1
|
Yamasaki K, Tsuzuki S, Tateno H. Stabilization of the Protein Structure by the Many-Body Cooperative Effect in the NH/π Hydrogen-bonding Tryptophan Triad. J Phys Chem B 2024; 128:7401-7406. [PMID: 39018377 DOI: 10.1021/acs.jpcb.4c02391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The indole ring of tryptophan can form NH/π hydrogen bonds, acting both as a hydrogen donor at the NH group in the pyrrole subring and as a hydrogen acceptor at the benzene subring. In the structural core of the trimeric stable protein Pholiota squarrosa lectin (PhoSL), three indoles are symmetrically arranged and form NH/π hydrogen bonds among each other. Here, we conducted quantum chemical calculations on this indole triad by using various methods and basis sets. The analyses revealed cooperativity in triad formation, with the many-body effect contributing approximately -2 kcal mol-1, which significantly stabilizes this protein. Symmetry-adapted perturbation theory ascribed this effect to the induced polarization. The electrostatic potential and atomic charges indeed revealed a charge redistribution through the NH/π hydrogen bond, which was favorable for triad formation.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| | - Seiji Tsuzuki
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566, Japan
| |
Collapse
|
2
|
Olvera-Lucio FH, Riveros-Rosas H, Quintero-Martínez A, Hernández-Santoyo A. Tandem-repeat lectins: structural and functional insights. Glycobiology 2024; 34:cwae041. [PMID: 38857376 PMCID: PMC11186620 DOI: 10.1093/glycob/cwae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/05/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
Multivalency in lectins plays a pivotal role in influencing glycan cross-linking, thereby affecting lectin functionality. This multivalency can be achieved through oligomerization, the presence of tandemly repeated carbohydrate recognition domains, or a combination of both. Unlike lectins that rely on multiple factors for the oligomerization of identical monomers, tandem-repeat lectins inherently possess multivalency, independent of this complex process. The repeat domains, although not identical, display slightly distinct specificities within a predetermined geometry, enhancing specificity, affinity, avidity and even oligomerization. Despite the recognition of this structural characteristic in recently discovered lectins by numerous studies, a unified criterion to define tandem-repeat lectins is still necessary. We suggest defining them multivalent lectins with intrachain tandem repeats corresponding to carbohydrate recognition domains, independent of oligomerization. This systematic review examines the folding and phyletic diversity of tandem-repeat lectins and refers to relevant literature. Our study categorizes all lectins with tandemly repeated carbohydrate recognition domains into nine distinct folding classes associated with specific biological functions. Our findings provide a comprehensive description and analysis of tandem-repeat lectins in terms of their functions and structural features. Our exploration of phyletic and functional diversity has revealed previously undocumented tandem-repeat lectins. We propose research directions aimed at enhancing our understanding of the origins of tandem-repeat lectin and fostering the development of medical and biotechnological applications, notably in the design of artificial sugars and neolectins.
Collapse
Affiliation(s)
- Francisco H Olvera-Lucio
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Héctor Riveros-Rosas
- Depto. Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | - Adrián Quintero-Martínez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Coyoacán 04510, Mexico
| | | |
Collapse
|
3
|
Zhao D, Zhao Y, Xu E, Liu W, Ayers PW, Liu S, Chen D. Fragment-Based Deep Learning for Simultaneous Prediction of Polarizabilities and NMR Shieldings of Macromolecules and Their Aggregates. J Chem Theory Comput 2024; 20:2655-2665. [PMID: 38441881 DOI: 10.1021/acs.jctc.3c01415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Simultaneous prediction of the molecular response properties, such as polarizability and the NMR shielding constant, at a low computational cost is an unresolved issue. We propose to combine a linear-scaling generalized energy-based fragmentation (GEBF) method and deep learning (DL) with both molecular and atomic information-theoretic approach (ITA) quantities as effective descriptors. In GEBF, the total molecular polarizability can be assembled as a linear combination of the corresponding quantities calculated from a set of small embedded subsystems in GEBF. In the new GEBF-DL(ITA) protocol, one can predict subsystem polarizabilities based on the corresponding molecular wave function (thus electron density and ITA quantities) and DL model rather than calculate them from the computationally intensive coupled-perturbed Hartree-Fock or Kohn-Sham equations and finally obtain the total molecular polarizability via a linear combination equation. As a proof-of-concept application, we predict the molecular polarizabilities of large proteins and protein aggregates. GEBF-DL(ITA) is shown to be as accurate enough as GEBF, with mean absolute percentage error <1%. For the largest protein aggregate (>4000 atoms), GEBF-DL(ITA) gains a speedup ratio of 3 compared with GEBF. It is anticipated that when more advanced electronic structure methods are used, this advantage will be more appealing. Moreover, one can also predict the NMR chemical shieldings of proteins with reasonably good accuracy. Overall, the cost-efficient GEBF-DL(ITA) protocol should be a robust theoretical tool for simultaneously predicting polarizabilities and NMR shieldings of large systems.
