1
|
Yang RZ, Wang DD, Li SM, Liu PP, Kang JS. Development and Application of a Mitochondrial Genetically Encoded Voltage Indicator in Narcosis. Neurosci Bull 2024; 40:1529-1544. [PMID: 38829505 PMCID: PMC11422539 DOI: 10.1007/s12264-024-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/11/2024] [Indexed: 06/05/2024] Open
Abstract
Mitochondrial membrane potential (MMP) plays a crucial role in the function of cells and organelles, involving various cellular physiological processes, including energy production, formation of reactive oxygen species (ROS), unfolded protein stress, and cell survival. Currently, there is a lack of genetically encoded fluorescence indicators (GEVIs) for MMP. In our screening of various GEVIs for their potential monitoring MMP, the Accelerated Sensor of Action Potentials (ASAP) demonstrated optimal performance in targeting mitochondria and sensitivity to depolarization in multiple cell types. However, mitochondrial ASAPs also displayed sensitivity to ROS in cardiomyocytes. Therefore, two ASAP mutants resistant to ROS were generated. A double mutant ASAP3-ST exhibited the highest voltage sensitivity but weaker fluorescence. Overall, four GEVIs capable of targeting mitochondria were obtained and named mitochondrial potential indicators 1-4 (MPI-1-4). In vivo, fiber photometry experiments utilizing MPI-2 revealed a mitochondrial depolarization during isoflurane-induced narcosis in the M2 cortex.
Collapse
Affiliation(s)
- Run-Zhou Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Dian-Dian Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Sen-Miao Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Charan M, Jones TH, Ahirwar DK, Acharya N, Subramaniam VV, Ganju RK, Song JW. Induced electric fields inhibit breast cancer growth and metastasis by modulating the immune tumor microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589256. [PMID: 38659909 PMCID: PMC11042207 DOI: 10.1101/2024.04.14.589256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite tremendous advances in oncology, metastatic triple-negative breast cancer remains difficult to treat and manage with established therapies. Here, we show in mice with orthotopic triple-negative breast tumors that alternating (100 kHz), and low intensity (<1 mV/cm) induced electric fields (iEFs) significantly reduced primary tumor growth and distant lung metastases. Non-contact iEF treatment can be delivered safely and non-invasively in vivo via a hollow, rectangular solenoid coil. We discovered that iEF treatment enhances anti-tumor immune responses at both the primary breast and secondary lung sites. In addition, iEF reduces immunosuppressive TME by reducing effector CD8+ T cell exhaustion and the infiltration of immunosuppressive immune cells. Furthermore, iEF treatment reduced lung metastasis by increasing CD8+ T cells and reducing immunosuppressive Gr1+ neutrophils in the lung microenvironment. We also observed that iEFs reduced the metastatic potential of cancer cells by inhibiting epithelial-to-mesenchymal transition. By introducing a non-invasive and non-toxic electrotherapeutic for inhibiting metastatic outgrowth and enhancing anti-tumor immune response in vivo, treatment with iEF technology could add to a paradigm-shifting strategy for cancer therapy.
Collapse
|
4
|
Aseyev N, Ivanova V, Balaban P, Nikitin E. Current Practice in Using Voltage Imaging to Record Fast Neuronal Activity: Successful Examples from Invertebrate to Mammalian Studies. BIOSENSORS 2023; 13:648. [PMID: 37367013 DOI: 10.3390/bios13060648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
The optical imaging of neuronal activity with potentiometric probes has been credited with being able to address key questions in neuroscience via the simultaneous recording of many neurons. This technique, which was pioneered 50 years ago, has allowed researchers to study the dynamics of neural activity, from tiny subthreshold synaptic events in the axon and dendrites at the subcellular level to the fluctuation of field potentials and how they spread across large areas of the brain. Initially, synthetic voltage-sensitive dyes (VSDs) were applied directly to brain tissue via staining, but recent advances in transgenic methods now allow the expression of genetically encoded voltage indicators (GEVIs), specifically in selected neuron types. However, voltage imaging is technically difficult and limited by several methodological constraints that determine its applicability in a given type of experiment. The prevalence of this method is far from being comparable to patch clamp voltage recording or similar routine methods in neuroscience research. There are more than twice as many studies on VSDs as there are on GEVIs. As can be seen from the majority of the papers, most of them are either methodological ones or reviews. However, potentiometric imaging is able to address key questions in neuroscience by recording most or many neurons simultaneously, thus providing unique information that cannot be obtained via other methods. Different types of optical voltage indicators have their advantages and limitations, which we focus on in detail. Here, we summarize the experience of the scientific community in the application of voltage imaging and try to evaluate the contribution of this method to neuroscience research.
