1
|
Gut microbial similarity in twins is driven by shared environment and aging. EBioMedicine 2022; 79:104011. [PMID: 35490553 PMCID: PMC9062754 DOI: 10.1016/j.ebiom.2022.104011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Human gut microbiome composition is influenced by genetics, diet and environmental factors. We investigated the microbial composition in several gastrointestinal (GI) compartments to evaluate the impact of genetics, delivery mode, diet, household sharing and aging on microbial similarity in monozygotic and dizygotic twins. Methods Fecal, biopsy and saliva samples were obtained from total 108 twins. DNA and/or RNA was extracted and the region V1-V2 of the 16S rRNA gene was amplified and sequenced. Bray-Curtis similarity was used for further microbiome comparisons, Mann-Whitney test was applied to evaluate the significant differences between groups and Spearman test was applied to reveal potential correlations between data. Findings The global bacterial profiles were grouped into two clusters separating the upper and lower GI. The upper GI microbiome composition was strictly dependent on the Helicobacter pylori status. With a positivity rate of 55%, H. pylori completely colonized the stomach and separated infected twins from non-infected twins irrespective of zygosity status. Lower GI microbiome similarity between the twins was defined mainly by household-sharing and aging; whereas delivery mode and host genetics had no influence. There was a progredient decrease in the bacterial similarity with aging. Shared vs. non-shared phylotypes analysis showed that in both siblings the shared phylotypes progressively diminished with aging, while the non-shared phylotypes increased. Interpretation Our findings strongly highlight the aging and shared household as they key determinants in gut microbial similarity and drift in twins irrespective of their zygotic state. Funding This work was supported by the grant of the Research Council of Lithuania (Project no. APP-2/2016) and also partially supported by the funds of European Commission through the “European funds for regional development” (EFRE) as well as by the regional Ministry of Economy, Science and Digitalization as part of the “LiLife” Project as part of the “Autonomy in old Age” research group (Project ID: ZS/2018/11/95324).
Collapse
|
2
|
Wang S, Li F, Fan H. Interferon-inducible protein, IFIX, has tumor-suppressive effects in oral squamous cell carcinoma. Sci Rep 2021; 11:19593. [PMID: 34599264 PMCID: PMC8486792 DOI: 10.1038/s41598-021-99157-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
IFIX, a newly discovered member of the interferon-inducible HIN-200 family, has been identified as a tumor suppressor in breast cancer; however, the involvement of IFIX in oral cancer are poorly understood. Here, we demonstrate a relationship between the level of IFIX expression and the invasive or migratory abilities of oral squamous cell carcinoma. Higher IFIX expression significantly correlated with clinicopathological parameters such as the histopathological grade of clinical samples. In vitro, IFIX overexpression suppressed the invasiveness of human tongue squamous cell carcinoma CAL-27 cells, and this inhibitory effect was mediated by stabilization of the cytoskeleton through various cytokeratins along with downregulation of paxillin, an intracellular adaptor protein that promotes tumor invasion. This inhibitory effect does not appear to affect the transformation of cancer stem-like cells in this cell culture model. Altogether, these data provide novel insights into the tumor-suppressive function of IFIX, namely, stabilization of the cancer cell cytoskeleton.
Collapse
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, Hospital of Stomatology, The First Affiliated Hospital, Harbin Medical University, Harbin, 150001, People's Republic of China. .,Institute of oral biomedicine, Heilongjiang Academy of Medical Science, Harbin, 150086, People's Republic of China.
