1
|
Almohamad Z, Fahmy R, Farag A, Abdellatif A, Mossallem W, Abdallah AA, Abass M. Innovative approach: utilizing silver nanoparticles sheet for improved rabbit cecal anastomosis healing. Front Vet Sci 2024; 11:1264414. [PMID: 38468695 PMCID: PMC10925632 DOI: 10.3389/fvets.2024.1264414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Anastomotic leakage is a severe complication associated with gastrointestinal surgery. The process of intestinal wound healing is crucial for the successful outcome of digestive tract surgical repair procedures. This research aimed to determine the impact of silver nanoparticles sheet (Acticoat) on the anastomotic healing of the cecum in rabbits. Methods A total of 48 New Zealand male rabbits in good health were used for cecum transection and anastomosis. The animals were randomized into the control group (C) and the silver nanoparticles group (AgNPs). In the C group, the transected cecum was end-to-end anastomosed with a single layer of simple continuous suture pattern using 3-0 polyglyconate. In contrast, a silver nanoparticle sheet (Acticoat) was covered around the sutured anastomotic line in the AgNPs group. Postoperatively, abdominal ultrasound imaging and the Bristol Rabbit Pain Score (BRPS) were measured on days 7, 15, and 30. Eight rabbits from each group were euthanized at each time point to assess macroscopic findings, bursting pressure tests, tensile strength tests, histopathological examinations, and immunohistochemical analyses. Results The AgNPs group demonstrated a significant increase in the cecal lumen diameter wall (p ≤ 0.001), burst pressure measurement (p ≤ 0.02), and tensile strength (p ≤ 0.01). Conversely, the AgNPs group had significantly lower BRPS scores (p ≤ 0.01). In addition, histopathological examinations revealed that AgNPs significantly reduced inflammatory cell infiltration (neutrophils and macrophages) and enhanced collagen deposition. Immunohistochemical analyses revealed a significant increase (p ≤ 0.01) of α-SMA and a reduction of CD31 in the anastomotic tissue of the AgNPs group. Discussion The results of the present study indicate that the utilization of the AgNPs sheet (Acticoat®) effectively enhanced the strength of cecum anastomosis, resulting in a reduction in anastomosis leakages, pain scores, and abdominal adhesions. Additionally, the bursting pressure values in the rabbit model were significantly increased.
Collapse
Affiliation(s)
- Zakriya Almohamad
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al Ahsa, Saudi Arabia
| | - Reham Fahmy
- Veterinary Surgery, Oncology Centre, Mansoura University, Mansoura, Egypt
| | - Amany Farag
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed Abdellatif
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Wael Mossallem
- Veterinary Clinical Supervisor, Al-Raha Veterinary Clinic, Abu Dhabi, United Arab Emirates
| | - Abdelnaser A. Abdallah
- Department of Internal Medicine and Infectious Disease, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa Abass
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Buttiens K, Maksoudian C, Perez Gilabert I, Rios Luci C, Manshian BB, Soenen SJ. Inorganic Nanoparticles Change Cancer-Cell-Derived Extracellular Vesicle Secretion Levels and Cargo Composition, Resulting in Secondary Biological Effects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66-83. [PMID: 38163254 DOI: 10.1021/acsami.3c12680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Over the past decades, the medical exploitation of nanotechnology has been largely increasing and finding its way into translational research and clinical applications. Despite their biomedical potential, uncertainties persist regarding the intricate role that nanomaterials may play on altering physiology in healthy and diseased tissues. Extracellular vesicles (EVs) are recognized as an important pathway for intercellular communication and known to be mediators of cellular stress. EVs are currently explored for targeted delivery of therapeutic agents, including nanoformulations, to treat and diagnose cancer or other diseases. Here, we aimed to investigate whether nanomaterials could have a possible impact on EV functionality, their safety, and whether EVs can play a role in nanomaterial toxicity profiles. To evaluate this, the impact of inorganic nanomaterial administration on EVs derived from murine melanoma and human breast cancer cells was tested. Cells were incubated with subtoxic concentrations of 4 different biomedically relevant inorganic nanoparticles (NPs): gold, silver, silicon dioxide, or iron oxide. The results displayed a clear NP and cell-type-dependent effect on increasing or decreasing EV secretion. Furthermore, the expression pattern of several EV-derived miRNAs was significantly changed upon NP exposure, compared to nontreated cells. Detailed pathway analysis and additional studies confirmed that EVs obtained from NP-exposed cells could influence immunological responses and cellular physiology. Together, these data reveal that NPs can have wide-ranging effects which can result in toxicity concerns or enhanced therapeutic potential as a secondary enhanced effect mediated and enhanced by EVs.
Collapse
Affiliation(s)
- Kiana Buttiens
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Carla Rios Luci
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KULeuven, Herestraat 49, B3000 Leuven, Belgium
- Leuven Cancer Institute, KULeuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
3
|
Kaiser KG, Delattre V, Frost VJ, Buck GW, Phu JV, Fernandez TG, Pavel IE. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1264. [PMID: 37627684 PMCID: PMC10451389 DOI: 10.3390/antibiotics12081264] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP-antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased.
