1
|
Thapliyal A, Suri K, Chauhan R, Murugan NA, Maurya SK. Unveiling the role of phytochemicals in autism spectrum disorder by employing network pharmacology and molecular dynamics simulation. Metab Brain Dis 2024; 40:34. [PMID: 39570464 DOI: 10.1007/s11011-024-01467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 11/22/2024]
Abstract
Autism Spectrum Disorder (ASD) comprises a myriad of disorders with vast pathologies, aetiologies, and involvement of genetic and environmental risk factors. Given the polygenic aspect of ASD, targeting several genes/proteins responsible for pathogenesis at once might prove advantageous in its remediation. Various phytochemicals have been proven to possess neuroprotective, anti-inflammatory, and antioxidant properties by alleviating symptoms and targeting a complex network of genes/proteins related to disease pathology. However, the effects of many of these phytochemicals on ASD are enigmatic, and their molecular targets and molecular mechanisms are still elusive. Here, we provide a comprehensive comparative study on the therapeutic potential of 6 phytochemicals viz. Cannabidiol, Crocetin, Epigallocatechin-3-gallate, Fisetin, Quercetin, and Resveratrol based on their neuroprotective properties in managing ASD. We aimed to identify and target a network of core proteins in the pathology of ASD via phytochemicals using network pharmacology, molecular docking, and simulation studies. The methodology includes screening genes/proteins implicated in ASD as targets of each phytochemical, followed by network construction using Protein-Protein Interactions, Gene Ontology, and enrichment analysis. The constructed network was further narrowed down to the hub genes in the network, followed by their spatio-temporal analysis, molecular docking, and molecular dynamics simulation. 6 core genes were obtained for ASD, 3 of which are directly involved in disease pathogenesis. The study provides a set of novel genes that phytochemicals can target to ameliorate and regulate ASD pathogenesis. Cannabidiol can inhibit ABCG2, MAOB, and PDE4B, Resveratrol can target ABCB1, and Quercetin can regulate AKR1C4 and XDH. This study demonstrated the potential of phytochemicals to target and regulate ABCG2, ABCB1, AKR1C4, MAOB, PDE4B, and XDH, which in turn modulate the dysfunctional network present in the ASD pathology and provide therapeutic potential in the management of ASD.
Collapse
Affiliation(s)
- Anurag Thapliyal
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India
| | - Kapali Suri
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
| | - Rudrakshi Chauhan
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
| | - N Arul Murugan
- Department of Computational Biology, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
- Center for Excellence in Healthcare, Indraprastha Institute of Information Technology, Okhla Industrial Estate, Delhi, 110020, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
2
|
Symeonides C, Vacy K, Thomson S, Tanner S, Chua HK, Dixit S, Mansell T, O'Hely M, Novakovic B, Herbstman JB, Wang S, Guo J, Chia J, Tran NT, Hwang SE, Britt K, Chen F, Kim TH, Reid CA, El-Bitar A, Bernasochi GB, Delbridge LMD, Harley VR, Yap YW, Dewey D, Love CJ, Burgner D, Tang MLK, Sly PD, Saffery R, Mueller JF, Rinehart N, Tonge B, Vuillermin P, Ponsonby AL, Boon WC. Male autism spectrum disorder is linked to brain aromatase disruption by prenatal BPA in multimodal investigations and 10HDA ameliorates the related mouse phenotype. Nat Commun 2024; 15:6367. [PMID: 39112449 PMCID: PMC11306638 DOI: 10.1038/s41467-024-48897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/16/2024] [Indexed: 08/10/2024] Open
Abstract
Male sex, early life chemical exposure and the brain aromatase enzyme have been implicated in autism spectrum disorder (ASD). In the Barwon Infant Study birth cohort (n = 1074), higher prenatal maternal bisphenol A (BPA) levels are associated with higher ASD symptoms at age 2 and diagnosis at age 9 only in males with low aromatase genetic pathway activity scores. Higher prenatal BPA levels are predictive of higher cord blood methylation across the CYP19A1 brain promoter I.f region (P = 0.009) and aromatase gene methylation mediates (P = 0.01) the link between higher prenatal BPA and brain-derived neurotrophic factor methylation, with independent cohort replication. BPA suppressed aromatase expression in vitro and in vivo. Male mice exposed to mid-gestation BPA or with aromatase knockout have ASD-like behaviors with structural and functional brain changes. 10-hydroxy-2-decenoic acid (10HDA), an estrogenic fatty acid alleviated these features and reversed detrimental neurodevelopmental gene expression. Here we demonstrate that prenatal BPA exposure is associated with impaired brain aromatase function and ASD-related behaviors and brain abnormalities in males that may be reversible through postnatal 10HDA intervention.
