1
|
He Y, Ye R, Peng Y, Pei Q, Wu L, Wang C, Ni W, Li M, Zhang Y, Yao M. Photobiomodulation ameliorates ovarian aging by alleviating oxidative stress and inflammation damage and improving mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113024. [PMID: 39276447 DOI: 10.1016/j.jphotobiol.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.
Collapse
Affiliation(s)
- Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rongan Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Pei
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wu
- Shanghai Institute of Laser Technology, Shanghai 200233, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqiu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
2
|
Song J, Xiao L, Zhang Z, Wang Y, Kouis P, Rasmussen LJ, Dai F. Effects of reactive oxygen species and mitochondrial dysfunction on reproductive aging. Front Cell Dev Biol 2024; 12:1347286. [PMID: 38465288 PMCID: PMC10920300 DOI: 10.3389/fcell.2024.1347286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
Mitochondria, the versatile organelles crucial for cellular and organismal viability, play a pivotal role in meeting the energy requirements of cells through the respiratory chain located in the inner mitochondrial membrane, concomitant with the generation of reactive oxygen species (ROS). A wealth of evidence derived from contemporary investigations on reproductive longevity strongly indicates that the aberrant elevation of ROS level constitutes a fundamental factor in hastening the aging process of reproductive systems which are responsible for transmission of DNA to future generations. Constant changes in redox status, with a pro-oxidant shift mainly through the mitochondrial generation of ROS, are linked to the modulation of physiological and pathological pathways in gametes and reproductive tissues. Furthermore, the quantity and quality of mitochondria essential to capacitation and fertilization are increasingly associated with reproductive aging. The article aims to provide current understanding of the contributions of ROS derived from mitochondrial respiration to the process of reproductive aging. Moreover, understanding the impact of mitochondrial dysfunction on both female and male fertility is conducive to finding therapeutic strategies to slow, prevent or reverse the process of gamete aging, and thereby increase reproductive longevity.
Collapse
Affiliation(s)
- Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Li Xiao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zhehao Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yujin Wang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Panayiotis Kouis
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Liang J, Huang F, Song Z, Tang R, Zhang P, Chen R. Impact of NAD+ metabolism on ovarian aging. Immun Ageing 2023; 20:70. [PMID: 38041117 PMCID: PMC10693113 DOI: 10.1186/s12979-023-00398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+), a crucial coenzyme in cellular redox reactions, is closely associated with age-related functional degeneration and metabolic diseases. NAD exerts direct and indirect influences on many crucial cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cellular senescence, and immune cell functionality. These cellular processes and functions are essential for maintaining tissue and metabolic homeostasis, as well as healthy aging. Causality has been elucidated between a decline in NAD levels and multiple age-related diseases, which has been confirmed by various strategies aimed at increasing NAD levels in the preclinical setting. Ovarian aging is recognized as a natural process characterized by a decline in follicle number and function, resulting in decreased estrogen production and menopause. In this regard, it is necessary to address the many factors involved in this complicated procedure, which could improve fertility in women of advanced maternal age. Concerning the decrease in NAD+ levels as ovarian aging progresses, promising and exciting results are presented for strategies using NAD+ precursors to promote NAD+ biosynthesis, which could substantially improve oocyte quality and alleviate ovarian aging. Hence, to acquire further insights into NAD+ metabolism and biology, this review aims to probe the factors affecting ovarian aging, the characteristics of NAD+ precursors, and the current research status of NAD+ supplementation in ovarian aging. Specifically, by gaining a comprehensive understanding of these aspects, we are optimistic about the prominent progress that will be made in both research and therapy related to ovarian aging.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Zhaoqi Song
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian, China
| | - Ruiyi Tang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing, 100730, China.
| |
Collapse
|
4
|
Swegen A, Appeltant R, Williams SA. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol Rev Camb Philos Soc 2023; 98:1225-1249. [PMID: 37016502 DOI: 10.1111/brv.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
5
|
Molecular Mechanism and Application of Somatic Cell Cloning in Mammals-Past, Present and Future. Int J Mol Sci 2022; 23:ijms232213786. [PMID: 36430264 PMCID: PMC9697074 DOI: 10.3390/ijms232213786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Thus far, nearly 25 mammalian species have been cloned by intra- or interspecies somatic cell nuclear transfer (SCNT) [...].