Collapse
Affiliation(s)
- Dongbo Zhao
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Yilin Zhao
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ONL8S4M1, Canada
| | - Enhua Xu
- Graduate School of System Informatics, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Wenqi Liu
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton ONL8S4M1, Canada
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, United States
| | - Dahua Chen
- Institute of Biomedical Research, Yunnan University, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
4
|
Lou YC, Tu CF, Chou CC, Yeh HH, Chien CY, Sadotra S, Chen C, Yang RB, Hsu CH. Structural insights into the role of N-terminal integrity in PhoSL for core-fucosylated N-glycan recognition. Int J Biol Macromol 2024; 255:128309. [PMID: 37995778 DOI: 10.1016/j.ijbiomac.2023.128309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
PhoSL (Pholiota squarrosa Lectin) has an exceptional binding affinity for biomolecules with core-fucosylated N-glycans. This modification involves the addition of fucose to the inner N-acetylglucosamine within the N-glycan structure and is known to influence many physiological processes. Nevertheless, the molecular interactions underlying high-affinity binding of native PhoSL to core-fucosylated N-glycans remain largely unknown. In this study, we devised a strategy to produce PhoSL with the essential structural characteristics of the native protein (n-PhoSL). To do so, a fusion protein was expressed in E. coli and purified. Then, enzymatic cleavage and incubation with glutathione were utilized to recapitulate the native primary structure and disulfide bonding pattern. Subsequently, we identified the residues crucial for n-PhoSL binding to core-fucosylated chitobiose (N2F) via NMR spectroscopy. Additionally, crystal structures were solved for both apo n-PhoSL and its N2F complex. These analyses suggested a pivotal role of the N-terminal amine in maintaining the integrity of the binding pocket and actively contributing to core-fucose recognition. In support of this idea, the inclusion of additional residues at the N-terminus considerably reduced binding affinity and PhoSL cytotoxicity toward breast cancer cells. Taken together, these findings can facilitate the utilization of PhoSL in basic research, diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan-Chao Lou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Chi Chou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Hong Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Sushant Sadotra
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chinpan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
| | - Chun-Hua Hsu
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106, Taiwan; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 106, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; Center for Computational and Systems Biology, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
5
|
Mao C, Li J, Feng L, Gao W. Beyond antibody fucosylation: α-(1,6)-fucosyltransferase (Fut8) as a potential new therapeutic target for cancer immunotherapy. Antib Ther 2023; 6:87-96. [PMID: 37077473 PMCID: PMC10108557 DOI: 10.1093/abt/tbad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Aberrant post-translational glycosylation is a well-established hallmark of cancer. Altered core fucosylation mediated by α-(1,6)-fucosyltransferase (Fut8) is one of the key changes in tumor glycan patterns that contributes to neoplastic transformation, tumor metastasis, and immune evasion. Increased Fut8 expression and activity are associated with many types of human cancers, including lung, breast, melanoma, liver, colorectal, ovarian, prostate, thyroid, and pancreatic cancer. In animal models, inhibition of Fut8 activity by gene knockout, RNA interference, and small analogue inhibitors led to reduced tumor growth/metastasis, downregulation of immune checkpoint molecules PD-1, PD-L1/2, and B7-H3, and reversal of the suppressive state of tumor microenvironment. Although the biologics field has long benefited tremendously from using FUT8 -/- Chinese hamster ovary cells to manufacture IgGs with greatly enhanced effector function of antibody-dependent cellular cytotoxicity for therapy, it is only in recent years that the roles of Fut8 itself in cancer biology have been studied. Here, we summarize the pro-oncogenic mechanisms involved in cancer development that are regulated by Fut8-mediated core fucosylation, and call for more research in this area where modifying the activity of this sole enzyme responsible for core fucosylation could potentially bring rewarding surprises in fighting cancer, infections, and other immune-related diseases.