Collapse
Affiliation(s)
- Kyra G. Kaiser
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoire Delattre
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoria J. Frost
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Gregory W. Buck
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Julianne V. Phu
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Timea G. Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Ioana E. Pavel
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
4
|
Morin-Genest J, Saafane A, Girard D. Functional responsiveness of in vitro-aged human neutrophils. Cell Immunol 2023; 390:104739. [PMID: 37315500 DOI: 10.1016/j.cellimm.2023.104739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Elimination of apoptotic neutrophils by macrophages is as a major step for the resolution of inflammation. However, the fate and the cellular functionality of neutrophils aged in the absence of macrophages are not well documented. Herein, freshly isolated human neutrophils were aged for several days in vitro and then stimulated with agonists for determining their cell responsiveness. In vitro-aged neutrophils were still able to generate reactive oxygen species after 48 h, exert phagocytosis after 72 h, and increase their adhesion onto a cell substratum after 48 h. These data demonstrate that a portion of neutrophils cultivated for several days in vitro are still able to exert biological functions. This opens the possibility that, during inflammation, neutrophils may still respond to agonists, a condition that is likely to occur in vivo when they are not efficiently eliminated by efferocytosis.
Collapse
Affiliation(s)
- J Morin-Genest
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - A Saafane
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - D Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.
| |
Collapse
|
5
|
Ito R, Katano I, Kwok IWH, Ng LG, Ida-Tanaka M, Ohno Y, Mu Y, Morita H, Nishinaka E, Nishime C, Mochizuki M, Kawai K, Chien TH, Yunqian Z, Yiping F, Hua LH, Celhar T, Yen Chan JK, Takahashi T, Goto M, Ogura T, Takahashi R, Ito M. Efficient differentiation of human neutrophils with recapitulation of emergency granulopoiesis in human G-CSF knockin humanized mice. Cell Rep 2022; 41:111841. [PMID: 36543125 DOI: 10.1016/j.celrep.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Neutrophils are critical mediators during the early stages of innate inflammation in response to bacterial or fungal infections. A human hematopoietic system reconstituted in humanized mice aids in the study of human hematology and immunology. However, the poor development of human neutrophils is a well-known limitation of humanized mice. Here, we generate a human granulocyte colony-stimulating factor (hG-CSF) knockin (KI) NOD/Shi-scid-IL2rgnull (NOG) mouse in which hG-CSF is systemically expressed while the mouse G-CSF receptor is disrupted. These mice generate high numbers of mature human neutrophils, which can be readily mobilized into the periphery, compared with conventional NOG mice. Moreover, these neutrophils exhibit infection-mediated emergency granulopoiesis and are capable of efficient phagocytosis and reactive oxygen species production. Thus, hG-CSF KI mice provide a useful model for studying the development of human neutrophils, emergency granulopoiesis, and a potential therapeutic model for sepsis.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan.
| | - Ikumi Katano
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Immanuel W H Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Miyuki Ida-Tanaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yusuke Ohno
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yunmei Mu
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hanako Morita
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Eiko Nishinaka
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Chiyoko Nishime
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Misa Mochizuki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tay Hui Chien
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Zhao Yunqian
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Fan Yiping
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Liew Hui Hua
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Teja Celhar
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore 229899, Singapore
| | - Takeshi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Tomoyuki Ogura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
6
|
Saafane A, Durocher I, Vanharen M, Girard D. Impact of ultra-small silver nanoparticles of 2 nm (AgNP 2) on neutrophil biology: AgNP 2 alter the actin cytoskeleton and induce karyorrhexis by a mitogen-activated protein kinase-dependent mechanism in vitro and transitorily attract neutrophils in vivo. Chem Biol Interact 2022; 365:110096. [PMID: 35963315 DOI: 10.1016/j.cbi.2022.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Silver (Ag) is known as an antibacterial agent and there is a growing interest to use silver nanoparticles (AgNPs) in a variety of medical applications and other sectors. Some studies reported that one of the undesired effects of AgNPs is inflammation and that these NPs can alter the biology of neutrophils. Since it is commonly accepted that the more NPs are small, the more toxic they are the aim of this study was to determine the impact of ultra-small silver nanoparticles of 2 nm (AgNP2) on the biology of neutrophils, key player cells in inflammation. We report that AgNP2 are potent neutrophil activators as they rapidly induce actin polymerization and dismantling the actin network. Although AgNP2 are not necrotic for neutrophils and do not induce ROS production, kinetic studies reveal that AgNP2 are rapid inducer of apoptosis. Pyknosis (mainly 1-2 large nuclear dots) was observed after only 1h of treatment followed by karyorrhexis (several small dots) and by a complete nuclear dissolution leading to anuclear neutrophils after 6h. These observations are not associated with the release of silver ions since treatment of neutrophils with 1-50 μg/ml AgNO3 (as a source of Ag+) did not induce any apparent changes. AgNP2 induce p38 and Erk-1/2 mitogen-activated protein kinase (MAPK) and although karyorrhexis was markedly reversed by MAPK inhibitors, the cell nuclei remain with a pyknotic-like phenotype but do not return to the characteristic polylobed nucleus. Using the murine air pouch model of inflammation AgNP2 were found to induce a neutrophil influx. Our data indicate that AgNP2 are potent neutrophil activators targeting the actin cytoskeleton and the mechanism involved for inducing apoptosis is rapid, complex, and partially includes MAPK pathways. Therefore, the ultra-small AgNP2 are more potent than larger ones for inducing apoptosis and they can transitorily attract neutrophils in vivo.