Collapse
Affiliation(s)
- Nikolay Aseyev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Violetta Ivanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Pavel Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| | - Evgeny Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, Moscow 117485, Russia
| |
Collapse
|
5
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Campbell EP, Abushawish AA, Valdez LA, Bell MK, Haryono M, Rangamani P, Bloodgood BL. Electrical signals in the ER are cell type and stimulus specific with extreme spatial compartmentalization in neurons. Cell Rep 2023; 42:111943. [PMID: 36640310 PMCID: PMC10033362 DOI: 10.1016/j.celrep.2022.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is a tortuous organelle that spans throughout a cell with a continuous membrane containing ion channels, pumps, and transporters. It is unclear if stimuli that gate ER ion channels trigger substantial membrane potential fluctuations and if those fluctuations spread beyond their site of origin. Here, we visualize ER membrane potential dynamics in HEK cells and cultured rat hippocampal neurons by targeting a genetically encoded voltage indicator specifically to the ER membrane. We report the existence of clear cell-type- and stimulus-specific ER membrane potential fluctuations. In neurons, direct stimulation of ER ryanodine receptors generates depolarizations that scale linearly with stimulus strength and reach tens of millivolts. However, ER potentials do not spread beyond the site of receptor activation, exhibiting steep attenuation that is exacerbated by intracellular large conductance K+ channels. Thus, segments of ER can generate large depolarizations that are actively restricted from impacting nearby, contiguous membrane.
Collapse
Affiliation(s)
- Evan P Campbell
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ahmed A Abushawish
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lauren A Valdez
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Miriam K Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Melita Haryono
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Brenda L Bloodgood
- Neurobiology Department, School of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Klier PEZ, Roo R, Miller EW. Fluorescent indicators for imaging membrane potential of organelles. Curr Opin Chem Biol 2022; 71:102203. [PMID: 36084425 PMCID: PMC10259174 DOI: 10.1016/j.cbpa.2022.102203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023]
Abstract
Plasma membrane potential is a key driver of the physiology of excitable cells like neurons and cardiomyocytes. Voltage-sensitive fluorescent indicators offer a powerful complement to traditional electrode-based approaches to measuring and monitoring membrane potential. Intracellular organelles can also generate membrane potential, yet the electrode- and fluorescent indicator-based approaches used for plasma membrane potential imaging are difficult to implement on intact organelles in their native environment. Here, we survey recent advances in developing and deploying voltage-sensitive fluorescent indicators to interrogate organelle membrane potential in intact cells.
Collapse
Affiliation(s)
- Pavel E Z Klier
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Ryan Roo
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA; Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
8
|
Klier PEZ, Gest AMM, Martin JG, Roo R, Navarro MX, Lesiak L, Deal PE, Dadina N, Tyson J, Schepartz A, Miller EW. Bioorthogonal, Fluorogenic Targeting of Voltage-Sensitive Fluorophores for Visualizing Membrane Potential Dynamics in Cellular Organelles. J Am Chem Soc 2022; 144:12138-12146. [PMID: 35776693 DOI: 10.1021/jacs.2c02664] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrical potential differences across lipid bilayers play foundational roles in cellular physiology. Plasma membrane voltage is the most widely studied; however, the bilayers of organelles like mitochondria, lysosomes, nuclei, and the endoplasmic reticulum (ER) also provide opportunities for ionic compartmentalization and the generation of transmembrane potentials. Unlike plasma membranes, organellar bilayers, cloistered within the cell, remain recalcitrant to traditional approaches like patch-clamp electrophysiology. To address the challenge of monitoring changes in organelle membrane potential, we describe the design, synthesis, and application of the LUnAR RhoVR (Ligation Unquenched for Activation and Redistribution Rhodamine-based Voltage Reporter) for optically monitoring membrane potential changes in the ER of living cells. We pair a tetrazine-quenched RhoVR for voltage sensing with a transcyclooctene (TCO)-conjugated ceramide (Cer-TCO) for targeting to the ER. Bright fluorescence is observed only at the coincidence of the LUnAR RhoVR and TCO in the ER, minimizing non-specific, off-target fluorescence. We show that the product of the LUnAR RhoVR and Cer-TCO is voltage-sensitive and that the LUnAR RhoVR can be targeted to an intact ER in living cells. Using the LUnAR RhoVR, we use two-color, ER-localized, fast voltage imaging coupled with cytosolic Ca2+ imaging to validate the electroneutrality of Ca2+ release from internal stores. Finally, we use the LUnAR RhoVR to directly visualize functional coupling between the plasma-ER membranes in patch clamped cell lines, providing the first direct evidence of the sign of the ER potential response to plasma membrane potential changes. We envision that the LUnAR RhoVR, along with other existing organelle-targeting TCO probes, could be applied widely for exploring organelle physiology.
