1
|
Smirnova I, Wu F, Brzezinski P. Stimulation of cytochrome c oxidase activity by detergents. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149509. [PMID: 39251013 DOI: 10.1016/j.bbabio.2024.149509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024]
Abstract
Cytochrome c oxidase (CytcO) is an integral membrane protein, which catalyzes four-electron reduction of oxygen linked to proton uptake and pumping. Amphipathic molecules bind in sites near the so-called K proton pathway of CytcO to reversibly modulate its activity. However, purification of CytcO for mechanistic studies typically involves the use of detergents, which may interfere with binding of these regulatory molecules. Here, we investigated the CytcO enzymatic activity as well as intramolecular electron transfer linked to proton transfer upon addition of different detergents to bovine heart mitoplasts. The CytcO activity increased upon addition of alkyl glucosides (DDM and DM) and the steroid analog GDN. The maximum stimulating effect was observed for DDM and DM, and the half-stimulating effect correlated with their CMC values. With GDN the stimulation effect was smaller and occurred at a concentration higher than CMC. A kinetic analysis suggests that the stimulation of activity is due to removal of a ligand bound near the K proton pathway, which indicates that in the native membrane this site is occupied to yield a lower than maximal possible CytcO activity. Possible functional consequences are discussed.
Collapse
Affiliation(s)
- Irina Smirnova
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Fei Wu
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Baserga F, Storm J, Schlesinger R, Heberle J, Stripp ST. The catalytic reaction of cytochrome c oxidase probed by in situ gas titrations and FTIR difference spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:149000. [PMID: 37516233 DOI: 10.1016/j.bbabio.2023.149000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Cytochrome c oxidase (CcO) is a transmembrane heme‑copper metalloenzyme that catalyzes the reduction of O2 to H2O at the reducing end of the respiratory electron transport chain. To understand this reaction, we followed the conversion of CcO from Rhodobacter sphaeroides between several active-ready and carbon monoxide-inhibited states via attenuated total reflection Fourier-transform infrared (ATR FTIR) difference spectroscopy. Utilizing a novel gas titration setup, we prepared the mixed-valence, CO-inhibited R2CO state as well as the fully-reduced R4 and R4CO states and induced the "active ready" oxidized state OH. These experiments are performed in the dark yielding FTIR difference spectra exclusively triggered by exposure to O2, the natural substrate of CcO. Our data demonstrate that the presence of CO at heme a3 does not impair the catalytic oxidation of CcO when the cycle starts from the fully-reduced states. Interestingly, when starting from the R2CO state, the release of the CO ligand upon purging with inert gas yield a product that is indistinguishable from photolysis-induced states. The observed changes at heme a3 in the catalytic binuclear center (BNC) result from the loss of CO and are unrelated to electronic excitation upon illumination. Based on our experiments, we re-evaluate the assignment of marker bands that appear in time-resolved photolysis and perfusion-induced experiments on CcO.
Collapse
Affiliation(s)
- Federico Baserga
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Julian Storm
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Ramona Schlesinger
- Freie Universität Berlin, Genetic Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Joachim Heberle
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany
| | - Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Arnimallee 14, D-14195 Berlin, Germany; Technische Universität Berlin, Division of Physical Chemistry, Strasse des 17. Juni 115, D-10623 Berlin, Germany.
| |
Collapse
|
3
|
Jancura D, Tomkova A, Sztachova T, Berka V, Fabian M. Examination of 'high-energy' metastable state of the oxidized (O H) bovine cytochrome c oxidase: Proton uptake and reaction with H 2O 2. Arch Biochem Biophys 2023; 747:109758. [PMID: 37748626 DOI: 10.1016/j.abb.2023.109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
Reoxidized cytochrome c oxidase appears to be in a 'high-energy' metastable state (OH) in which part of the energy released in the redox reactions is stored. The OH is supposed to relax to the resting 'as purified' oxidized state (O) in a time exceeding 200 ms. The catalytic heme a3-CuB center of these two forms should differ in a protonation and ligation state and the transition of OH-to-O is suggested to be associated with a proton transfer into this center. Employing a stopped-flow and UV-Vis absorption spectroscopy we investigated a proton uptake during the predicted relaxation of OH. It is shown, using a pH indicator phenol red, that from the time when the oxidation of the fully reduced CcO is completed (∼25 ms) up to ∼10 min, there is no uptake of a proton from the external medium (pH 7.8). Moreover, interactions of the assumed OH, generated 100 ms after oxidation of the fully reduced CcO, and the O with H2O2 (1 mM), result in the formation of two ferryl intermediates of the catalytic center, P and F, with very similar kinetics and the amounts of the formed ferryl states in both cases. These results implicate that the relaxation time of the catalytic center during the OH-to-O transition is either shorter than 100 ms or there is no difference in the structure of heme a3-CuB center of these two forms.