Collapse
Affiliation(s)
- Abdelaziz Saafane
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Isabelle Durocher
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Marion Vanharen
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada
| | - Denis Girard
- Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, Canada.
| |
Collapse
|
7
|
Mass Cytometry Exploration of Immunomodulatory Responses of Human Immune Cells Exposed to Silver Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14030630. [PMID: 35336005 PMCID: PMC8954471 DOI: 10.3390/pharmaceutics14030630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing production and application of silver nanoparticles (Ag NPs) have raised concerns on their possible adverse effects on human health. However, a comprehensive understanding of their effects on biological systems, especially immunomodulatory responses involving various immune cell types and biomolecules (e.g., cytokines and chemokines), is still incomplete. In this study, a single-cell-based, high-dimensional mass cytometry approach is used to investigate the immunomodulatory responses of Ag NPs using human peripheral blood mononuclear cells (hPBMCs) exposed to poly-vinyl-pyrrolidone (PVP)-coated Ag NPs of different core sizes (i.e., 10-, 20-, and 40-nm). Although there were no severe cytotoxic effects observed, PVPAg10 and PVPAg20 were excessively found in monocytes and dendritic cells, while PVPAg40 displayed more affinity with B cells and natural killer cells, thereby triggering the release of proinflammatory cytokines such as IL-2, IL-17A, IL-17F, MIP1β, TNFα, and IFNγ. Our findings indicate that under the exposure conditions tested in this study, Ag NPs only triggered the inflammatory responses in a size-dependent manner rather than induce cytotoxicity in hPBMCs. Our study provides an appropriate ex vivo model to better understand the human immune responses against Ag NP at a single-cell level, which can contribute to the development of targeted drug delivery, vaccine developments, and cancer radiotherapy treatments.
Collapse
|
8
|
Sharma RK, Yadav S, Dutta S, Kale HB, Warkad IR, Zbořil R, Varma RS, Gawande MB. Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chem Soc Rev 2021; 50:11293-11380. [PMID: 34661205 PMCID: PMC8942099 DOI: 10.1039/d0cs00912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In view of their unique characteristics and properties, silver nanomaterials (Ag NMs) have been used not only in the field of nanomedicine but also for diverse advanced catalytic technologies. In this comprehensive review, light is shed on general synthetic approaches encompassing chemical reduction, sonochemical, microwave, and thermal treatment among the preparative methods for the syntheses of Ag-based NMs and their catalytic applications. Additionally, some of the latest innovative approaches such as continuous flow integrated with MW and other benign approaches have been emphasized that ultimately pave the way for sustainability. Moreover, the potential applications of emerging Ag NMs, including sub nanomaterials and single atoms, in the field of liquid-phase catalysis, photocatalysis, and electrocatalysis as well as a positive role of Ag NMs in catalytic reactions are meticulously summarized. The scientific interest in the synthesis and applications of Ag NMs lies in the integrated benefits of their catalytic activity, selectivity, stability, and recovery. Therefore, the rise and journey of Ag NM-based catalysts will inspire a new generation of chemists to tailor and design robust catalysts that can effectively tackle major environmental challenges and help to replace noble metals in advanced catalytic applications. This overview concludes by providing future perspectives on the research into Ag NMs in the arena of electrocatalysis and photocatalysis.
Collapse
Affiliation(s)
- Rakesh Kumar Sharma
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sneha Yadav
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Sriparna Dutta
- Green Chemistry Network Centre, University of Delhi, New Delhi-110007, India.
| | - Hanumant B Kale
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Indrajeet R Warkad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- Nanotechnology Centre, CEET, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
- U. S. Environmental Protection Agency, ORD, Center for Environmental Solutions and Emergency Response Water Infrastructure Division/Chemical Methods and Treatment Branch, 26 West Martin Luther King Drive, MS 483 Cincinnati, Ohio 45268, USA.