Collapse
|
6
|
Liu H, Zhai J, Wu H, Wang J, Zhang S, Li J, Niu Z, Shen C, Zhang K, Liu Z, Jiang F, Song E, Sun X, Wang Y, Lan X. Diversity of Mitochondrial DNA Haplogroups and Their Association with Bovine Antral Follicle Count. Animals (Basel) 2022; 12:ani12182350. [PMID: 36139210 PMCID: PMC9495067 DOI: 10.3390/ani12182350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/30/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Maternal origins based on the bovine mitochondrial D-loop region are proven to have two main origins: Bos taurus and Bos indicus. To examine the association between the maternal origins of bovine and reproductive traits, the complete mitochondrial D-loop region sequences from 501 Chinese Holstein cows and 94 individuals of other breeds were analyzed. Based on the results obtained from the haplotype analysis, 260 SNPs (single nucleotide polymorphism), 32 indels (insertion/deletion), and 219 haplotypes were identified. Moreover, the nucleotide diversity (π) and haplotype diversity (Hd) were 0.024 ± 0.001 and 0.9794 ± 0.003, respectively, indicating the abundance of genetic resources in Chinese Holstein cows. The results of the median-joining network analysis showed two haplogroups (HG, including HG1 and HG2) that diverged in genetic distance. Furthermore, the two haplogroups were significantly (p < 0.05) correlated with the antral follicle (diameter ≥ 8 mm) count, and HG1 individuals had more antral follicles than HG2 individuals, suggesting that these different genetic variants between HG1 and HG2 correlate with reproductive traits. The construction of a neighbor-joining phylogenetic tree and principal component analysis also revealed two main clades (HG1 and HG2) with different maternal origins: Bos indicus and Bos taurus, respectively. Therefore, HG1 originating from the maternal ancestors of Bos indicus may have a greater reproductive performance, and potential genetic variants discovered may promote the breeding process in the cattle industry.
Collapse
Affiliation(s)
- Hongfei Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Junjun Zhai
- College of Life Science, Yulin University, Yulin 719000, China
| | - Hui Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shaowei Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Jie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhihan Niu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Chenglong Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kaijuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Zhengqing Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Fugui Jiang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Enliang Song
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250000, China
| | - Xiuzhu Sun
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Yongsheng Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
- Correspondence: (Y.W.); (X.L.)
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence: (Y.W.); (X.L.)
| |
Collapse
|
7
|
The Molecular Quality and Mitochondrial Activity of Porcine Cumulus-Oocyte Complexes Are Affected by Their Exposure to Three Endocrine-Active Compounds under 3D In Vitro Maturation Conditions. Int J Mol Sci 2022; 23:ijms23094572. [PMID: 35562963 PMCID: PMC9100547 DOI: 10.3390/ijms23094572] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Thus far, the potential short- and long-term detrimental effects of a variety of environmental chemicals designated as endocrine-active compounds (EACs) have been found to interfere with histo- and anatomo-physiological functions of the reproductive system in humans and wildlife species. For those reasons, this study sought to examine whether selected EACs, which encompass the fungicide vinclozolin (Vnz), the androgenic anabolic steroid nandrolone (Ndn) and the immunosuppressant cyclosporin A (CsA), affect the developmental competence and molecular quality (MQ) of porcine cumulus–oocyte complexes (COCs) subjected to in vitro maturation (IVM) under 3D culture conditions. The COCs underwent 3D-IVM in the presence of Vnz, Ndn or CsA for 48 h. To explore whether the selected EACs induce internucleosomal DNA fragmentation in cumulus cells (CCs), TUNEL-assisted detection of late apoptotic cells was performed. Additionally, for the detailed evaluation of pro- and antiapoptotic pathways in COCs, apoptosis proteome profiler arrays were used. To determine changes in intracellular metabolism in COCs, comprehensive assessments of mitochondrial ultrastructure and activity were carried out. Moreover, the relative abundances (RAs) of mRNAs transcribed from genes that are involved in scavenging reactive oxygen species (ROS), such as SIRT3 and FOXO3, and intramitochondrial bioenergetic balance, such as ATP synthase subunit (ATP5A1), were