We hypothesize that a combination of factors influences the incidence rate of LD in each city, including sequence type and serogroup distribution, colonization rate, concentration of Legionella in Pre-flush and Flush samples, and potentially building characteristics such as water temperature measured at the point of use.
Collapse
|
6
|
Knežević M, Rončević D, Vukić Lušić D, Mihelčić M, Kogoj R, Keše D, Glad M, Cenov A, Ožanič M, Glažar Ivče D, Šantić M. Decreasing Pasteurization Treatment Efficiency against Amoeba-Grown Legionella pneumophila—Recognized Public Health Risk Factor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031099. [PMID: 35162120 PMCID: PMC8834526 DOI: 10.3390/ijerph19031099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
Legionellae are gram-negative bacteria most commonly found in freshwater ecosystems and purpose-built water systems. In humans, the bacterium causes Legionnaires’ disease (LD) or a Pontiac fever. In this study, the different waters (drinking water, pool water, cooling towers) in which Legionella pneumophila has been isolated were studied to assess the possible risk of bacterial spreading in the population. The influence of physical and chemical parameters, and interactions with Acanthamoeba castellanii on L. pneumophila, were analyzed by Heterotrophic Plate Count, the Colony-forming units (CFU) methods, transmission electron microscopy (TEM), and Sequence-Based Typing (SBT) analysis. During the study period (2013–2019), a total of 1932 water samples were analyzed, with the average annual rate of Legionella-positive water samples of 8.9%, showing an increasing trend. The largest proportion of Legionella-positive samples was found in cooling towers and rehabilitation centers (33.9% and 33.3%, respectively). Among the isolates, L. pneumophila SGs 2–14 was the most commonly identified strain (76%). The survival of Legionella was enhanced in the samples with higher pH values, while higher electrical conductivity, nitrate, and free residual chlorine concentration significantly reduced the survival of Legionella. Our results show that growth in amoeba does not affect the allelic profile, phenotype, and morphology of the bacterium but environmental L. pneumophila becomes more resistant to pasteurization treatment.
Collapse
Affiliation(s)
- Maša Knežević
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| | - Dobrica Rončević
- Department of Epidemiology, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia;
- Department of Public Health, Faculty of Health Studies, Viktora Cara Emina 5, 51000 Rijeka, Croatia
| | - Darija Vukić Lušić
- Department of Environmental Health, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (M.G.); (A.C.)
- Center for Advanced Computing and Modeling, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-(0)51-358-755
| | - Mirna Mihelčić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia; (R.K.); (D.K.)
| | - Darja Keše
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000 Ljubljana, Slovenia; (R.K.); (D.K.)
| | - Marin Glad
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (M.G.); (A.C.)
| | - Arijana Cenov
- Department of Environmental Health, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Krešimirova 52a, 51000 Rijeka, Croatia; (M.G.); (A.C.)
| | - Mateja Ožanič
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| | - Daniela Glažar Ivče
- Branch Office Rab, Teaching Institute of Public Health of Primorje-Gorski Kotar County, Palit 143a, 51280 Rab, Croatia;
| | - Marina Šantić
- Department of Microbiology and Parasitology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.K.); (M.M.); (M.O.); (M.Š.)
| |
Collapse
|
7
|
Checa J, Carbonell I, Manero N, Martí I. Comparative study of Legiolert with ISO 11731-1998 standard method-conclusions from a Public Health Laboratory. J Microbiol Methods 2021; 186:106242. [PMID: 34019935 DOI: 10.1016/j.mimet.2021.106242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/16/2021] [Accepted: 05/16/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Legionella pneumophila (L. pneumophila) is responsible for 96% of Legionnaires' disease (LD) and 10% of all worldwide pneumonia cases. Legiolert™, a liquid culture method for most probable number (MPN) enumeration of L. pneumophila, was developed by IDEXX Laboratories. The method detects all serogroups of L. pneumophila in potable and non-potable water samples. OBJECTIVE The goal of this study is to establish that Legiolert is a suitable alternative method to meet testing requirements in Spain for the enumeration of Legionella in water samples. METHODOLOGY The laboratory analyzed 118 environmental water samples from the Barcelona region (56 potable and 62 non-potable) in parallel by the Standard method for detection and enumeration of Legionella (ISO 11731:1998) and by Legiolert. Comparison of the recovery of the alternative method (Legiolert) and the Standard was made using ISO 17994:2014 and McNemar's binomial test statistical methods. RESULTS 44 samples were positive for Legionella (36 potable and 8 non-potable). Legiolert and the Standard method detected a similar percentage of positive samples, with Legiolert being slightly higher (31 vs 30%) and detecting higher concentrations of Legionella within the samples. ISO 17994:2014 analysis of the potable water samples found Legiolert was more sensitive than the Standard at detecting Legionella, even when complete Legionella species (L. spp.) results were considered for both methods. The two methods also demonstrated equivalent detection of L. spp. according to the McNemar's test. The comparison is significantly more in favor of Legiolert when only L. pneumophila results are considered. Each confirmation run with material extracted from positive Legiolert wells contained L. pneumophila, giving the method a specificity of 100%. Although statistical results for non-potable waters are not included because of the low number of samples, the two methods trended towards equivalence. CONCLUSIONS Relative to the Standard method, Legiolert has a greater sensitivity and selectivity, and appears to have higher recovery for L. pneumophila, and equivalent recovery when L. spp. is included in the comparison. Legiolert also has high specificity. The procedural advantages of Legiolert allow laboratories to save on resources, costs, and time and consequently to test more frequently. In conclusion, the study finds IDEXX Legiolert a suitable alternative to ISO 11731:1998.