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai-Marathwada Campus, Jalna-431213, Maharashtra, India.
| |
Collapse
|
9
|
Hunt NJ, Lockwood GP, Kang SWS, Westwood LJ, Limantoro C, Chrzanowski W, McCourt PAG, Kuncic Z, Le Couteur DG, Cogger VC. Quantum Dot Nanomedicine Formulations Dramatically Improve Pharmacological Properties and Alter Uptake Pathways of Metformin and Nicotinamide Mononucleotide in Aging Mice. ACS NANO 2021; 15:4710-4727. [PMID: 33626869 DOI: 10.1021/acsnano.0c09278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Orally administered Ag2S quantum dots (QDs) rapidly cross the small intestine and are taken up by the liver. Metformin and nicotinamide mononucleotide (NMN) target metabolic and aging processes within the liver. This study examined the pharmacology and toxicology of QD-based nanomedicines as carriers of metformin and NMN in young and old mice, determining if their therapeutic potency and reduced effects associated with aging could be improved. Pharmacokinetic studies demonstrated that QD-conjugated metformin and NMN have greater bioavailability, with selective accumulation in the liver following oral administration compared to unconjugated formulations. Pharmacodynamic data showed that the QD-conjugated medicines had increased physiological, metabolic, and cellular potency compared to unconjugated formulations (25× metformin; 100× NMN) and highlighted a shift in the peak induction of, and greater metabolic response to, glucose tolerance testing. Two weeks of treatment with low-dose QD-NMN (0.8 mg/kg/day) improved glucose tolerance tests in young (3 months) mice, whereas old (18 and 24 months) mice demonstrated improved fasting and fed insulin levels and insulin resistance. High-dose unconjugated NMN (80 mg/kg/day) demonstrated improvements in young mice but not in old mice. After 100 days of QD (320 μg/kg/day) treatment, there was no evidence of cellular necrosis, fibrosis, inflammation, or accumulation. Ag2S QD nanomedicines improved the pharmacokinetic and pharmacodynamic properties of metformin and NMN by increasing their therapeutic potency, bypassing classical cellular uptake pathways, and demonstrated efficacy when drug alone was ineffective in aging mice.
Collapse
Affiliation(s)
- Nicholas J Hunt
- Ageing and Alzheimers Institute, Centre for Education & Research on Ageing, Concord Repatriation General Hospital, ANZAC Research Institute, Concord, NSW 2139, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glen P Lockwood
- Ageing and Alzheimers Institute, Centre for Education & Research on Ageing, Concord Repatriation General Hospital, ANZAC Research Institute, Concord, NSW 2139, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sun W S Kang
- Ageing and Alzheimers Institute, Centre for Education & Research on Ageing, Concord Repatriation General Hospital, ANZAC Research Institute, Concord, NSW 2139, Australia
- Cell Biology and Imaging Section, Thoracic and Gastrointestinal Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lara J Westwood
- Faculty of Science, University of Technology Sydney, Sydney, NSW 2000, Australia
| | - Christina Limantoro
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wojciech Chrzanowski
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter A G McCourt
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø 9037, Norway
| | - Zdenka Kuncic
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - David G Le Couteur
- Ageing and Alzheimers Institute, Centre for Education & Research on Ageing, Concord Repatriation General Hospital, ANZAC Research Institute, Concord, NSW 2139, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Victoria C Cogger
- Ageing and Alzheimers Institute, Centre for Education & Research on Ageing, Concord Repatriation General Hospital, ANZAC Research Institute, Concord, NSW 2139, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Silver Nanoparticles Induce Neutrophil Extracellular Traps Via Activation of PAD and Neutrophil Elastase. Biomolecules 2021; 11:biom11020317. [PMID: 33669660 PMCID: PMC7922014 DOI: 10.3390/biom11020317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/08/2023] Open
Abstract
Silver nanoparticles (AgNPs) are widely used in various fields because of their antimicrobial properties. However, many studies have reported that AgNPs can be harmful to both microorganisms and humans. Reactive oxygen species (ROS) are a key factor of cytotoxicity of AgNPs in mammalian cells and an important factor in the immune reaction of neutrophils. The immune reactions of neutrophils include the expulsion of webs of DNA surrounded by histones and granular proteins. These webs of DNA are termed neutrophil extracellular traps (NETs). NETs allow neutrophils to catch and destroy pathogens in extracellular spaces. In this study, we investigated how AgNPs stimulate neutrophils, specifically focusing on NETs. Freshly isolated human neutrophils were treated with 5 or 100 nm AgNPs. The 5 nm AgNPs induced NET formation, but the 100 nm AgNPs did not. Subsequently, we investigated the mechanism of AgNP-induced NETs using known inhibitors related to NET formation. AgNP-induced NETs were dependent on ROS, peptidyl arginine deiminase, and neutrophil elastase. The result in this study indicates that treatment of 5 nm AgNPs induce NET formation through histone citrullination by peptidyl arginine deiminase and histone cleavage by neutrophil elastase.