Collapse
Affiliation(s)
- Pavel E Z Klier
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Anneliese M M Gest
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julia G Martin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryan Roo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Marisol X Navarro
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lauren Lesiak
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Parker E Deal
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Neville Dadina
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jonathan Tyson
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alanna Schepartz
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States.,Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
9
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
10
|
Sepehri Rad M, Cohen LB, Baker BJ. Conserved Amino Acids Residing Outside the Voltage Field Can Shift the Voltage Sensitivity and Increase the Signal Speed and Size of Ciona Based GEVIs. Front Cell Dev Biol 2022; 10:868143. [PMID: 35784472 PMCID: PMC9243531 DOI: 10.3389/fcell.2022.868143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
To identify potential regions of the voltage-sensing domain that could shift the voltage sensitivity of Ciona intestinalis based Genetically Encoded Voltage Indicators (GEVIs), we aligned the amino acid sequences of voltage-gated sodium channels from different organisms. Conserved polar residues were identified at multiple transmembrane/loop junctions in the voltage sensing domain. Similar conservation of polar amino acids was found in the voltage-sensing domain of the voltage-sensing phosphatase gene family. These conserved residues were mutated to nonpolar or oppositely charged amino acids in a GEVI that utilizes the voltage sensing domain of the voltage sensing phosphatase from Ciona fused to the fluorescent protein, super ecliptic pHluorin (A227D). Different mutations shifted the voltage sensitivity to more positive or more negative membrane potentials. Double mutants were then created by selecting constructs that shifted the optical signal to a more physiologically relevant voltage range. Introduction of these mutations into previously developed GEVIs resulted in Plos6-v2 which improved the dynamic range to 40% ΔF/F/100 mV, a 25% increase over the parent, ArcLight. The onset time constant of Plos6-v2 is also 50% faster than ArcLight. Thus, Plos6-v2 appears to be the GEVI of choice.
Collapse
Affiliation(s)
- Masoud Sepehri Rad
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Department of Neuroscience, University of Wisconsin, Madison, WI, United States
| | - Lawrence B. Cohen
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Lawrence B. Cohen, ; Bradley J. Baker,
| | - Bradley J. Baker
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, South Korea
- *Correspondence: Lawrence B. Cohen, ; Bradley J. Baker,
| |
Collapse
|
11
|
Kramer RH, Miller EW, Abdelfattah A, Baker B. Fluorescent Reporters for Sensing Membrane Potential: Tools for Bioelectricity. Bioelectricity 2022; 4:108-116. [PMID: 39350779 PMCID: PMC11441357 DOI: 10.1089/bioe.2022.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Richard H Kramer
- Department of Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Evan W Miller
- Departments of Chemistry and Molecular & Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
| | - Ahmed Abdelfattah
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Bradley Baker
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, South Korea
| |
Collapse
|
12
|
Grupi A, Shapira Z, Yudovich S, Degani-Katzav N, Weiss S. Point-localized, site-specific membrane potential optical recording by single fluorescent nanodiscs. ACTA ACUST UNITED AC 2021; 1:None. [PMID: 34568861 PMCID: PMC8448295 DOI: 10.1016/j.bpr.2021.100007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/20/2021] [Indexed: 01/02/2023]
Abstract
Nanodisc technology was implemented as a platform for voltage nanosensors. A fluorescence (Förster) resonance energy transfer (FRET)- based voltage-sensing scheme employing fluorescent nanodiscs and the hydrophobic ion dipicrylamine was developed and utilized to optically record membrane potentials on the single-nanodisc level. Ensemble and single-nanosensor recordings were demonstrated for HEK293 cells and primary cortical neuron cells. Conjugation of nanodiscs to anti-GABAA antibodies allowed for site-specific membrane potential measurements from postsynaptic sites.