Collapse
Grants
- This multimodal project was supported by funding from the Minderoo Foundation. Funding was also provided by the National Health and Medical Research Council of Australia (NHMRC), the NHMRC-EU partnership grant for the ENDpoiNT consortium, the Australian Research Council, the Jack Brockhoff Foundation, the Shane O’Brien Memorial Asthma Foundation, the Our Women’s Our Children’s Fund Raising Committee Barwon Health, The Shepherd Foundation, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, GMHBA Limited, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual Trustees, Fred P Archer Fellowship; the Scobie Trust; Philip Bushell Foundation; Pierce Armstrong Foundation; The Canadian Institutes of Health Research; BioAutism, William and Vera Ellen Houston Memorial Trust Fund, Homer Hack Research Small Grants Scheme and the Medical Research Commercialisation Fund. This work was also supported by Ms. Loh Kia Hui. This project received funding from a NHMRC-EU partner grant with the European Union’s Horizon 2020 Research and Innovation Programme, under Grant Agreement number: 825759 (ENDpoiNTs project). This work was also supported by NHMRC Investigator Fellowships (GTN1175744 to D.B, APP1197234 to A-L.P, and GRT1193840 to P.S). The study sponsors were not involved in the collection, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication.
Collapse
Affiliation(s)
- Christos Symeonides
- Minderoo Foundation, Perth, Australia
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
| | - Kristina Vacy
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Sarah Thomson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Sam Tanner
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Hui Kheng Chua
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Hudson Institute of Medical Research, Clayton, Australia
| | - Shilpi Dixit
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
| | - Martin O'Hely
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Shuang Wang
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jia Guo
- Columbia Center for Children's Environmental Health, Columbia University, New York, NY, USA
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Jessalynn Chia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Nhi Thao Tran
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Clayton, Australia
| | - Sang Eun Hwang
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Kara Britt
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Feng Chen
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Tae Hwan Kim
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Anthony El-Bitar
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Gabriel B Bernasochi
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Lea M Durham Delbridge
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Vincent R Harley
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Yann W Yap
- The Hudson Institute of Medical Research, Clayton, Australia
- Sex Development Laboratory, Hudson Institute of Medical Research, Clayton, Australia
| | - Deborah Dewey
- Departments of Paediatrics and Community Health Sciences, The University of Calgary, Calgary, Canada
| | - Chloe J Love
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Pediatrics, The University of Melbourne, Parkville, Australia
- Department of General Medicine, Royal Children's Hospital, Parkville, Australia
- Department of Pediatrics, Monash University, Clayton, Australia
| | - Mimi L K Tang
- Murdoch Children's Research Institute, Parkville, Australia
- Faculty Medicine, Dentistry & Health Sciences, University of Melbourne, Parkville, Australia
| | - Peter D Sly
- School of Medicine, Deakin University, Geelong, Australia
- Child Health Research Centre, The University of Queensland, Brisbane, Australia
- WHO Collaborating Centre for Children's Health and Environment, Brisbane, Australia
| | | | - Jochen F Mueller
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Australia
| | - Nicole Rinehart
- Monash Krongold Clinic, Faculty of Education, Monash University, Clayton, Australia
| | - Bruce Tonge
- Centre for Developmental Psychiatry and Psychology, Monash University, Clayton, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia
- School of Medicine, Deakin University, Geelong, Australia
- Barwon Health, Geelong, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia
- Centre for Community Child Health, Royal Children's Hospital, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, Parkville, Australia.