| | - Fang Li
- Department of Oral and Maxillofacial Surgery, Hainan Maternal and Children's Medical Center, Haikou, 570000, People's Republic of China
| | - Haixia Fan
- Department of Oral Medicine, Jining Medical College, Jining, 272067, People's Republic of China
| |
Collapse
|
3
|
Barbour A, Elebyary O, Fine N, Oveisi M, Glogauer M. Metabolites of the Oral Microbiome: Important Mediators of Multi-Kingdom Interactions. FEMS Microbiol Rev 2021; 46:6316110. [PMID: 34227664 DOI: 10.1093/femsre/fuab039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The oral cavity hosts over 700 different microbial species that produce a rich reservoir of bioactive metabolites critical to oral health maintenance. Over the last two decades, new insights into the oral microbiome and its importance in health and disease have emerged mainly due to the discovery of new oral microbial species using next-generation sequencing (NGS). This advancement has revolutionized the documentation of unique microbial profiles associated with different niches and health/disease states within the oral cavity and the relation of the oral bacteria to systemic diseases. However, less work has been done to identify and characterize the unique oral microbial metabolites that play critical roles in maintaining equilibrium between the various oral microbial species and their human hosts. This article discusses the most significant microbial metabolites produced by these diverse communities of oral bacteria that can either foster health or contribute to disease. Finally, we shed light on how advances in genomics and genome mining can provide a high throughput platform for discovering novel bioactive metabolites derived from the human oral microbiome to tackle emerging human infections and systemic diseases.
Collapse
Affiliation(s)
- Abdelahhad Barbour
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Omnia Elebyary
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Noah Fine
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Morvarid Oveisi
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5G 1G6, Canada.,Department of Dental Oncology, Maxillofacial and Ocular Prosthetics, Princess Margaret Cancer Centre, Toronto, ON, Canada, M5G 2M9, Canada
| |
Collapse
|
4
|
Alia-García E, Ponce-Alonso M, Saralegui C, Halperin A, Cortés MP, Baquero MR, Parra-Pecharromán D, Galeano J, del Campo R. Machine Learning Study in Caries Markers in Oral Microbiota from Monozygotic Twin Children. Diagnostics (Basel) 2021; 11:diagnostics11050835. [PMID: 34066599 PMCID: PMC8148599 DOI: 10.3390/diagnostics11050835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, the etiology of caries has evolved from a simplistic infectious perspective based on Streptococcus mutans and/or Lactobacillus activity, to a multifactorial disease involving a complex oral microbiota, the human genetic background and the environment. The aim of this work was to identify bacterial markers associated with early caries using massive 16S rDNA. To minimize the other factors, the composition of the oral microbiota of twins in which only one of them had caries was compared with their healthy sibling. Twenty-one monozygotic twin pairs without a previous diagnosis of caries were recruited in the context of their orthodontic treatment and divided into two categories: (1) caries group in which only one of the twins had caries; and (2) control group in which neither of the twins had caries. Each participant contributed a single oral lavage sample in which the bacterial composition was determined by 16S rDNA amplification and further high-throughput sequencing. Data analysis included statistical comparison of alpha and beta diversity, as well as differential taxa abundance between groups. Our results show that twins of the control group have a closer bacterial composition than those from the caries group. However, statistical differences were not detected and we were unable to find any particular bacterial marker by 16S rDNA high-throughput sequencing that could be useful for prevention strategies. Although these results should be validated in a larger population, including children from other places or ethnicities, we conclude that the occurrence of caries is not related to the increase of any particular bacterial population.
Collapse
Affiliation(s)
- Esther Alia-García
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, Villanueva de la Cañada, 28691 Madrid, Spain; (E.A.-G.); (M.P.C.); (M.R.B.); (D.P.-P.); (R.d.C.)
| | - Manuel Ponce-Alonso
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain; (M.P.-A.); (C.S.); (A.H.)
| | - Claudia Saralegui
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain; (M.P.-A.); (C.S.); (A.H.)
| | - Ana Halperin
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain; (M.P.-A.); (C.S.); (A.H.)
| | - Marta Paz Cortés
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, Villanueva de la Cañada, 28691 Madrid, Spain; (E.A.-G.); (M.P.C.); (M.R.B.); (D.P.-P.); (R.d.C.)
| | - María Rosario Baquero
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, Villanueva de la Cañada, 28691 Madrid, Spain; (E.A.-G.); (M.P.C.); (M.R.B.); (D.P.-P.); (R.d.C.)
| | - David Parra-Pecharromán
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, Villanueva de la Cañada, 28691 Madrid, Spain; (E.A.-G.); (M.P.C.); (M.R.B.); (D.P.-P.); (R.d.C.)