Collapse
Affiliation(s)
- Javier Checa
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Iago Carbonell
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Neus Manero
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Inés Martí
- Public Health Laboratory of L'Hospitalet. Health Service, L'Hospitalet City Council, Cobalt Building. Cobalt street, 57-59, 2nd floor, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
8
|
Buse HY, Morris BJ, Gomez-Alvarez V, Szabo JG, Hall JS. Legionella Diversity and Spatiotemporal Variation in The Occurrence of Opportunistic Pathogens within a Large Building Water System. Pathogens 2020; 9:E567. [PMID: 32668779 PMCID: PMC7400177 DOI: 10.3390/pathogens9070567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
Understanding Legionella survival mechanisms within building water systems (BWSs) is challenging due to varying engineering, operational, and water quality characteristics unique to each system. This study aimed to evaluate Legionella, mycobacteria, and free-living amoebae occurrence within a BWS over 18-28 months at six locations differing in plumbing material and potable water age, quality, and usage. A total of 114 bulk water and 57 biofilm samples were analyzed. Legionella culturability fluctuated seasonally with most culture-positive samples being collected during the winter compared to the spring, summer, and fall months. Positive and negative correlations between Legionella and L. pneumophila occurrence and other physiochemical and microbial water quality parameters varied between location and sample types. Whole genome sequencing of 19 presumptive Legionella isolates, from four locations across three time points, identified nine isolates as L. pneumophila serogroup (sg) 1 sequence-type (ST) 1; three as L. pneumophila sg5 ST1950 and ST2037; six as L. feeleii; and one as Ochrobactrum. Results showed the presence of a diverse Legionella population with consistent and sporadic occurrence at four and two locations, respectively. Viewed collectively with similar studies, this information will enable a better understanding of the engineering, operational, and water quality parameters supporting Legionella growth within BWSs.
Collapse
Affiliation(s)
- Helen Y. Buse
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| | - Brian J. Morris
- Pegasus Technical Services, Inc c/o US EPA, Cincinnati, OH 45268, USA;
| | - Vicente Gomez-Alvarez
- Water Infrastructure Division, Center for Environmental Solutions & Emergency Response (CESER), US Environmental Protection Agency (USEPA), Office of Research and Development (ORD), Cincinnati, OH 45268, USA;
| | - Jeffrey G. Szabo
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| | - John S. Hall
- Homeland Security and Materials Management Division, Center for Environmental Solutions & Emergency Response (CESER), Office of Research and Development (ORD), US Environmental Protection Agency (USEPA), Cincinnati, OH 45268, USA; (J.G.S.); (J.S.H.)
| |
Collapse
|
9
|
Yakunin E, Kostyal E, Agmon V, Grotto I, Valinsky L, Moran-Gilad J. A Snapshot of the Prevalence and Molecular Diversity of Legionella pneumophila in the Water Systems of Israeli Hotels. Pathogens 2020; 9:pathogens9060414. [PMID: 32471136 PMCID: PMC7350324 DOI: 10.3390/pathogens9060414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 11/16/2022] Open
Abstract
Exposure to Legionella spp. contaminated aerosols in hotel settings confers risk for travel-associated Legionnaire’s disease (TALD). In this study, we investigated the prevalence of Legionella contamination and its molecular diversity in hotels and resorts across Israel. The study was comprised of a convenience sample of water systems from 168 hotels and resorts countrywide, routinely inspected between March 2015 and February 2017. Isolation and quantitation of Legionella were performed in a water laboratory using the ISO 11731 method. The distribution of Legionella isolates was analyzed according to geography and source. The genetic diversity of a subset of isolates was analyzed by sequence-based typing (SBT) at the National Reference Laboratory for Legionella and compared to the national database. Out of 2830 samples tested, 470 (17%) obtained from 102 different premises (60% of hotels) were positive for Legionella spp. In 230 samples (49% of all positive, 8% of total samples), accounting for 37% of hotels, Legionella spp. counts exceeded the regulatory threshold of 1000 CFU/L. The most frequently contaminated water sources were cooling towers (38%), followed by faucets, hot tubs, water lines, and storage tanks (14–17% each). Furthermore, 32% and 17% of samples obtained from cooling towers and hot tubs, respectively, exceeded the regulatory thresholds. SBT was performed on 78 strains and revealed 27 different sequence types (STs), including two novel STs. The most prevalent STs found were ST1 (26%), ST87 (10%), ST93 (6%), and ST461 and ST1516 (5% each). Several L. pneumophila STs were found to be limited to certain geographical regions. This is the first study to investigate the prevalence and diversity of Legionella in hotels and resorts in Israel during non-outbreak environmental inspections. These findings will inform risk assessment, surveillance, and control measures of TALD.