Collapse
|
11
|
Huang M, Ye K, Hu T, Liu K, You M, Wang L, Qin H. Silver Nanoparticles Attenuate the Antimicrobial Activity of the Innate Immune System by Inhibiting Neutrophil-Mediated Phagocytosis and Reactive Oxygen Species Production. Int J Nanomedicine 2021; 16:1345-1360. [PMID: 33633450 PMCID: PMC7901559 DOI: 10.2147/ijn.s292482] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Despite the extensive development of antibacterial biomaterials, there are few reports on the effects of materials on the antibacterial ability of the immune system, and in particular of neutrophils. In this study, we observe differences between the in vivo and in vitro anti-infective efficacies of silver nanoparticles (AgNPs). The present study was designed to further explore the mechanism for this inconsistency using ex vivo models and in vitro experiments. METHODS AgNPs were synthesized using the polyol process and characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. The antibacterial ability of AgNPs and neutrophils was tested by the spread-plate method. The infected air pouch model was prepared to detect the antimicrobial ability of AgNPs in vivo. Furthermore, blood-AgNPs-bacteria co-culture model and reactive oxygen species (ROS) measurement were used to evaluate the effect of AgNPs to neutrophil-mediated phagocytosis and ROS production. RESULTS The antibacterial experiments in vitro showed that AgNPs had superior antibacterial properties in cell compatible concentration. While, AgNPs had no significant antibacterial effect in vivo, and pathological section in AgNPs group indicated less neutrophil infiltration in inflammatory site than S. aureus group. Furthermore, AgNPs were found to reduce the phagocytosis of neutrophils and inhibit their ability to produce ROS and superoxide during ex vivo and in vitro experiments. CONCLUSION This study selects AgNPs as the representative of inorganic nano-biomaterials and reveals the phenomenon and the mechanism underlying the significant AgNPs-induced inhibition of the antibacterial ability of neutrophils, and may have a certain enlightening effect on the development of biomaterials in the future. In the fabrication of antibacterial biomaterials, however, attention should be paid to both cell and immune system safety to make the antibacterial properties of the biomaterials and innate immune system complement each other and jointly promote the host's ability to resist the invasion of pathogenic microorganisms.
Collapse
Affiliation(s)
- Moran Huang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Kai Ye
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Tu Hu
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Kexin Liu
- Department of General Practice, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Mengzhen You
- Department of General Practice, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Lei Wang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, People’s Republic of China
| |
Collapse
|
12
|
Club Cell Protein 16 Attenuates CD16 brightCD62 dim Immunosuppressive Neutrophils in Damaged Tissue upon Posttraumatic Sepsis-Induced Lung Injury. J Immunol Res 2021; 2021:6647753. [PMID: 33575362 PMCID: PMC7861919 DOI: 10.1155/2021/6647753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/24/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Background Recently, identification of immunosuppressive polymorphonuclear leukocytes (PMNL) that were traditionally described as proinflammatory cells emerged in the field of posttraumatic immunity. To understand their local and remote distribution after trauma, PMNL-subsets and the impact of immunomodulatory Club Cell protein (CC)16 that correlates with pulmonary complications were assessed. Methods C57BL/6N mice were divided into three groups, receiving isolated blunt chest trauma (TxT), undergoing TxT followed by cecal ligation and puncture (CLP, TxT + CLP) after 24 h, or sham undergoing analgosedation (n = 18/group). Further, each group was subdivided into three groups receiving either no treatment (ctrl) or intratracheal neutralization of CC16 by application of anti-CC16-antibody or application of an unspecific IgG control antibody (n = 6/group). Treatment was set at the time point after TxT. Analyses followed 6 h post-CLP. PMNL were characterized via expression of CD11b, CD16, CD45, CD62L, and Ly6G by flow cytometry in bone marrow (BM), blood, spleen, lung, liver, and bronchoalveolar and peritoneal lavage fluid (BALF and PL). Apoptosis was assessed by activated (cleaved) caspase-3. Results from untreated ctrl and IgG-treated mice were statistically comparable between all corresponding sham, TxT, and TxT + CLP groups. Results Immature (CD16dimCD62Lbright) PMNL increased significantly in BM, circulation, and spleen after TxT vs. sham and were significantly attenuated in the lungs, BALF, PL, and liver. Classical-shaped (CD16brightCD62Lbright) PMNL increased after TxT vs. sham in peripheral tissue and were significantly attenuated in circulation, proposing a trauma-induced migration of mature or peripheral differentiation of circulating immature PMNL. Immunosuppressive (CD16brightCD62Ldim) PMNL decreased significantly in the lungs and spleen, while they systemically increased after TxT vs. sham. CLP in the TxT + CLP group reduced immunosuppressive PMNL in PL and increased their circulatory rate vs. isolated TxT, showing local reduction in affected tissue and their increase in nonaffected tissue. CC16 neutralization enhanced the fraction of immunosuppressive PMNL following TxT vs. sham and decreased caspase-3 in the lungs post-CLP in the TxT + CLP group, while apoptotic cells in the liver diminished post-TxT. Posttraumatic CC16 neutralization promotes the subset of immunosuppressive PMNL and antagonizes their posttraumatic distribution. Conclusion Since CC16 affects both the distribution of PMNL subsets and apoptosis in tissues after trauma, it may constitute as a novel target to beneficially shape the posttraumatic tissue microenvironment and homeostasis to improving outcomes.