Collapse
Affiliation(s)
- D Jancura
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - A Tomkova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - T Sztachova
- Department of Biophysics, Faculty of Science, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic
| | - V Berka
- Department of Internal Medicine, University of Texas Health Science Center, 77030, Houston, Texas, USA
| | - M Fabian
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, University of P. J. Safarik, Jesenna 5, 041 54, Kosice, Slovak Republic.
| |
Collapse
|
4
|
Neurite growth induced by red light-caused intracellular reactive oxygen species production through cytochrome c oxidase activation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112681. [PMID: 36870246 DOI: 10.1016/j.jphotobiol.2023.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The applications of red-light photobiomodulation (PBM) to enhance neurite growth have been proposed for many years. However, the detailed mechanisms require further studies. In the present work we used a focused red-light spot to illuminate the junction of the longest neurite and the soma of a neuroblastoma cell (N2a), and demonstrated enhanced neurite growth at 620 nm and 760 nm with adequate illumination energy fluences. In contrast, 680 nm light showed no effect on neurite growth. The neurite growth was accompanied with the increase of intracellular reactive oxygen species (ROS). Using Trolox to reduce the ROS level, this red light-induced neurite growth was hindered. Suppressing the activities of cytochrome c oxidase (CCO) by using either a small-molecule inhibitor or siRNA abrogated the red light-induced neurite growth. These results suggest that red light-induced ROS production through the activation of CCO could be beneficial for neurite growth.
Collapse
|
5
|
Król S, Fedotovskaya O, Högbom M, Ädelroth P, Brzezinski P. Electron and proton transfer in the M. smegmatis III 2IV 2 supercomplex. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148585. [PMID: 35753381 DOI: 10.1016/j.bbabio.2022.148585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/25/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The M. smegmatis respiratory III2IV2 supercomplex consists of a complex III (CIII) dimer flanked on each side by a complex IV (CIV) monomer, electronically connected by a di-heme cyt. cc subunit of CIII. The supercomplex displays a quinol oxidation‑oxygen reduction activity of ~90 e-/s. In the current work we have investigated the kinetics of electron and proton transfer upon reaction of the reduced supercomplex with molecular oxygen. The data show that, as with canonical CIV, oxidation of reduced CIV at pH 7 occurs in three resolved components with time constants ~30 μs, 100 μs and 4 ms, associated with the formation of the so-called peroxy (P), ferryl (F) and oxidized (O) intermediates, respectively. Electron transfer from cyt. cc to the primary electron acceptor of CIV, CuA, displays a time constant of ≤100 μs, while re-reduction of cyt. cc by heme b occurs with a time constant of ~4 ms. In contrast to canonical CIV, neither the P → F nor the F → O reactions are pH dependent, but the P → F reaction displays a H/D kinetic isotope effect of ~3. Proton uptake through the D pathway in CIV displays a single time constant of ~4 ms, i.e. a factor of ~40 slower than with canonical CIV. The slowed proton uptake kinetics and absence of pH dependence are attributed to binding of a loop from the QcrB subunit of CIII at the D proton pathway of CIV. Hence, the data suggest that function of CIV is modulated by way of supramolecular interactions with CIII.
Collapse
Affiliation(s)
- Sylwia Król
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Olga Fedotovskaya
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Högbom
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
6
|
López-Pedrouso M, Lorenzo JM, Borrajo P, Franco D. In Search of Antioxidant Peptides from Porcine Liver Hydrolysates Using Analytical and Peptidomic Approach. Antioxidants (Basel) 2021; 11:27. [PMID: 35052531 PMCID: PMC8772851 DOI: 10.3390/antiox11010027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
The search for antioxidant peptides as health-promoting agents is of great scientific interest for their biotechnological applications. Thus, the main goal of this study was to identify antioxidant peptides from pork liver using alcalase, bromelain, flavourzyme, and papain enzymes. All liver hydrolysates proved to be of adequate quality regarding the ratio EAA/NEAA, particularly flavourzyme hydrolysates. The peptidomic profiles were significantly different for each enzyme and their characterizations were performed, resulting in forty-four differentially abundant peptides among the four treatments. Porcine liver hydrolysates from alcalase and bromelain are demonstrated to have the most antioxidant capacity. On the other hand, hydrophobic amino acid residues (serine, threonine, histidine and aspartic acid) might be reducing the hydrolysates antioxidant capacity. Seventeen peptides from collagen, albumin, globin domain-containing protein, cytochrome β, fructose-bisphosphate aldolase, dihydropyrimidinase, argininosuccinate synthase, and ATP synthase seem to be antioxidant. Further studies are necessary to isolate these peptides and test them in in vivo experiments.