ascertained. Finally, to investigate the extent of progression of oocyte maturation, the intraooplasmic levels of cAMP and the RAs of mRNA transcripts encoding regulatory and biocatalytic subunits of a heterodimeric meiosis-promoting factor, termed cyclin B1 (CCNB1) and cyclin-dependent kinase 1 (CDC2), were also estimated. The obtained results provide, for the first time, strong evidence that both Vnz and Ndn decrease the developmental competence of oocytes and stimulate apoptosis processes in CCs. The present study is also the first to highlight that Vnz accelerates the maturation process in immature oocytes due to both increased ROS production and the augmented RA of the CCNB1 gene. Furthermore, Vnz was proven to trigger proapoptotic events in CCs by prompting the activity of the FOXO3 transcription factor, which regulates the mitochondrial apoptosis pathway. In turn, Ndn was shown to inhibit oocyte maturation by inducing molecular events that ultimately lead to an increase in the intraooplasmic cAMP concentration. However, due to the simultaneous enhancement of the expression of TNF-β and HSP27 proteins in CCs, Ndn might be responsible for the onset of their neoplastic transformation. Finally, our current investigation is the first to clearly demonstrate that although CsA did not interfere with the nuclear and cytoplasmic maturation of oocytes, by inducing mitophagy in CCs, it disrupted oocyte metabolism, consequently attenuating the parameters related to the MQ of COCs. Summing up, Vnz, Ndn and CsA reduced not only the processes of growth and IVM but also the MQ of porcine COCs, which might make them unsuitable for assisted reproductive technologies (ARTs) such as in vitro fertilization by either gamete co-incubation or intracytoplasmic sperm injection (ICSI) and cloning by somatic cell nuclear transfer (SCNT).
Collapse
|
8
|
Akagi S, Matsukawa K. Effects of Trichostatin A on the Timing of the First Cleavage and In Vitro Developmental Potential of Bovine Somatic Cell Nuclear Transfer Embryos. Cell Reprogram 2022; 24:142-149. [PMID: 35404091 DOI: 10.1089/cell.2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study examined the relationship between the timing of the first cleavage and in vitro development of bovine somatic cell nuclear transfer (SCNT) embryos treated with trichostatin A (TSA). SCNT embryos were visually assessed at 22, 26, and 48 hours after activation. Each embryo with two or more distinct blastomeres was transferred into a microwell and cultured until day 7. Irrespective of TSA treatment, approximately half of the cleaved embryos were observed at 22 hours, and a significantly higher blastocyst formation rate was shown in the SCNT embryos cleaved at 22 hours than those cleaved at ≥26 hours. The blastocyst formation rate of TSA-treated embryos cleaved at 22 hours (80%) was slightly higher than that of the control embryos (70%). In addition, interferon-τ (IFN-τ) expression was significantly lower in control SCNT embryos and late-cleaving (>26 hours) TSA-treated embryos than in in vitro fertilized (IVF) embryos. However, a significant difference was not observed between TSA-treated SCNT embryos cleaved at 22 and 26 hours, and IVF embryos. These results suggest that TSA treatment has no influence on the timing of the first cleavage of SCNT embryos; however, it slightly improves the blastocyst formation rate and the expression level of IFN-τ in early-cleaving embryos.
Collapse
Affiliation(s)
- Satoshi Akagi
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | | |
Collapse
|
9
|
Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int J Mol Sci 2022; 23:ijms23041969. [PMID: 35216087 PMCID: PMC8879641 DOI: 10.3390/ijms23041969] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/04/2023] Open
Abstract
Mammalian oocytes can reprogram differentiated somatic cells into a totipotent state through somatic cell nuclear transfer (SCNT), which is known as cloning. Although many mammalian species have been successfully cloned, the majority of cloned embryos failed to develop to term, resulting in the overall cloning efficiency being still low. There are many factors contributing to the cloning success. Aberrant epigenetic reprogramming is a major cause for the developmental failure of cloned embryos and abnormalities in the cloned offspring. Numerous research groups attempted multiple strategies to technically improve each step of the SCNT procedure and rescue abnormal epigenetic reprogramming by modulating DNA methylation and histone modifications, overexpression or repression of embryonic-related genes, etc. Here, we review the recent approaches for technical SCNT improvement and ameliorating epigenetic modifications in donor cells, oocytes, and cloned embryos in order to enhance cloning efficiency.