Collapse
Affiliation(s)
| | - Jun Li
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | - Lili Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, P. R. China
| | - Wenda Gao
- Antagen Pharmaceuticals, Inc., Canton, MA 02021, USA
| |
Collapse
|
6
|
The ulcerative colitis-associated gene FUT8 regulates the quantity and quality of secreted mucins. Proc Natl Acad Sci U S A 2022; 119:e2205277119. [PMID: 36252012 PMCID: PMC9618082 DOI: 10.1073/pnas.2205277119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mucins are the main macrocomponents of the mucus layer that protects the digestive tract from pathogens. Fucosylation of mucins increases mucus viscoelasticity and its resistance to shear stress. These properties are altered in patients with ulcerative colitis (UC), which is marked by a chronic inflammation of the distal part of the colon. Here, we show that levels of Fucosyltransferase 8 (FUT8) and specific mucins are increased in the distal inflamed colon of UC patients. Recapitulating this FUT8 overexpression in mucin-producing HT29-18N2 colonic cell line increases delivery of MUC1 to the plasma membrane and extracellular release of MUC2 and MUC5AC. Mucins secreted by FUT8 overexpressing cells are more resistant to removal from the cell surface than mucins secreted by FUT8-depleted cells (FUT8 KD). FUT8 KD causes intracellular accumulation of MUC1 and alters the ratio of secreted MUC2 to MUC5AC. These data fit well with the Fut8-/- mice phenotype, which are protected from UC. Fut8-/- mice exhibit a thinner proximal colon mucus layer with an altered ratio of neutral to acidic mucins. Together, our data reveal that FUT8 modifies the biophysical properties of mucus by controlling levels of cell surface MUC1 and quantity and quality of secreted MUC2 and MUC5AC. We suggest that these changes in mucus viscoelasticity likely facilitate bacterial-epithelial interactions leading to inflammation and UC progression.
Collapse
|
7
|
Yamasaki K, Adachi N, Ngwe Tun MM, Ikeda A, Moriya T, Kawasaki M, Yamasaki T, Kubota T, Nagashima I, Shimizu H, Tateno H, Morita K. Core fucose-specific Pholiota squarrosa lectin (PhoSL) as a potent broad-spectrum inhibitor of SARS-CoV-2 infection. FEBS J 2022; 290:412-427. [PMID: 36007953 PMCID: PMC9539343 DOI: 10.1111/febs.16599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/06/2022] [Accepted: 08/22/2022] [Indexed: 02/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S protein) is highly N-glycosylated, and a "glycan shield" is formed to limit the access of other molecules; however, a small open area coincides with the interface to the host's receptor and also neutralising antibodies. Most of the variants of concern have mutations in this area, which could reduce the efficacy of existing antibodies. In contrast, N-glycosylation sites are relatively invariant, and some are essential for infection. Here, we observed that the S proteins of the ancestral (Wuhan) and Omicron strains bind with Pholiota squarrosa lectin (PhoSL), a 40-amino-acid chemically synthesised peptide specific to core-fucosylated N-glycans. The affinities were at a low nanomolar level, which were ~ 1000-fold stronger than those between PhoSL and the core-fucosylated N-glycans at the micromolar level. We demonstrated that PhoSL inhibited infection by both strains at similar submicromolar levels, suggesting its broad-spectrum effect on SARS-CoV-2 variants. Cryogenic electron microscopy revealed that PhoSL caused an aggregation of the S protein, which was likely due to the multivalence of both the trimeric PhoSL and S protein. This characteristic is likely relevant to the inhibitory mechanism. Structural modelling of the PhoSL-S protein complex indicated that PhoSL was in contact with the amino acids of the S protein, which explains the enhanced affinity with S protein and also indicates the significant potential for developing specific binders by the engineering of PhoSL.