Collapse
Affiliation(s)
- María López-Pedrouso
- Departamento de Zooloxía, Xenética e Antropoloxía Física, Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain;
| | - José M. Lorenzo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (J.M.L.); (P.B.)
- Área de Tecnoloxía dos Alimentos, Facultade de Ciencias, Universidade de Vigo, 32004 Ourense, Spain
| | - Paula Borrajo
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (J.M.L.); (P.B.)
| | - Daniel Franco
- Centro Tecnolóxico da Carne de Galicia, Rúa Galicia No. 4, Parque Tecnolóxico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (J.M.L.); (P.B.)
| |
Collapse
|
7
|
Hashem M, Wu Y, Dunn JF. Quantification of cytochrome c oxidase and tissue oxygenation using CW-NIRS in a mouse cerebral cortex. BIOMEDICAL OPTICS EXPRESS 2021; 12:7632-7656. [PMID: 35003857 PMCID: PMC8713667 DOI: 10.1364/boe.435532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/06/2021] [Accepted: 11/05/2021] [Indexed: 05/05/2023]
Abstract
We provide a protocol for measuring the absolute concentration of the oxidized and reduced state of cytochrome c oxidase (CCO) in the cerebral cortex of mice, using broadband continuous-wave NIRS. The algorithm (NIR-AQUA) allows for absolute quantification of CCO and deoxyhemoglobin. Combined with an anoxia pulse, this also allows for quantification of total hemoglobin, and tissue oxygen saturation. CCO in the cortex was 4.9 ± 0.1 μM (mean ± SD, n=6). In normoxia, 84% of CCO was oxidized. We include hypoxia and cyanide validation studies to show CCO can be quantified independently to hemoglobin. This can be applied to study oxidative metabolism in the many rodent models of neurological disease.
Collapse
Affiliation(s)
- Mada Hashem
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Ying Wu
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| | - Jeff F. Dunn
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada T2N 4N1, Canada
- Experimental Imaging Centre, Cumming School of Medicine, University of Calgary, Alberta, Canada T2N 4N1, Canada
| |
Collapse
|
8
|
Siletsky SA, Borisov VB. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Int J Mol Sci 2021; 22:10852. [PMID: 34639193 PMCID: PMC8509429 DOI: 10.3390/ijms221910852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022] Open
Abstract
Terminal respiratory oxidases are highly efficient molecular machines. These most important bioenergetic membrane enzymes transform the energy of chemical bonds released during the transfer of electrons along the respiratory chains of eukaryotes and prokaryotes from cytochromes or quinols to molecular oxygen into a transmembrane proton gradient. They participate in regulatory cascades and physiological anti-stress reactions in multicellular organisms. They also allow microorganisms to adapt to low-oxygen conditions, survive in chemically aggressive environments and acquire antibiotic resistance. To date, three-dimensional structures with atomic resolution of members of all major groups of terminal respiratory oxidases, heme-copper oxidases, and bd-type cytochromes, have been obtained. These groups of enzymes have different origins and a wide range of functional significance in cells. At the same time, all of them are united by a catalytic reaction of four-electron reduction in oxygen into water which proceeds without the formation and release of potentially dangerous ROS from active sites. The review analyzes recent structural and functional studies of oxygen reduction intermediates in the active sites of terminal respiratory oxidases, the features of catalytic cycles, and the properties of the active sites of these enzymes.