Collapse
|
10
|
Yang L, Chen Y, Liu Y, Xing Y, Miao C, Zhao Y, Chang X, Zhang Q. The Role of Oxidative Stress and Natural Antioxidants in Ovarian Aging. Front Pharmacol 2021; 11:617843. [PMID: 33569007 PMCID: PMC7869110 DOI: 10.3389/fphar.2020.617843] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
The ovarian system comprises vital organs in females and is of great significance for the maintenance of reproductive potential and endocrine stability. Although complex pathogenesis undoubtedly contributes to ovarian aging, increasing attention is being paid to the extensive influence of oxidative stress. However, the role of oxidative stress in ovarian aging is yet to be fully elucidated. Exploring oxidative stress-related processes might be a promising strategy against ovarian aging. In this review, compelling evidence is shown that oxidative stress plays a role in the etiology of ovarian aging and promotes the development of other ovarian aging-related etiologies, including telomere shortening, mitochondrial dysfunction, apoptosis, and inflammation. In addition, some natural antioxidants such as quercetin, resveratrol, and curcumin have a protective role in the ovaries through multiple mechanisms. These findings raise the prospect of oxidative stress modulator-natural antioxidants as therapeutic interventions for delaying ovarian aging.
Collapse
Affiliation(s)
- Liuqing Yang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yun Chen
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Liu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Xing
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chenyun Miao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qin Zhang
- Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Alves JS, Diaz IDPS, da Cruz VAR, Bastos MS, de Oliveira LSM, de Albuquerque LG, de Camargo GMF, Costa RB. The effect of mitochondrial DNA polymorphisms on cattle reproduction. Mol Biol Rep 2021; 48:1005-1008. [PMID: 33393009 DOI: 10.1007/s11033-020-06068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/03/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to identify SNPs located in mitochondrial DNA that are associated with reproductive traits in beef cows. A total of 1999 Nelore females genotyped with the high-density Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA, USA) were used to study the association of mitochondrial DNA variants with reproductive traits using a single-step procedure. In a preliminary analysis, the present results indicate a small participation of the mitogenome in the expression of reproductive traits in beef cattle. However, possible difficulties related to the biological characteristics of mitochondrial DNA and its inheritance, genotyping, and annotation of the phenotypes studied may also explain the results.
Collapse
Affiliation(s)
- Jackeline Santos Alves
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | - Iara Del Pilar Solar Diaz
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Marisa Silva Bastos
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Lucia Galvão de Albuquerque
- Departamento de Zootecnia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (Unesp), Jaboticabal, São Paulo, Brazil
| | | | - Raphael Bermal Costa
- Escola de Medicina Veterinária e Zootecnia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
| |
Collapse
|
12
|
Li Q, Ren Y, Xiang D, Shi X, Zhao J, Peng L, Zhao G. Comparative mitogenome analysis of two ectomycorrhizal fungi ( Paxillus) reveals gene rearrangement, intron dynamics, and phylogeny of basidiomycetes. IMA Fungus 2020; 11:12. [PMID: 32670777 PMCID: PMC7333402 DOI: 10.1186/s43008-020-00038-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
In this study, the mitogenomes of two Paxillus species were assembled, annotated and compared. The two mitogenomes of Paxillus involutus and P. rubicundulus comprised circular DNA molecules, with the size of 39,109 bp and 41,061 bp, respectively. Evolutionary analysis revealed that the nad4L gene had undergone strong positive selection in the two Paxillus species. In addition, 10.64 and 36.50% of the repetitive sequences were detected in the mitogenomes of P. involutus and P. rubicundulus, respectively, which might transfer between mitochondrial and nuclear genomes. Large-scale gene rearrangements and frequent intron gain/loss events were detected in 61 basidiomycete species, which revealed large variations in mitochondrial organization and size in Basidiomycota. In addition, the insertion sites of the basidiomycete introns were found to have a base preference. Phylogenetic analysis of the combined mitochondrial gene set gave identical and well-supported tree topologies, indicating that mitochondrial genes were reliable molecular markers for analyzing the phylogenetic relationships of Basidiomycota. This study is the first report on the mitogenomes of Paxillus, which will promote a better understanding of their contrasted ecological strategies, molecular evolution and phylogeny of these important ectomycorrhizal fungi and related basidiomycete species.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Yuanhang Ren
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Xiaodong Shi
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Jianglin Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
- Present address: Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, 2025 # Chengluo Avenue, Chengdu, 610106 Sichuan China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106 Sichuan China
| |
Collapse
|
13
|