Collapse
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Naruhiko Adachi
- Structural Biology Research Center, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| | - Akihito Ikeda
- Structural Biology Research Center, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Toshio Moriya
- Structural Biology Research Center, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Masato Kawasaki
- Structural Biology Research Center, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| | - Tomoko Yamasaki
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Tomomi Kubota
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Izuru Nagashima
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Hiroki Shimizu
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Kouichi Morita
- Department of Virology, Institute of Tropical Medicine (NEKKEN)Nagasaki UniversityNagasakiJapan
| |
Collapse
|
8
|
Zhang J, Qin Y, Jiang Q, Li F, Jing X, Cao L, Cai S, Wu F, Li Q, Lian J, Song Y, Huang C. Glycopattern Alteration of Glycoproteins in Gastrointestinal Cancer Cell Lines and Their Cell-Derived Exosomes. J Proteome Res 2022; 21:1876-1893. [PMID: 35786973 DOI: 10.1021/acs.jproteome.2c00159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gastrointestinal (GI) cancers constitute the largest portion of all human cancers, and the most prevalent GI cancers in China are colorectal cancer (CRC), gastric cancer (GC), and hepatocellular carcinoma (HCC). Exosomes are nanosized vesicles containing proteins, lipids, glycans, and nucleic acid, which play important roles in the tumor microenvironment and progression. Aberrant glycosylation is closely associated with GI cancers; however, little is known about the glycopattern of the exosomes from GI cancer cells. In this study, glycopatterns of HCC, CRC, and GC cell lines and their exosomes were detected using lectin microarrays. For all exosomes, (GlcNAcβ1-4)n and Galβ1-4GlcNAc (DSA) were the most abundant glycans, but αGalNAc and αGal (GSL-II and SBA) were the least. Different cancers had various characteristic glycans in either cells or exosomes. Glycans altered in cell-derived exosomes were not always consistent with the host cells in the same cancer. However, Fucα1-6GlcNAc (core fucose) and Fucα1-3(Galβ1-4)GlcNAc (AAL) were altered consistently in cells and exosomes although they were decreased in HCC and CRC but increased in GC. The study drew the full-scale glycan fingerprint of cells and exosomes related to GI cancer, which may provide useful information for finding specific biomarkers and exploring the underlying mechanism of glycosylation in exosomes.