Collapse
Affiliation(s)
- Eugenia Yakunin
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
| | - Eszter Kostyal
- Department of Water Microbiology, Biolab Ltd., Jerusalem 9134001, Israel;
| | - Vered Agmon
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
| | - Itamar Grotto
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
- Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Lea Valinsky
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
| | - Jacob Moran-Gilad
- Central Laboratories and Public Health Services, Ministry of Health, Jerusalem 9134302, Israel; (E.Y.); (V.A.); (I.G.); (L.V.)
- Department of Health Systems Management, School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Correspondence:
| |
Collapse
|
10
|
Vicente D, Marimón JM, Lanzeta I, Martin T, Cilla G. Fatal Case of Nosocomial Legionella pneumophila Pneumonia, Spain, 2018. Emerg Infect Dis 2019; 25:2097-2099. [PMID: 31625842 PMCID: PMC6810189 DOI: 10.3201/eid2511.181069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A nosocomial case of Legionella pneumophila pneumonia likely caused by a serogroup 3 strain was detected by a urinary antigen test in Spain in 2018. Although Legionella bacteria could not be isolated from respiratory samples, molecular methods implicated the sink faucet of the patient's room as the probable infection source.
Collapse
|
11
|
Ginevra C, Chastang J, David S, Mentasti M, Yakunin E, Chalker VJ, Chalifa-Caspi V, Valinsky L, Jarraud S, Moran-Gilad J. A real-time PCR for specific detection of the Legionella pneumophila serogroup 1 ST1 complex. Clin Microbiol Infect 2019; 26:514.e1-514.e6. [PMID: 31525518 DOI: 10.1016/j.cmi.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/28/2019] [Accepted: 09/01/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Legionella pneumophila serogroup 1 (Lp1) sequence type (ST) 1 is globally widespread in the environment and accounts for a significant proportion of Legionella infections, including nosocomial Legionnaires' disease (LD). This study aimed to design a sensitive and specific detection method for Lp ST1 that will underpin epidemiological investigations and risk assessment. METHODS A total of 628 Lp genomes (126 ST1s) were analyzed by comparative genomics. Interrogation of more than 900 accessory genes revealed seven candidate targets for specific ST1 detection and specific primers and hydrolysis probes were designed and evaluated. The analytical sensitivity and specificity of the seven primer and probe sets were evaluated on serially diluted DNA extracted from the reference strain CIP107629 and via qPCR applied on 200 characterized isolates. The diagnostic performance of the assay was evaluated on 142 culture-proven clinical samples from LD cases and a real-life investigation of a case cluster. RESULTS Of seven qPCR assays that underwent analytical validation, one PCR target (lpp1868) showed higher sensitivity and specificity for ST1 and ST1-like strains. The diagnostic performance of the assay using respiratory samples corresponded to a sensitivity of 95% (19/20) (95% CI (75.1-99.9)) and specificity of 100% (122/122) (95% CI (97-100)). The ST1 PCR assay could link two out of three culture-negative hospitalized LD cases to ST1 during a real-time investigation. CONCLUSION Using whole genome sequencing (WGS) data, we developed and validated a sensitive and specific qPCR assay for the detection of Lp1 belonging to the ST1 clonal complex by amplification of the lpp1868 gene. The ST1 qPCR is expected to deliver an added value for Lp control and prevention, in conjunction with other recently developed molecular assays.
Collapse
Affiliation(s)
- C Ginevra
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - J Chastang
- National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - S David
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Pathogen Genomics, Welcome Trust Sanger Institute, Cambridge, UK; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - M Mentasti
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - E Yakunin
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - V J Chalker
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, London, UK
| | - V Chalifa-Caspi
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - L Valinsky
- Central Laboratories, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - S Jarraud
- CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France; National Reference Centre of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France; ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland
| | - J Moran-Gilad
- ESCMID Study Group for Legionella Infections (ESGLI), Basel, Switzerland; School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev. Beer-Sheva, Israel; Public Health Services, Ministry of Health, Jerusalem, Israel.
| | | |
Collapse
|