Sidrat T, Kong R, Khan AA, Idrees M, Xu L, Sheikh ME, Joo MD, Lee KL, Kong IK. Difference in Developmental Kinetics of Y-Specific Monoclonal Antibody Sorted Male and Female In Vitro Produced Bovine Embryos. Int J Mol Sci 2019; 21:ijms21010244. [PMID: 31905822 PMCID: PMC6981608 DOI: 10.3390/ijms21010244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Sex-related growth differences between male and female embryos remain an attractive subject for reproductive biologists. This study aimed to investigate the endogenous factors that play a crucial role in the pace of early development between male and female bovine embryos. Using sex pre-selected semen by Y-specific monoclonal antibodies for the production of bovine embryos, we characterized the critical endogenous factors that are responsible for creating the development differences, especially during the pre-implantation period between male and female embryos. Our results showed that at day seven, (57.8%) Y-sperm sorted in vitro cultured embryos reached the expanded blastocyst (BL) stage, whereas the X-sperm sorted group were only 25%. Y-BLs showed higher mRNA abundance of pluripotency and developmental competency regulators, such as Oct4 and IGF1-R. Interestingly, Y-sperm sorted BLs had a homogeneous mitochondrial distribution pattern, higher mitochondrial membrane potential (∆Ѱm), efficient OXPHOS (oxidative phosphorylation) system and well-encountered production of ROS (reactive oxygen species) level. Moreover, Y-blastocysts (BLs) showed less utilization of glucose metabolism relative to the X-BLs group. Importantly, both sexes showed differences in the timing of epigenetic events. All these factors directly or indirectly orchestrate the whole embryonic progression and may help in the faster and better quality yield of BL in the Y-sperm sorted group compared to the X counterpart group.
Collapse
Affiliation(s)
- Tabinda Sidrat
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Rami Kong
- Gyeongsang Animal Science Technology (GAST), Gyeongsang National University; Jinju-daero 501, Korea;
| | - Abdul Aziz Khan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA;
| | - Muhammad Idrees
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Lianguang Xu
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Marwa El Sheikh
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Myeong-Don Joo
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Kyeong-Lim Lee
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
| | - Il-Keun Kong
- Department of Animal Science, Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.S.); (M.I.); (L.X.); (M.E.S.); (M.-D.J.); (K.-L.L.)
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
14
|
Lucas CG, Chen PR, Seixas FK, Prather RS, Collares T. Applications of omics and nanotechnology to improve pig embryo production in vitro. Mol Reprod Dev 2019; 86:1531-1547. [PMID: 31478591 PMCID: PMC7183242 DOI: 10.1002/mrd.23260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
An appropriate environment to optimize porcine preimplantation embryo production in vitro is required as genetically modified pigs have become indispensable for biomedical research and agriculture. To provide suitable culture conditions, omics technologies have been applied to elucidate which metabolic substrates and pathways are involved during early developmental processes. Metabolomic profiling and transcriptional analysis comparing in vivo- and in vitro-derived embryos have demonstrated the important role of amino acids during preimplantation development. Transcriptional profiling studies have been helpful in assessing epigenetic reprogramming agents to allow for the correction of gene expression during the cloning process. Along with this, nanotechnology, which is a highly promising field, has allowed for the use of engineered nanoplatforms in reproductive biology. A growing number of studies have explored the use of nanoengineered materials for sorting, labeling, and targeting purposes; which demonstrates their potential to become one of the solutions for precise delivery of molecules into gametes and embryos. Considering the contributions of omics and the recent progress in nanoscience, in this review, we focused on their emerging applications for current in vitro pig embryo production systems to optimize the generation of genetically modified animals.
Collapse
Affiliation(s)
- Caroline G Lucas
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Paula R Chen
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Fabiana K Seixas
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Randall S Prather
- Division of Animal Science, National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - Tiago Collares
- Cancer Biotechnology Laboratory, Research Group on Cellular and Molecular Oncology, Postgraduate Program in Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Genomic Balance: Two Genomes Establishing Synchrony to Modulate Cellular Fate and Function. Cells 2019; 8:cells8111306. [PMID: 31652817 PMCID: PMC6912345 DOI: 10.3390/cells8111306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023] Open
Abstract
It is becoming increasingly apparent that cells require cooperation between the nuclear and mitochondrial genomes to promote effective function. However, it was long thought that the mitochondrial genome was under the strict control of the nuclear genome and the mitochondrial genome had little influence on cell fate unless it was extensively mutated, as in the case of the mitochondrial DNA diseases. However, as our understanding of the roles that epigenetic regulators, including DNA methylation, and metabolism play in cell fate and function, the role of the mitochondrial genome appears to have a greater influence than previously thought. In this review, I draw on examples from tumorigenesis, stem cells, and oocyte pre- and post-fertilisation events to discuss how modulating one genome affects the other and that this results in a compromise to produce functional mature cells. I propose that, during development, both of the genomes interact with each other through intermediaries to establish genomic balance and that establishing genomic balance is a key facet in determining cell fate and viability.