Collapse
Affiliation(s)
- Jinyuan Zhang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Yannan Qin
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Qiuyu Jiang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Fang Li
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Xintao Jing
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Li Cao
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Shuang Cai
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| | - Fei Wu
- Department of Oncology, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qian Li
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an 710000, China
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yongfei Song
- Ningbo Institute for Medicine & Biomedical Engineering Combined Innovation, Ningbo, Zhejiang 315000, China
| | - Chen Huang
- Institute of Genetics and Development Biology, Translational Medcine Institute, Xi'an Jiaotong University, Xi'an 710301, China
| |
Collapse
|
9
|
Man-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells 2021; 10:cells10071619. [PMID: 34203435 PMCID: PMC8305077 DOI: 10.3390/cells10071619] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/06/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022] Open
Abstract
Betacoronaviruses, responsible for the “Severe Acute Respiratory Syndrome” (SARS) and the “Middle East Respiratory Syndrome” (MERS), use the spikes protruding from the virion envelope to attach and subsequently infect the host cells. The coronavirus spike (S) proteins contain receptor binding domains (RBD), allowing the specific recognition of either the dipeptidyl peptidase CD23 (MERS-CoV) or the angiotensin-converting enzyme ACE2 (SARS-Cov, SARS-CoV-2) host cell receptors. The heavily glycosylated S protein includes both complex and high-mannose type N-glycans that are well exposed at the surface of the spikes. A detailed analysis of the carbohydrate-binding specificity of mannose-binding lectins from plants, algae, fungi, and bacteria, revealed that, depending on their origin, they preferentially recognize either complex type N-glycans, or high-mannose type N-glycans. Since both complex and high-mannose glycans substantially decorate the S proteins, mannose-specific lectins are potentially useful glycan probes for targeting the SARS-CoV, MERS-CoV, and SARS-CoV-2 virions. Mannose-binding legume lectins, like pea lectin, and monocot mannose-binding lectins, like snowdrop lectin or the algal lectin griffithsin, which specifically recognize complex N-glycans and high-mannose glycans, respectively, are particularly adapted for targeting coronaviruses. The biomedical prospects of targeting coronaviruses with mannose-specific lectins are wide-ranging including detection, immobilization, prevention, and control of coronavirus infection.
Collapse
|
10
|
Yamasaki K, Kubota T, Yamasaki T, Nagashima I, Shimizu H, Terada RI, Nishigami H, Kang J, Tateno M, Tateno H. Structural basis for specific recognition of core fucosylation in N-glycans by Pholiota squarrosa lectin (PhoSL). Glycobiology 2019; 29:576-587. [DOI: 10.1093/glycob/cwz025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/01/2019] [Accepted: 03/22/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
- Kazuhiko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Tomomi Kubota
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Tomoko Yamasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Izuru Nagashima
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Hiroki Shimizu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Japan
| | - Ryu-ichiro Terada
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Hiroshi Nishigami
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Jiyoung Kang
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Masaru Tateno
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Hyogo, Japan
| | - Hiroaki Tateno
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Japan
| |
Collapse
|
11
|
Cabanettes A, Perkams L, Spies C, Unverzagt C, Varrot A. Recognition of Complex Core-Fucosylated N-Glycans by a Mini Lectin. Angew Chem Int Ed Engl 2018; 57:10178-10181. [PMID: 29956878 DOI: 10.1002/anie.201805165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 12/11/2022]
Abstract
The mini fungal lectin PhoSL was recombinantly produced and characterized. Despite a length of only 40 amino acids, PhoSL exclusively recognizes N-glycans with α1,6-linked fucose. Core fucosylation influences the intrinsic properties and bioactivities of mammalian N-glycoproteins and its level is linked to various cancers. Thus, PhoSL serves as a promising tool for glycoprofiling. Without structural precedence, the crystal structure was solved using the zinc anomalous signal, and revealed an interlaced trimer creating a novel protein fold termed β-prism III. Three biantennary core-fucosylated N-glycan azides of 8 to 12 sugars were cocrystallized with PhoSL. The resulting highly resolved structures gave a detailed view on how the exclusive recognition of α1,6-fucosylated N-glycans by such a small protein occurs. This work also provided a protein consensus motif for the observed specificity as well as a glimpse into N-glycan flexibility upon binding.
Collapse
Affiliation(s)
| | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Carolina Spies
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1, Universität Bayreuth, 95440, Bayreuth, Germany
| | | |
Collapse
|
12
|
Cabanettes A, Perkams L, Spies C, Unverzagt C, Varrot A. Recognition of Complex Core-Fucosylated N-Glycans by a Mini Lectin. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Lukas Perkams
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | - Carolina Spies
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | - Carlo Unverzagt
- Bioorganische Chemie, Gebäude NW1; Universität Bayreuth; 95440 Bayreuth Germany
| | | |
Collapse
|