Collapse
|
13
|
Jabir MS, Hussien AA, Sulaiman GM, Yaseen NY, Dewir YH, Alwahibi MS, Soliman DA, Rizwana H. Green synthesis of silver nanoparticles from Eriobotrya japonica extract: a promising approach against cancer cells proliferation, inflammation, allergic disorders and phagocytosis induction. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:48-60. [DOI: 10.1080/21691401.2020.1867152] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Majid S. Jabir
- Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Aya A. Hussien
- College of Dentistry, Mustansiriyah University, Baghdad, Iraq
| | | | - Nahi Y. Yaseen
- Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, Baghdad, Iraq
| | - Yaser H. Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Dina A. Soliman
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Humaira Rizwana
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Al Rugaie O, Jabir M, Kadhim R, Karsh E, Sulaiman GM, Mohammed SAA, Khan RA, Mohammed HA. Gold Nanoparticles and Graphene Oxide Flakes Synergistic Partaking in Cytosolic Bactericidal Augmentation: Role of ROS and NOX2 Activity. Microorganisms 2021; 9:microorganisms9010101. [PMID: 33466290 PMCID: PMC7824746 DOI: 10.3390/microorganisms9010101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Gold nanoparticles (GNPs) and graphene oxide flakes (GOFs) exerted significantly (p < 0.0001) supportive roles on the phagocytosis bioactivity of the immune cells of phagocytic nature against the Gram-positive and Gram-negative human pathogenic bacteria Staphylococcus aureus and Escherichia coli. Under experimental conditions, upon bacterial exposure, the combined GNPs and GOFs induced significant clearance of bacteria through phagosome maturation (p < 0.0001) from time-points of 6 to 30 min and production of reactive oxygen species (ROS, p < 0.0001) through the NADPH oxidase 2 (NOX2, p < 0.0001)-based feedback mechanism. The effects of the combined presence of GNPs and GOFs on phagocytosis (p < 0.0001) suggested a synergistic action underway, also achieved through elevated signal transduction activity in the bone-marrow-derived macrophages (BMDM, p < 0.0001). The current study demonstrated that GNPs’ and GOFs’ bactericidal assisting potentials could be considered an effective and alternative strategy for treating infections from both positive and negative bacterial strains.
Collapse
Affiliation(s)
- Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, P.O. Box 991, Al-Qassim 51911, Saudi Arabia;
| | - Majid Jabir
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
- Correspondence: (M.J.); (G.M.S.); (S.A.A.M.); Tel.: +964-(0)-7902-781-890 (G.M.S.); +966-(0)-530-309-899 (S.A.A.M.)
| | - Rua Kadhim
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
| | - Esraa Karsh
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, Division of Biotechnology, University of Technology, Baghdad 35010, Iraq; (R.K.); (E.K.)
- Correspondence: (M.J.); (G.M.S.); (S.A.A.M.); Tel.: +964-(0)-7902-781-890 (G.M.S.); +966-(0)-530-309-899 (S.A.A.M.)
| | - Salman A. A. Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
- Correspondence: (M.J.); (G.M.S.); (S.A.A.M.); Tel.: +964-(0)-7902-781-890 (G.M.S.); +966-(0)-530-309-899 (S.A.A.M.)
| | - Riaz A. Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (R.A.K.); (H.A.M.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; (R.A.K.); (H.A.M.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| |
Collapse
|
15
|
Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 2020; 12:pharmaceutics12121222. [PMID: 33348630 PMCID: PMC7766591 DOI: 10.3390/pharmaceutics12121222] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils and macrophages are major components of innate systems, playing central roles in inflammation responses to infections and tissue injury. If they are out of control, inflammation responses can cause the pathogenesis of a wide range of diseases, such as inflammatory disorders and autoimmune diseases. Precisely regulating the functions of neutrophils and macrophages in vivo is a potential strategy to develop immunotherapies to treat inflammatory diseases. Advances in nanotechnology have enabled us to design nanoparticles capable of targeting neutrophils or macrophages in vivo. This review discusses the current status of how nanoparticles specifically target neutrophils or macrophages and how they manipulate leukocyte functions to inhibit their activation for inflammation resolution or to restore their defense ability for pathogen clearance. Finally, we present a novel concept of hijacking leukocytes to deliver nanotherapeutics across the blood vessel barrier. This review highlights the challenges and opportunities in developing nanotherapeutics to target leukocytes for improved treatment of inflammatory diseases.