Collapse
Affiliation(s)
- Sergey A. Siletsky
- Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia
| | - Vitaliy B. Borisov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991, Russia;
| |
Collapse
|
9
|
Blomberg MRA. Activation of O 2 and NO in heme-copper oxidases - mechanistic insights from computational modelling. Chem Soc Rev 2021; 49:7301-7330. [PMID: 33006348 DOI: 10.1039/d0cs00877j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heme-copper oxidases are transmembrane enzymes involved in aerobic and anaerobic respiration. The largest subgroup contains the cytochrome c oxidases (CcO), which reduce molecular oxygen to water. A significant part of the free energy released in this exergonic process is conserved as an electrochemical gradient across the membrane, via two processes, electrogenic chemistry and proton pumping. A deviant subgroup is the cytochrome c dependent NO reductases (cNOR), which reduce nitric oxide to nitrous oxide and water. This is also an exergonic reaction, but in this case none of the released free energy is conserved. Computational studies applying hybrid density functional theory to cluster models of the bimetallic active sites in the heme-copper oxidases are reviewed. To obtain a reliable description of the reaction mechanisms, energy profiles of the entire catalytic cycles, including the reduction steps have to be constructed. This requires a careful combination of computational results with certain experimental data. Computational studies have elucidated mechanistic details of the chemical parts of the reactions, involving cleavage and formation of covalent bonds, which have not been obtainable from pure experimental investigations. Important insights regarding the mechanisms of energy conservation have also been gained. The computational studies show that the reduction potentials of the active site cofactors in the CcOs are large enough to afford electrogenic chemistry and proton pumping, i.e. efficient energy conservation. These results solve a conflict between different types of experimental data. A mechanism for the proton pumping, involving a specific and crucial role for the active site tyrosine, conserved in all CcOs, is suggested. For the cNORs, the calculations show that the low reduction potentials of the active site cofactors are optimized for fast elimination of the toxic NO molecules. At the same time, the low reduction potentials lead to endergonic reduction steps with high barriers. To prevent even higher barriers, which would lead to a too slow reaction, when the electrochemical gradient across the membrane is present, the chemistry must occur in a non-electrogenic manner. This explains why there is no energy conservation in cNOR.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
10
|
The structure of the oxidized state of cytochrome c oxidase - experiments and theory compared. J Inorg Biochem 2020; 206:111020. [PMID: 32062501 DOI: 10.1016/j.jinorgbio.2020.111020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022]
Abstract
Cytochrome c oxidase (CcO), the terminal enzyme in the respiratory chain, reduces molecular oxygen to water. Experimental data on the midpoint potentials of the heme iron/copper active site cofactors do not match the overall reaction energetics, and are also in conflict with the observed efficiency of energy conservation in CcO. Therefore it has been postulated that the ferric/cupric intermediate (the oxidized state) exists in two forms. One form, labelled OH, is presumably involved during catalytic turnover, and should have a high CuB midpoint potential due to a metastable high energy structure. When no more electrons are supplied, the OH state supposedly relaxes to the resting form, labelled O, with a lower energy and a lower midpoint potential. It has been suggested that there is a pure geometrical difference between the OH and O states, obtained by moving a water molecule inside the active site. It is shown here that the difference between the two forms of the oxidized state must be of a more chemical nature. The reason is that all types of geometrically relaxed structures of the oxidized intermediate have similar energies, all with a high proton coupled reduction potential in accordance with the postulated OH state. One hypothesized chemical modification of the OH state is the transfer of an extra proton, possibly internal, into the active site. Such a protonated state has several properties that agree with experimental data on the relaxed oxidized state, including a decreased midpoint potential.