Collapse
Affiliation(s)
- Asaf Grupi
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Zehavit Shapira
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shimon Yudovich
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Nurit Degani-Katzav
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Shimon Weiss
- Department of Physics, Institute for Nanotechnology and Advanced Materials.,Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel.,Department of Chemistry and Biochemistry.,California NanoSystems Institute, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
13
|
Pant J, Giovinazzo JA, Tuka LS, Peña D, Raper J, Thomson R. Apolipoproteins L1-6 share key cation channel-regulating residues but have different membrane insertion and ion conductance properties. J Biol Chem 2021; 297:100951. [PMID: 34252458 PMCID: PMC8358165 DOI: 10.1016/j.jbc.2021.100951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 01/01/2023] Open
Abstract
The human apolipoprotein L gene family encodes the apolipoprotein L1-6 (APOL1-6) proteins, which are effectors of the innate immune response to viruses, bacteria and protozoan parasites. Due to a high degree of similarity between APOL proteins, it is often assumed that they have similar functions to APOL1, which forms cation channels in planar lipid bilayers and membranes resulting in cytolytic activity. However, the channel properties of the remaining APOL proteins have not been reported. Here, we used transient overexpression and a planar lipid bilayer system to study the function of APOL proteins. By measuring lactate dehydrogenase release, we found that APOL1, APOL3, and APOL6 were cytolytic, whereas APOL2, APOL4, and APOL5 were not. Cells expressing APOL1 or APOL3, but not APOL6, developed a distinctive swollen morphology. In planar lipid bilayers, recombinant APOL1 and APOL2 required an acidic environment for the insertion of each protein into the membrane bilayer to form an ion conductance channel. In contrast, recombinant APOL3, APOL4, and APOL5 readily inserted into bilayers to form ion conductance at neutral pH, but required a positive voltage on the side of insertion. Despite these differences in membrane insertion properties, the ion conductances formed by APOL1-4 were similarly pH-dependent and cation-selective, consistent with conservation of the pore-lining region in each protein. Thus, despite structural conservation, the APOL proteins are functionally different. We propose that these proteins interact with different membranes and under different voltage and pH conditions within a cell to effect innate immunity to different microbial pathogens.
Collapse
Affiliation(s)
- Jyoti Pant
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| | - Joseph A Giovinazzo
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lilit S Tuka
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Darwin Peña
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Jayne Raper
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA; PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York, USA
| | - Russell Thomson
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA.
| |
Collapse
|
14
|
Abstract
Membrane potential (Vmem) is a fundamental biophysical signal present in all cells. Vmem signals range in time from milliseconds to days, and they span lengths from microns to centimeters. Vmem affects many cellular processes, ranging from neurotransmitter release to cell cycle control to tissue patterning. However, existing tools are not suitable for Vmem quantification in many of these areas. In this review, we outline the diverse biology of Vmem, drafting a wish list of features for a Vmem sensing platform. We then use these guidelines to discuss electrode-based and optical platforms for interrogating Vmem. On the one hand, electrode-based strategies exhibit excellent quantification but are most effective in short-term, cellular recordings. On the other hand, optical strategies provide easier access to diverse samples but generally only detect relative changes in Vmem. By combining the respective strengths of these technologies, recent advances in optical quantification of absolute Vmem enable new inquiries into Vmem biology.