Collapse
|
16
|
May-Panloup P, Brochard V, Hamel JF, Desquiret-Dumas V, Chupin S, Reynier P, Duranthon V. Maternal ageing impairs mitochondrial DNA kinetics during early embryogenesis in mice. Hum Reprod 2019; 34:1313-1324. [DOI: 10.1093/humrep/dez054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/26/2019] [Indexed: 01/03/2023] Open
Abstract
Abstract
STUDY QUESTION
Does ageing affect the kinetics of the mitochondrial pool during oogenesis and early embryogenesis?
SUMMARY ANSWER
While we found no age-related change during oogenesis, the kinetics of mitochondrial DNA content and the expression of the factors involved in mitochondrial biogenesis appeared to be significantly altered during embryogenesis.
WHAT IS KNOWN ALREADY
Oocyte mitochondria are necessary for embryonic development. The morphological and functional alterations of mitochondria, as well as the qualitative and quantitative mtDNA anomalies, observed during ovarian ageing may be responsible for the alteration of oocyte competence and embryonic development.
STUDY DESIGN, SIZE, DURATION
The study, conducted from November 2016 to November 2017, used 40 mice aged 5–8 weeks and 45 mice aged 9–11 months (C57Bl6/CBA F(1)). A total of 488 immature oocytes, with a diameter ranging from 20 μm to more than 80 μm, were collected from ovaries, and 1088 mature oocytes or embryos at different developmental stages (two PN, one-cell, i.e. syngamy, two-cell, four-cell, eight-cell, morula and blastocyst) were obtained after ovarian stimulation and, for embryos, mating.
PARTICIPANTS/MATERIALS, SETTING, METHODS
Mitochondrial DNA was quantified by quantitative PCR. We used quantitative reverse transcriptase PCR (RT-PCR) (microfluidic method) to study the relative expression of three genes involved in the key steps of embryogenesis, i.e. embryonic genome activation (HSPA1) and differentiation (CDX2 and NANOG), two mtDNA genes (CYB and ND2) and five genes essential for mitochondrial biogenesis (PPARGC1A, NRF1, POLG, TFAM and PRKAA). The statistical analysis was based on mixed linear regression models applying a logistic link function (STATA v13.1 software), with values of P < 0.05 being considered significant.
MAIN RESULTS AND THE ROLE OF CHANCE
During oogenesis, there was a significant increase in oocyte mtDNA content (P < 0.0001) without any difference between the two groups of mice (P = 0.73). During the first phase of embryogenesis, i.e. up to the two-cell stage, embryonic mtDNA decreased significantly in the aged mice (P < 0.0001), whereas it was stable for young mice (young/old difference P = 0.015). The second phase of embryogenesis, i.e. between the two-cell and eight-cell stages, was characterized by a decrease in embryonic mtDNA for young mice (P = 0.013) only (young/old difference P = 0.038). During the third phase, i.e. between the eight-cell and blastocyst stage, there was a significant increase in embryonic mtDNA content in young mice (P < 0.0001) but not found in aged mice (young/old difference P = 0.002). We also noted a faster expression of CDX2 and NANOG in the aged mice than in the young mice during the second (P = 0.007 and P = 0.02, respectively) and the third phase (P = 0.01 and P = 0.008, respectively) of embryogenesis. The expression of mitochondrial genes CYB and ND2 followed similar kinetics and was equivalent for both groups of mice, with a significant increase during the third phase (P < 0.01). Of the five genes involved in mitochondrial biogenesis, i.e. PPARGC1A, NRF1, POLG, TFAM and PRKAA, the expression of three genes decreased significantly during the first phase only in young mice (NRF1, P = 0.018; POLGA, P = 0.002; PRKAA, P = 0.010), with no subsequent difference compared to old mice. In conclusion, during early embryogenesis in the old mice, we suspect that the lack of a replicatory burst before the two-cell stage, associated with the early arrival at the minimum threshold value of mtDNA, together with the absence of an increase of mtDNA during the last phase, might potentially deregulate the key stages of early embryogenesis.
LARGE SCALE DATA
N/A.