- Departamento de Biología, Servicio de Criminalística, Dirección General de la Guardia Civil, 28003 Madrid, Spain
| | - Javier Galeano
- Complex Systems Group, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Correspondence:
| | - Rosa del Campo
- Facultad de Ciencias de la Salud, Universidad Alfonso X El Sabio, Villanueva de la Cañada, 28691 Madrid, Spain; (E.A.-G.); (M.P.C.); (M.R.B.); (D.P.-P.); (R.d.C.)
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28034 Madrid, Spain; (M.P.-A.); (C.S.); (A.H.)
| |
Collapse
|
5
|
Huang X, She L, Liu H, Liu P, Chen J, Chen Y, Zhou W, Lu Y, Lin J. Study of oral microorganisms contributing to non-carious cervical lesions via bacterial interaction and pH regulation. J Cell Mol Med 2021; 25:3103-3112. [PMID: 33591640 PMCID: PMC7957269 DOI: 10.1111/jcmm.16370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
There is a lack of evidence about the relationship between microorganisms and non‐carious cervical lesions (NCCLs) due to limited technologies. A group of 78 patients was enrolled for microbial 16S rRNA sequencing of dental plaques on normal and defective cervical surfaces. Parallel data from 39 patients were analysed with paired t tests, and Fusobacteriales exhibited significantly less distribution on NCCLs than on normal surfaces. As a result, Fusobacterium nucleatum, the most common oral bacterial strain belonging to the order Fusobacteriales, was selected for further research. From a scanning electron microscopy (SEM) scan, the tooth surface with Fusobacterium nucleatum and Streptococcus mutans culture was more intact than that without Fusobacterium nucleatum. Furthermore, the calcium contents in groups with Fusobacterium nucleatum were significantly higher than that without it. In further mechanistic research, Fusobacterium nucleatum was demonstrated to adhere to and disturb other organisms as well as producing alkaline secretions to neutralize the deleterious acidic environment, protecting the tooth structure. In conclusion, microorganisms and NCCLs were confirmed directly related through adherent bacterial interactions and pH regulation. The research provides a new perspective and experimental evidence for the relation between microorganisms and NCCLs, which guides clinical treatment and preventive dentistry in the future.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin She
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huanhuan Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Pingping Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jue Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| | - Yingcong Chen
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wenjie Zhou
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Lin
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
6
|
Li M, Li C, Wu X, Chen T, Ren L, Xu B, Cao J. Microbiota-driven interleukin-17 production provides immune protection against invasive candidiasis. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:268. [PMID: 32460890 PMCID: PMC7251893 DOI: 10.1186/s13054-020-02977-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/12/2020] [Indexed: 02/06/2023]
Abstract
Background The intestinal microbiota plays a crucial role in human health, which could affect host immunity and the susceptibility to infectious diseases. However, the role of intestinal microbiota in the immunopathology of invasive candidiasis remains unknown. Methods In this work, an antibiotic cocktail was used to eliminate the intestinal microbiota of conventional-housed (CNV) C57/BL6 mice, and then both antibiotic-treated (ABX) mice and CNV mice were intravenously infected with Candida albicans to investigate their differential responses to infection. Furthermore, fecal microbiota transplantation (FMT) was applied to ABX mice in order to assess its effects on host immunity against invasive candidiasis after restoring the intestinal microbiota, and 16S ribosomal RNA gene sequencing was conducted on fecal samples from both uninfected ABX and CNV group of mice to analyze their microbiomes. Results We found that ABX mice displayed significantly increased weight loss, mortality, and organ damage during invasive candidiasis when compared with CNV mice, which could be alleviated by FMT. In addition, the level of IL-17A in ABX mice was significantly lower than that in the CNV group during invasive candidiasis. Treatment with recombinant IL-17A could improve the survival of ABX mice during invasive candidiasis. Besides, the microbial diversity of ABX mice was significantly reduced, and the intestinal microbiota structure of ABX mice was significantly deviated from the CNV mice. Conclusions Our data revealed that intestinal microbiota plays a protective role in invasive candidiasis by enhancing IL-17A production in our model system.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Congya Li