Collapse
Affiliation(s)
- Julia R Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
| | - Anneliese M M Gest
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
| | - Evan W Miller
- Department of Chemistry, University of California, Berkeley, California 94720, USA; ,
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
15
|
Mechanism of ArcLight derived GEVIs involves electrostatic interactions that can affect proton wires. Biophys J 2021; 120:1916-1926. [PMID: 33744263 PMCID: PMC8204334 DOI: 10.1016/j.bpj.2021.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 11/24/2022] Open
Abstract
The genetically encoded voltage indicators ArcLight and its derivatives mediate voltage-dependent optical signals by intermolecular, electrostatic interactions between neighboring fluorescent proteins (FPs). A random mutagenesis event placed a negative charge on the exterior of the FP, resulting in a greater than 10-fold improvement of the voltage-dependent optical signal. Repositioning this negative charge on the exterior of the FP reversed the polarity of voltage-dependent optical signals, suggesting the presence of “hot spots” capable of interacting with the negative charge on a neighboring FP, thereby changing the fluorescent output. To explore the potential effect on the chromophore state, voltage-clamp fluorometry was performed with alternating excitation at 390 nm followed by excitation at 470 nm, resulting in several mutants exhibiting voltage-dependent, ratiometric optical signals of opposing polarities. However, the kinetics, voltage ranges, and optimal FP fusion sites were different depending on the wavelength of excitation. These results suggest that the FP has external, electrostatic pathways capable of quenching fluorescence that are wavelength specific. One mutation to the FP (E222H) showed a voltage-dependent increase in fluorescence when excited at 390 nm, indicating the ability to affect the proton wire from the protonated chromophore to the H222 position. ArcLight-derived sensors may therefore offer a novel way to map how conditions external to the β-can structure can affect the fluorescence of the chromophore and transiently affect those pathways via conformational changes mediated by manipulating membrane potential.
Collapse
|
16
|
Rhee JK, Leong LM, Mukim MSI, Kang BE, Lee S, Bilbao-Broch L, Baker BJ. Biophysical Parameters of GEVIs: Considerations for Imaging Voltage. Biophys J 2020; 119:1-8. [PMID: 32521239 PMCID: PMC7335909 DOI: 10.1016/j.bpj.2020.05.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 04/17/2020] [Accepted: 05/20/2020] [Indexed: 11/29/2022] Open
Abstract
Genetically encoded voltage indicators (GEVIs) continue to evolve, resulting in many different probes with varying strengths and weaknesses. Developers of new GEVIs tend to highlight their positive features. A recent article from an independent laboratory has compared the signal/noise ratios of a number of GEVIs. Such a comparison can be helpful to investigators eager to try to image the voltage of excitable cells. In this perspective, we will present examples of how the biophysical features of GEVIs affect the imaging of excitable cells in an effort to assist researchers when considering probes for their specific needs.
Collapse
Affiliation(s)
- Jun Kyu Rhee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Lee Min Leong
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Md Sofequl Islam Mukim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bok Eum Kang
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Sungmoo Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Laura Bilbao-Broch
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Bradley J Baker
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
17
|
Feiz MS, Latifi H, Rezaei A, Karimkhan-zand M. Digital image registration reveals signal improvements in voltage-sensitive dye imaging of
in vivo
rat brain. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3f68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Matzke AJ, Lin WD, Matzke M. Evidence That Ion-Based Signaling Initiating at the Cell Surface Can Potentially Influence Chromatin Dynamics and Chromatin-Bound Proteins in the Nucleus. FRONTIERS IN PLANT SCIENCE 2019; 10:1267. [PMID: 31681370 PMCID: PMC6811650 DOI: 10.3389/fpls.2019.01267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/11/2019] [Indexed: 05/18/2023]
Abstract
We have developed tools and performed pilot experiments to test the hypothesis that an intracellular ion-based signaling pathway, provoked by an extracellular stimulus acting at the cell surface, can influence interphase chromosome dynamics and chromatin-bound proteins in the nucleus. The experimental system employs chromosome-specific fluorescent tags and the genome-encoded fluorescent pH sensor SEpHluorinA227D, which has been targeted to various intracellular membranes and soluble compartments in root cells of Arabidopsis thaliana. We are using this system and three-dimensional live cell imaging to visualize whether fluorescent-tagged interphase chromosome sites undergo changes in constrained motion concurrently with reductions in membrane-associated pH elicited by extracellular ATP, which is known to trigger a cascade of events in plant cells including changes in calcium ion concentrations, pH, and membrane potential. To examine possible effects of the proposed ion-based signaling pathway directly at the chromatin level, we generated a pH-sensitive fluorescent DNA-binding protein that allows pH changes to be monitored at specific genomic sites. Results obtained using these tools support the existence of a rapid, ion-based signaling pathway that initiates at the cell surface and reaches the nucleus to induce alterations in interphase chromatin mobility and the surrounding pH of chromatin-bound proteins. Such a pathway could conceivably act under natural circumstances to allow external stimuli to swiftly influence gene expression by affecting interphase chromosome movement and the structures and/or activities of chromatin-associated proteins.
Collapse
Affiliation(s)
| | | | - Marjori Matzke
- *Correspondence: Antonius J.M. Matzke, ; Marjori Matzke,
| |
Collapse
|