Collapse
|
16
|
Wang Z, Yang C, Li L, Zhang Z, Pan J, Su K, Chen W, Li J, Qiu F, Huang J. CD62L dim Neutrophils Specifically Migrate to the Lung and Participate in the Formation of the Pre-Metastatic Niche of Breast Cancer. Front Oncol 2020; 10:540484. [PMID: 33178575 PMCID: PMC7593663 DOI: 10.3389/fonc.2020.540484] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022] Open
Abstract
Lung metastasis is one of the leading causes of death in patients with breast cancer. The mechanism of tumor metastasis remains controversial. Recently, the formation of a pre-metastatic niche has been considered a key factor contributing to breast cancer metastasis, which might also explain the tendency of organ metastasis. Our study initially re-examined the critical time of the niche formation and simultaneously detected a novel subset of neutrophils, CD62Ldim neutrophils, which had not previously been reported in tumor metastasis; the number of these cells progressively increased during breast cancer progression and was closely related to the formation of the pre-metastatic niche. Furthermore, we explored the mechanism of their aggregation in the pre-metastatic niche in the lung and found that they were specifically chemoattracted by the CXCL12-CXCR4 signaling pathway. Compared to the CD62Lhi neutrophils, CD62Ldim neutrophils exhibited stronger adhesion and increased survival. The results provide new insights into the subsequent targeted treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghui Yang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Li
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ke Su
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wuzhen Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Kuchur OA, Tsymbal SA, Shestovskaya MV, Serov NS, Dukhinova MS, Shtil AA. Metal-derived nanoparticles in tumor theranostics: Potential and limitations. J Inorg Biochem 2020; 209:111117. [PMID: 32473483 DOI: 10.1016/j.jinorgbio.2020.111117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022]
Abstract
Initially, metal derived nanoparticles have been used exclusively as contrasting agents in magnetic resonance imaging. Today, green routes of chemical synthesis together with numerous modifications of the core and surface gave rise to a plethora of biomedical applications of metal derived nanoparticles including tumor imaging, diagnostics, and therapy. These materials are an emerging class of tools for tumor theranostics. Nevertheless, the spectrum of clinically approved metal nanoparticles remains narrow, as the safety, specificity and efficiency still have to be improved. In this review we summarize the major directions for development and biomedical applications of metal based nanoparticles and analyze their effects on tumor cells and microenvironment. We discuss the advantages and possible limitations of metal nanoparticle-based tumor theranostics, as well as the potential strategies to improve the in vivo performance of these unique materials.
Collapse
Affiliation(s)
- O A Kuchur
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - S A Tsymbal
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M V Shestovskaya
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - N S Serov
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia
| | - M S Dukhinova
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia.
| | - A A Shtil
- International Institute 'Solution Chemistry of Advanced Materials and Technologies', ITMO University, 197101 Saint-Petersburg, Russia; Institute of Gene Biology, Russian Academy of Science, 119334 Moscow, Russia
| |
Collapse
|
18
|
Alsaleh NB, Minarchick VC, Mendoza RP, Sharma B, Podila R, Brown JM. Silver nanoparticle immunomodulatory potential in absence of direct cytotoxicity in RAW 264.7 macrophages and MPRO 2.1 neutrophils. J Immunotoxicol 2020; 16:63-73. [PMID: 31282784 PMCID: PMC7135879 DOI: 10.1080/1547691x.2019.1588928] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Engineered nanomaterials (ENM) are being used in a wide range of consumer products and pharmaceuticals; hence, there is an increasing risk for human exposure and potential adverse outcomes. The immune system, vital in host defense and protection against environmental agents, is typically initiated and executed by innate effector immune cells including macrophages and neutrophils. Previous literature has reported the immune system as a major target of ENM toxicity; however, there is inconsistency regarding the immunotoxicity of ENM. This could be attributed to differences in ENM physicochemical properties, cellular models examined, biocorona formation, etc. Thus, the current study examined the toxicity and immunomodulatory effects of silver nanoparticles (AgNP), one of the most utilized ENM in consumer and medical products, in two key innate immune cell models, e.g. RAW 264.7 cells (macrophages) and differentiated MPRO 2.1 cells (promyelocytes/neutrophils). The results showed that despite a generation of reactive oxygen species, exposure to 20 nm citrate-coated AgNP was not associated with major oxidative damage, inflammatory responses, nor cytotoxicity. Nevertheless, and most importantly, pre-exposure to the AgNP for 24 h enhanced RAW 264.7 cell phagocytic ability as well as the release of inflammatory cytokine interleukin-6 in response to lipopolysaccharide (LPS). In MPRO 2.1 cells, AgNP pre-exposure also resulted in enhanced phagocytic ability; however, these cells manifest reduced cell degranulation (elastase release) and oxidative burst in response to phorbol myristate acetate (PMA). Taken together, these findings indicated to us that exposure to AgNP, despite not being directly (cyto)toxic to these cells, had the potential to alter immune cell responses. The findings underscore the import of assessing immune cell function post-exposure to ENM beyond the standard endpoints such as oxidative stress and cytotoxicity. In addition, these findings further illustrate the importance of understanding the underlying molecular mechanisms of ENM-cellular interactions, particularly in the immune system.