- Department of Laboratory Medicine, the Third Affiliated Hospital of Chongqing Medical University (Gener Hospital), No.1 Shuanghu Branch Road, Yubei District, Chongqing, 401120, China
| | - Xianan Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Tangtian Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Ren
- Medical Examination Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Banglao Xu
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, No.1 Friendship Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
7
|
Wu H, Ma Y, Peng X, Qiu W, Kong L, Ren B, Li M, Cheng G, Zhou X, Cheng L. Antibiotic-induced dysbiosis of the rat oral and gut microbiota and resistance to Salmonella. Arch Oral Biol 2020; 114:104730. [PMID: 32371145 DOI: 10.1016/j.archoralbio.2020.104730] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Antibiotics play a great role in the treatment of infectious diseases, but meantime, they cause great disturbances to host microbiota. Studies on different antibiotic-induced changes in host microbiota are relatively scarce. This study aimed to investigate the changes in oral and gut microbiota and possible alterations of gut resistance to Salmonella induced by the administration of antibiotics. METHODS The experiment was conducted by administering antibiotics to rats and detecting oral and gut microbiota by 16S rRNA gene sequencing. In second part, after treating with antibiotics or Lactobacillus rhamnosus the rats were infected by Salmonella Typhimurium and the pathogen burden in the gut was counted by colony forming unit assay. RESULTS The gut microbiota underwent dramatic changes after both vancomycin and ampicillin treatment. The alpha diversity sharply decreased, and the microbiota composition showed a significant difference. However, the gut microbiota recovered within four weeks after stopping antibiotics administration, although this recovery was incomplete. Oral microbiota did not show significant alterations in both alpha and beta diversities. The number of pathogens in the gut in the control group was significantly lower than that in the antibiotic-treated group but only lasted for the first 4 days after infection. CONCLUSIONS Antibiotics cause dramatic alterations in the number and diversity of gut microbiota but not oral microbiota. These changes in the gut microbiota could incompletely recover four weeks later. When infected with pathogens after antibiotic administration, the rats show a decrease in colonization resistance in the gut for the first four days after infection.
Collapse
Affiliation(s)
- Hongle Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; Dept. of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Yue Ma
- West China School of Public Health, Sichuan University, Chengdu, 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Wei Qiu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Lixin Kong
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; Dept. of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Centre for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University,Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; Dept. of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, China; Dept. of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, 610041, China; National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ibrahim MS, Garcia IM, Vila T, Balhaddad AA, Collares FM, Weir MD, Xu HHK, Melo MAS. Multifunctional antibacterial dental sealants suppress biofilms derived from children at high risk of caries. Biomater Sci 2020; 8:3472-3484. [DOI: 10.1039/d0bm00370k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dental sealant containing antibacterial and bioactive agents decreased biofilm formation due to the saliva of children at low and high risk of caries.