Collapse
|
11
|
Blomberg MRA. The mechanism for oxygen reduction in the C family cbb 3 cytochrome c oxidases - Implications for the proton pumping stoichiometry. J Inorg Biochem 2019; 203:110866. [PMID: 31706225 DOI: 10.1016/j.jinorgbio.2019.110866] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/16/2022]
Abstract
Cytochrome c oxidases (CcOs) couple the exergonic reduction of molecular oxygen to proton pumping across the membrane in which they are embedded, thereby conserving a significant part of the free energy. The A family CcOs are known to pump four protons per oxygen molecule, while there is no consensus regarding the proton pumping stoichiometry for the C family cbb3 oxidases. Hybrid density functional theory is used here to investigate the catalytic mechanism for oxygen reduction in cbb3 oxidases. A surprising result is that the barrier for O O bond cleavage at the mixed valence reduction level seems to be too high compared to the overall reaction rate of the enzyme. It is therefore suggested that the O O bond is cleaved only after the first proton coupled reduction step, and that this reduction step most likely is not coupled to proton pumping. Furthermore, since the cbb3 oxidases have only one proton channel leading to the active site, it is proposed that the activated EH intermediate, suggested to be responsible for proton pumping in one of the reduction steps in the A family, cannot be involved in the catalytic cycle for cbb3, which results in the lack of proton pumping also in the E to R reduction step. In summary, the calculations indicate that only two protons are pumped per oxygen molecule in cbb3 oxidases. However, more experimental information on this divergent enzyme is needed, e.g. whether the flow of electrons resembles that in the other more well-studied CcO families.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
12
|
Blomberg MRA. Active Site Midpoint Potentials in Different Cytochrome c Oxidase Families: A Computational Comparison. Biochemistry 2019; 58:2028-2038. [PMID: 30892888 DOI: 10.1021/acs.biochem.9b00093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome c oxidase (C cO) is the terminal enzyme in the respiratory electron transport chain, reducing molecular oxygen to water. The binuclear active site in C cO comprises a high-spin heme associated with a CuB complex and a redox active tyrosine. The electron transport in the respiratory chain is driven by increasing midpoint potentials of the involved cofactors, resulting in a release of free energy, which is stored by coupling the electron transfer to proton translocation across a membrane, building up an electrochemical gradient. In this context, the midpoint potentials of the active site cofactors in the C cOs are of special interest, since they determine the driving forces for the individual oxygen reduction steps and thereby affect the efficiency of the proton pumping. It has been difficult to obtain useful information on some of these midpoint potentials from experiments. However, since each of the reduction steps in the catalytic cycle of oxygen reduction to water corresponds to the formation of an O-H bond, they can be calculated with a reasonably high accuracy using quantum chemical methods. From the calculated O-H bond strengths, the proton-coupled midpoint potentials of the active site cofactors can be estimated. Using models representing the different families of C cO's (A, B, and C), the calculations give midpoint potentials that should be relevant during catalytic turnover. The calculations also suggest possible explanations for why some experimentally measured potentials deviate significantly from the calculated ones, i.e., for CuB in all oxidase families, and for heme b3 in the C family.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory , Stockholm University , Stockholm SE-106 91 , Sweden
| |
Collapse
|
13
|
Siegbahn PEM, Blomberg MRA. A Systematic DFT Approach for Studying Mechanisms of Redox Active Enzymes. Front Chem 2018; 6:644. [PMID: 30627530 PMCID: PMC6309562 DOI: 10.3389/fchem.2018.00644] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/11/2018] [Indexed: 02/03/2023] Open
Abstract
When DFT has been applied to study mechanisms of redox processes a common procedure has been to study the results for many different functionals. For redox reactions involving the first row transition metals, this approach has given very different results for different functionals. The conclusion has been that DFT cannot be used for these reactions. In the meantime, results with strong predictability have been generated, most noteworthy for photosystem II, where all DFT predictions have been verified by experiments performed later. In order to obtain these predictive results using DFT, an alternative, systematic approach has been used, where the key differences between the results for different functionals can be rationalized by using a single parameter, rather than using the very large number of differences in the functionals.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Margareta R A Blomberg
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
14
|
Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chem Rev 2018; 118:10840-11022. [PMID: 30372042 PMCID: PMC6360144 DOI: 10.1021/acs.chemrev.8b00074] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Heme-copper oxidases (HCOs) are terminal enzymes on the mitochondrial or bacterial respiratory electron transport chain, which utilize a unique heterobinuclear active site to catalyze the 4H+/4e- reduction of dioxygen to water. This process involves a proton-coupled electron transfer (PCET) from a tyrosine (phenolic) residue and additional redox events coupled to transmembrane proton pumping and ATP synthesis. Given that HCOs are large, complex, membrane-bound enzymes, bioinspired synthetic model chemistry is a promising approach to better understand heme-Cu-mediated dioxygen reduction, including the details of proton and electron movements. This review encompasses important aspects of heme-O2 and copper-O2 (bio)chemistries as they relate to the design and interpretation of small molecule model systems and provides perspectives from fundamental coordination chemistry, which can be applied to the understanding of HCO activity. We focus on recent advancements from studies of heme-Cu models, evaluating experimental and computational results, which highlight important fundamental structure-function relationships. Finally, we provide an outlook for future potential contributions from synthetic inorganic chemistry and discuss their implications with relevance to biological O2-reduction.
Collapse
Affiliation(s)
- Suzanne M. Adam
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Gayan B. Wijeratne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Patrick J. Rogler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Daniel E. Diaz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - David A. Quist
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jeffrey J. Liu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|