LIMITATIONS, REASONS FOR CAUTION
Because of the ethical impossibility of working on a human, this study was conducted only on a murine model. As superovulation was used, we cannot totally exclude that the differences observed were, at least partially, influenced by differences in ovarian response between young and old mice.
WIDER IMPLICATIONS OF THE FINDINGS
Our findings suggest a pathophysiological explanation for the link observed between mitochondria and the deterioration of oocyte quality and early embryonic development with age.
STUDY FUNDING/COMPETING INTEREST(S)
This work was supported by the University of Angers, France, by the French national research centres INSERM and the CNRS and, in part, by PHASE Division, INRA. There are no competing interests.
Collapse
Affiliation(s)
- P May-Panloup
- MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d’Angers, Angers, France
- Laboratoire de Biologie de la Reproduction, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - V Brochard
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - J F Hamel
- SFR ICAT, Université Angers, Angers, France; DRCI, Cellule Data Management, CHU Angers, Angers, France
| | - V Desquiret-Dumas
- MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d’Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - S Chupin
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - P Reynier
- MITOLAB, Institut MITOVASC, CNRS 6015, INSERM U1083, Université d’Angers, Angers, France
- Département de Biochimie et Génétique, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - V Duranthon
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| |
Collapse
|
17
|
The transgenerational effects of oocyte mitochondrial supplementation. Sci Rep 2019; 9:6694. [PMID: 31040316 PMCID: PMC6491721 DOI: 10.1038/s41598-019-43135-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
Abstract
Many women suffer from either failed fertilisation or their embryos arrest early during development. Autologous mitochondrial supplementation has been proposed as an assisted reproductive technology to overcome these problems. However, its safety remains to be tested in an animal model to determine if there are transgenerational effects. We have supplemented oocytes with autologous populations of mitochondria to generate founders. We mated the female founders and their offspring to produce three generations. We assessed litter size, the ovarian reserve, and weight gain and conducted a full histopathological analysis from each of the three generations. Across the generations, we observed significant increases in litter size and in the number of primordial follicles in the ovary matched by changes in global gene expression patterns for these early-stage oocytes. However, full histopathological analysis revealed that cardiac structure was compromised in first and second generation offspring, which could seriously affect the health of the offspring. Furthermore, the offspring were prone to increased weight gain during early life. Mitochondrial supplementation appears to perturb the regulation of the chromosomal genome resulting in transgenerational phenotypic gains and losses. These data highlight the need for caution when using autologous mitochondrial supplementation to treat female factor infertility.
Collapse
|
18
|
Srirattana K, St John JC. Transmission of Dysfunctional Mitochondrial DNA and Its Implications for Mammalian Reproduction. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2019; 231:75-103. [PMID: 30617719 DOI: 10.1007/102_2018_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes proteins for the electron transport chain which produces the vast majority of cellular energy. MtDNA has its own replication and transcription machinery that relies on nuclear-encoded transcription and replication factors. MtDNA is inherited in a non-Mendelian fashion as maternal-only mtDNA is passed onto the next generation. Mutation to mtDNA can cause mitochondrial dysfunction, which affects energy production and tissue and organ function. In somatic cell nuclear transfer (SCNT), there is an issue with the mixing of two populations of mtDNA, namely from the donor cell and recipient oocyte. This review focuses on the transmission of mtDNA in SCNT embryos and offspring. The transmission of donor cell mtDNA can be prevented by depleting the donor cell of its mtDNA using mtDNA depletion agents prior to SCNT. As a result, SCNT embryos harbour oocyte-only mtDNA. Moreover, culturing SCNT embryos derived from mtDNA depleted cells in media supplemented with a nuclear reprograming agent can increase the levels of expression of genes related to embryo development when compared with non-depleted cell-derived embryos. Furthermore, we have reviewed how mitochondrial supplementation in oocytes can have beneficial effects for SCNT embryos by increasing mtDNA copy number and the levels of expression of genes involved in energy production and decreasing the levels of expression of genes involved in embryonic cell death. Notably, there are beneficial effects of mtDNA supplementation over the use of nuclear reprograming agents in terms of regulating gene expression in embryos. Taken together, manipulating mtDNA in donor cells and/or oocytes prior to SCNT could enhance embryo production efficiency.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Justin C St John
- Mitochondrial Genetics Group, Hudson Institute of Medical Research, Clayton, VIC, Australia. .,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|