Collapse
Affiliation(s)
- Maria Salem Ibrahim
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Isadora Martini Garcia
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Taissa Vila
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Abdulrahman A. Balhaddad
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Fabrício Mezzomo Collares
- Dental Materials Laboratory
- School of Dentistry
- Federal University of Rio Grande do Sul
- Porto Alegre
- Brazil
| | - Michael D. Weir
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Hockin H. K. Xu
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| | - Mary Anne S. Melo
- Ph.D. Program in Biomedical Sciences
- Biomaterials and Tissue Engineering Division
- University of Maryland School of Dentistry
- Baltimore
- USA
| |
Collapse
|
9
|
Li B, Ge Y, Cheng L, Zeng B, Yu J, Peng X, Zhao J, Li W, Ren B, Li M, Wei H, Zhou X. Oral bacteria colonize and compete with gut microbiota in gnotobiotic mice. Int J Oral Sci 2019; 11:10. [PMID: 30833566 PMCID: PMC6399334 DOI: 10.1038/s41368-018-0043-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/14/2018] [Accepted: 09/28/2018] [Indexed: 02/05/2023] Open
Abstract
The oral microbiota is associated with oral diseases and digestive systemic diseases. Nevertheless, the causal relationship between them has not been completely elucidated, and colonisation of the gut by oral bacteria is not clear due to the limitations of existing research models. The aim of this study was to develop a human oral microbiota-associated (HOMA) mouse model and to investigate the ecological invasion into the gut. By transplanting human saliva into germ-free (GF) mice, a HOMA mouse model was first constructed. 16S rRNA gene sequencing was used to reveal the biogeography of oral bacteria along the cephalocaudal axis of the digestive tract. In the HOMA mice, 84.78% of the detected genus-level taxa were specific to the donor. Principal component analysis (PCA) revealed that the donor oral microbiota clustered with those of the HOMA mice and were distinct from those of specific pathogen-free (SPF) mice. In HOMA mice, OTU counts decreased from the stomach and small intestine to the distal gut. The distal gut was dominated by Streptococcus, Veillonella, Haemophilus, Fusobacterium, Trichococcus and Actinomyces. HOMA mice and human microbiota-associated (HMA) mice along with the GF mice were then cohoused. Microbial communities of cohoused mice clustered together and were significantly separated from those of HOMA mice and HMA mice. The Source Tracker analysis and network analysis revealed more significant ecological invasion from oral bacteria in the small intestines, compared to the distal gut, of cohoused mice. In conclusion, a HOMA mouse model was successfully established. By overcoming the physical and microbial barrier, oral bacteria colonised the gut and profiled the gut microbiota, especially in the small intestine.
Collapse
Affiliation(s)
- Bolei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Ge
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Jinzhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Jianhua Zhao
- Shanghai Majorbio Bio-pharm Technology Co., Ltd, Shanghai, China
| | - Wenxia Li
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Mingyun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China. .,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Rupf S, Laczny CC, Galata V, Backes C, Keller A, Umanskaya N, Erol A, Tierling S, Lo Porto C, Walter J, Kirsch J, Hannig M, Hannig C. Comparison of initial oral microbiomes of young adults with and without cavitated dentin caries lesions using an in situ biofilm model. Sci Rep 2018; 8:14010. [PMID: 30228377 PMCID: PMC6143549 DOI: 10.1038/s41598-018-32361-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
Dental caries is caused by acids released from bacterial biofilms. However, the in vivo formation of initial biofilms in relation to caries remains largely unexplored. The aim of this study was to compare the oral microbiome during the initial phase of bacterial colonization for individuals with (CC) and without (NC) cavitated dentin caries lesions. Bovine enamel slabs on acrylic splints were worn by the volunteers (CC: 14, NC: 13) for in situ biofilm formation (2 h, 4 h, 8 h, 1 ml saliva as reference). Sequencing of the V1/V2 regions of the 16S rRNA gene was performed (MiSeq). The relative abundances of individual operational taxonomic units (OTUs) were compared between samples from the CC group and the NC group. Random forests models were furthermore trained to separate the groups. While the overall heterogeneity did not differ substantially between CC and NC individuals, several individual OTUs were found to have significantly different relative abundances. For the 8 h samples, most of the significant OTUs showed higher relative abundances in the CC group, while the majority of significant OTUs in the saliva samples were more abundant in the NC group. Furthermore, using OTU signatures enabled a separation between both groups, with area-under-the-curve (AUC) values of ~0.8. In summary, the results suggest that initial oral biofilms provide the potential to differentiate between CC and NC individuals.
Collapse
Affiliation(s)
- Stefan Rupf
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany.
| | - Cedric C Laczny
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Valentina Galata
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Christina Backes
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Andreas Keller
- Chair for Clinical Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Natalia Umanskaya
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany
| | - Arzu Erol
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany
| | - Sascha Tierling
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Christina Lo Porto
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Faculty of Natural Sciences and Technology, Department of Genetics/Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jasmin Kirsch
- Policlinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Matthias Hannig
- Clinic of Operative Dentistry, Periodontology and Preventive Dentistry, Saarland University Medical Center, Homburg, Germany
| | - Christian Hannig
- Policlinic of Operative and Pediatric Dentistry, Medical Faculty Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|