- School of BioSciences, Faculty of Science, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Chung TH, Zhuravskaya A, Makeyev EV. Regulation potential of transcribed simple repeated sequences in developing neurons. Hum Genet 2024; 143:875-895. [PMID: 38153590 PMCID: PMC11294396 DOI: 10.1007/s00439-023-02626-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Simple repeated sequences (SRSs), defined as tandem iterations of microsatellite- to satellite-sized DNA units, occupy a substantial part of the human genome. Some of these elements are known to be transcribed in the context of repeat expansion disorders. Mounting evidence suggests that the transcription of SRSs may also contribute to normal cellular functions. Here, we used genome-wide bioinformatics approaches to systematically examine SRS transcriptional activity in cells undergoing neuronal differentiation. We identified thousands of long noncoding RNAs containing >200-nucleotide-long SRSs (SRS-lncRNAs), with hundreds of these transcripts significantly upregulated in the neural lineage. We show that SRS-lncRNAs often originate from telomere-proximal regions and that they have a strong potential to form multivalent contacts with a wide range of RNA-binding proteins. Our analyses also uncovered a cluster of neurally upregulated SRS-lncRNAs encoded in a centromere-proximal part of chromosome 9, which underwent an evolutionarily recent segmental duplication. Using a newly established in vitro system for rapid neuronal differentiation of induced pluripotent stem cells, we demonstrate that at least some of the bioinformatically predicted SRS-lncRNAs, including those encoded in the segmentally duplicated part of chromosome 9, indeed increase their expression in developing neurons to readily detectable levels. These and other lines of evidence suggest that many SRSs may be expressed in a cell type and developmental stage-specific manner, providing a valuable resource for further studies focused on the functional consequences of SRS-lncRNAs in the normal development of the human brain, as well as in the context of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tek Hong Chung
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Rylaarsdam L, Rakotomamonjy J, Pope E, Guemez-Gamboa A. iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity. Nat Commun 2024; 15:827. [PMID: 38280846 PMCID: PMC10821916 DOI: 10.1038/s41467-024-44989-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder characterized by intellectual disability and distinct craniofacial abnormalities resulting from a de novo p.R203W variant in phosphofurin acidic cluster sorting protein 1 (PACS1). PACS1 is known to have functions in the endosomal pathway and nucleus, but how the p.R203W variant affects developing neurons is not fully understood. Here we differentiated stem cells towards neuronal models including cortical organoids to investigate the impact of the PACS1 syndrome-causing variant on neurodevelopment. While few deleterious effects were detected in PACS1(+/R203W) neural precursors, mature PACS1(+/R203W) glutamatergic neurons exhibited impaired expression of genes involved in synaptic signaling processes. Subsequent characterization of neural activity using calcium imaging and multielectrode arrays revealed the p.R203W PACS1 variant leads to a prolonged neuronal network burst duration mediated by an increased interspike interval. These findings demonstrate the impact of the PACS1 p.R203W variant on developing human neural tissue and uncover putative electrophysiological underpinnings of disease.
Collapse
Affiliation(s)
- Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleanor Pope
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Kilpatrick S, Irwin C, Singh KK. Human pluripotent stem cell (hPSC) and organoid models of autism: opportunities and limitations. Transl Psychiatry 2023; 13:217. [PMID: 37344450 PMCID: PMC10284884 DOI: 10.1038/s41398-023-02510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder caused by genetic or environmental perturbations during early development. Diagnoses are dependent on the identification of behavioral abnormalities that likely emerge well after the disorder is established, leaving critical developmental windows uncharacterized. This is further complicated by the incredible clinical and genetic heterogeneity of the disorder that is not captured in most mammalian models. In recent years, advancements in stem cell technology have created the opportunity to model ASD in a human context through the use of pluripotent stem cells (hPSCs), which can be used to generate 2D cellular models as well as 3D unguided- and region-specific neural organoids. These models produce profoundly intricate systems, capable of modeling the developing brain spatiotemporally to reproduce key developmental milestones throughout early development. When complemented with multi-omics, genome editing, and electrophysiology analysis, they can be used as a powerful tool to profile the neurobiological mechanisms underlying this complex disorder. In this review, we will explore the recent advancements in hPSC-based modeling, discuss present and future applications of the model to ASD research, and finally consider the limitations and future directions within the field to make this system more robust and broadly applicable.
Collapse
Affiliation(s)
- Savannah Kilpatrick
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, ON, Canada
| | - Courtney Irwin
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karun K Singh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Muzzi L, Di Lisa D, Falappa M, Pepe S, Maccione A, Pastorino L, Martinoia S, Frega M. Human-Derived Cortical Neurospheroids Coupled to Passive, High-Density and 3D MEAs: A Valid Platform for Functional Tests. Bioengineering (Basel) 2023; 10:bioengineering10040449. [PMID: 37106636 PMCID: PMC10136157 DOI: 10.3390/bioengineering10040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
With the advent of human-induced pluripotent stem cells (hiPSCs) and differentiation protocols, methods to create in-vitro human-derived neuronal networks have been proposed. Although monolayer cultures represent a valid model, adding three-dimensionality (3D) would make them more representative of an in-vivo environment. Thus, human-derived 3D structures are becoming increasingly used for in-vitro disease modeling. Achieving control over the final cell composition and investigating the exhibited electrophysiological activity is still a challenge. Thence, methodologies to create 3D structures with controlled cellular density and composition and platforms capable of measuring and characterizing the functional aspects of these samples are needed. Here, we propose a method to rapidly generate neurospheroids of human origin with control over cell composition that can be used for functional investigations. We show a characterization of the electrophysiological activity exhibited by the neurospheroids by using micro-electrode arrays (MEAs) with different types (i.e., passive, C-MOS, and 3D) and number of electrodes. Neurospheroids grown in free culture and transferred on MEAs exhibited functional activity that can be chemically and electrically modulated. Our results indicate that this model holds great potential for an in-depth study of signal transmission to drug screening and disease modeling and offers a platform for in-vitro functional testing.