Collapse
Affiliation(s)
- Nasser B Alsaleh
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Valerie C Minarchick
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Ryan P Mendoza
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Bipin Sharma
- b Department of Physics and Astronomy, Laboratory of Nano-biophysics , Clemson University , Clemson , SC , USA
| | - Ramakrishna Podila
- b Department of Physics and Astronomy, Laboratory of Nano-biophysics , Clemson University , Clemson , SC , USA
| | - Jared M Brown
- a Department of Pharmaceutical Sciences, Colorado Center for Nanomedicine and Nanosafety, Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
19
|
McDaniel DK, Ringel-Scaia VM, Morrison HA, Coutermarsh-Ott S, Council-Troche M, Angle JW, Perry JB, Davis G, Leng W, Minarchick V, Yang Y, Chen B, Reece SW, Brown DA, Cecere TE, Brown JM, Gowdy KM, Hochella MF, Allen IC. Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function. Front Immunol 2019; 10:2714. [PMID: 31849940 PMCID: PMC6892980 DOI: 10.3389/fimmu.2019.02714] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/05/2019] [Indexed: 01/03/2023] Open
Abstract
Coal is one of the most abundant and economic sources for global energy production. However, the burning of coal is widely recognized as a significant contributor to atmospheric particulate matter linked to deleterious respiratory impacts. Recently, we have discovered that burning coal generates large quantities of otherwise rare Magnéli phase titanium suboxides from TiO2 minerals naturally present in coal. These nanoscale Magnéli phases are biologically active without photostimulation and toxic to airway epithelial cells in vitro and to zebrafish in vivo. Here, we sought to determine the clinical and physiological impact of pulmonary exposure to Magnéli phases using mice as mammalian model organisms. Mice were exposed to the most frequently found Magnéli phases, Ti6O11, at 100 parts per million (ppm) via intratracheal administration. Local and systemic titanium concentrations, lung pathology, and changes in airway mechanics were assessed. Additional mechanistic studies were conducted with primary bone marrow derived macrophages. Our results indicate that macrophages are the cell type most impacted by exposure to these nanoscale particles. Following phagocytosis, macrophages fail to properly eliminate Magnéli phases, resulting in increased oxidative stress, mitochondrial dysfunction, and ultimately apoptosis. In the lungs, these nanoparticles become concentrated in macrophages, resulting in a feedback loop of reactive oxygen species production, cell death, and the initiation of gene expression profiles consistent with lung injury within 6 weeks of exposure. Chronic exposure and accumulation of Magnéli phases ultimately results in significantly reduced lung function impacting airway resistance, compliance, and elastance. Together, these studies demonstrate that Magnéli phases are toxic in the mammalian airway and are likely a significant nanoscale environmental pollutant, especially in geographic regions where coal combustion is a major contributor to atmospheric particulate matter.
Collapse
Affiliation(s)
- Dylan K. McDaniel
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Veronica M. Ringel-Scaia
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - McAlister Council-Troche
- Analytical Research Laboratory, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan W. Angle
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Justin B. Perry
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Grace Davis
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Weinan Leng
- National Center for Earth and Environmental Nanotechnology Infrastructure, Virginia Tech, Blacksburg, VA, United States
| | - Valerie Minarchick
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical, Aurora, CO, United States
| | - Yi Yang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, China
| | - Bo Chen
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sky W. Reece
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - David A. Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Thomas E. Cecere
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jared M. Brown
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical, Aurora, CO, United States
| | - Kymberly M. Gowdy
- Department of Pharmacology & Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
20
|
Keshavan S, Calligari P, Stella L, Fusco L, Delogu LG, Fadeel B. Nano-bio interactions: a neutrophil-centric view. Cell Death Dis 2019; 10:569. [PMID: 31358731 PMCID: PMC6662811 DOI: 10.1038/s41419-019-1806-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Neutrophils are key components of the innate arm of the immune system and represent the frontline of host defense against intruding pathogens. However, neutrophils can also cause damage to the host. Nanomaterials are being developed for a multitude of different purposes and these minute materials may find their way into the body through deliberate or inadvertent exposure; understanding nanomaterial interactions with the immune system is therefore of critical importance. However, whereas numerous studies have focused on macrophages, less attention is devoted to nanomaterial interactions with neutrophils, the most abundant leukocytes in the blood. We discuss the impact of engineered nanomaterials on neutrophils and how neutrophils, in turn, may digest certain carbon-based materials such as carbon nanotubes and graphene oxide. We also discuss the role of the corona of proteins adsorbed onto the surface of nanomaterials and whether nanomaterials are sensed as pathogens by cells of the immune system.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Calligari
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Laura Fusco
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padua, Italy
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|