Collapse
Affiliation(s)
- Lorenzo Muzzi
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Donatella Di Lisa
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Matteo Falappa
- 3Brain AG, 8808 Pfäffikon, Switzerland
- Corticale Srl., 16145 Genoa, Italy
| | - Sara Pepe
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy
| | | | - Laura Pastorino
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, 16145 Genoa, Italy
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
7
|
Zhou B, Yan X, Yang L, Zheng X, Chen Y, Liu Y, Ren Y, Peng J, Zhang Y, Huang J, Tang L, Wen M. Effects of arginine vasopressin on the transcriptome of prefrontal cortex in autistic rat model. J Cell Mol Med 2022; 26:5493-5505. [PMID: 36239083 PMCID: PMC9639040 DOI: 10.1111/jcmm.17578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 09/25/2022] [Indexed: 11/25/2022] Open
Abstract
Our previous studies have also demonstrated that AVP can significantly improve social interaction disorders and stereotypical behaviours in rats with VPA‐induced autism model. To further explore the mechanisms of action of AVP, we compared the PFC transcriptome changes before and after AVP treatment in VPA‐induced autism rat model. The autism model was induced by intraperitoneally injected with VPA at embryonic day 12.5 and randomly assigned to two groups: the VPA‐induced autism model group and the AVP treatment group. The AVP treatment group were treated with intranasal AVP at postnatal day 21 and for 3 weeks. The gene expression levels and function changes on the prefrontal cortex were measured by RNA‐seq and bioinformatics analysis at PND42 and the mRNA expression levels of synaptic and myelin development related genes were validated by qPCR. Our results confirmed that AVP could significantly improve synaptic and axon dysplasia and promote oligodendrocyte development in the prefrontal cortex in VPA‐induced autism models by regulating multiple signalling pathways.
Collapse
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Xuehui Yan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Liu Yang
- Department of Neurology, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, China
| | - Xiaoli Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yunhua Chen
- College of Basic Medical, Guizhou Medical University, Guizhou, China
| | - Yibu Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yibing Ren
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jingang Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Yi Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Jiayu Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| | - Min Wen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guizhou, China.,Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guizhou, China.,College of Pharmacy, Guizhou Medical University, Guizhou, China
| |
Collapse
|
8
|
Thudium S, Palozola K, L'Her É, Korb E. Identification of a transcriptional signature found in multiple models of ASD and related disorders. Genome Res 2022; 32:1642-1654. [PMID: 36104286 PMCID: PMC9528985 DOI: 10.1101/gr.276591.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
Epigenetic regulation plays a critical role in many neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD). In particular, many such disorders are the result of mutations in genes that encode chromatin-modifying proteins. However, although these disorders share many features, it is unclear whether they also share gene expression disruptions resulting from the aberrant regulation of chromatin. We examined five chromatin modifiers that are all linked to ASD despite their different roles in regulating chromatin. Specifically, we depleted ASH1L, CHD8, CREBBP, EHMT1, and NSD1 in parallel in a highly controlled neuronal culture system. We then identified sets of shared genes, or transcriptional signatures, that are differentially expressed following loss of multiple ASD-linked chromatin modifiers. We examined the functions of genes within the transcriptional signatures and found an enrichment in many neurotransmitter transport genes and activity-dependent genes. In addition, these genes are enriched for specific chromatin features such as bivalent domains that allow for highly dynamic regulation of gene expression. The down-regulated transcriptional signature is also observed within multiple mouse models of NDDs that result in ASD, but not those only associated with intellectual disability. Finally, the down-regulated transcriptional signature can distinguish between control and idiopathic ASD patient iPSC-derived neurons as well as postmortem tissue, demonstrating that this gene set is relevant to the human disorder. This work identifies a transcriptional signature that is found within many neurodevelopmental syndromes, helping to elucidate the link between epigenetic regulation and the underlying cellular mechanisms that result in ASD.
Collapse
Affiliation(s)
- Samuel Thudium
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Katherine Palozola
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Éloïse L'Her
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Erica Korb
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
9
|
Transcriptomic analysis in the striatum reveals the involvement of Nurr1 in the social behavior of prenatally valproic acid-exposed male mice. Transl Psychiatry 2022; 12:324. [PMID: 35945212 PMCID: PMC9363495 DOI: 10.1038/s41398-022-02056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that exhibits neurobehavioral deficits characterized by abnormalities in social interactions, deficits in communication as well as restricted interests, and repetitive behaviors. The basal ganglia is one of the brain regions implicated as dysfunctional in ASD. In particular, the defects in corticostriatal function have been reported to be involved in the pathogenesis of ASD. Surface deformation of the striatum in the brains of patients with ASD and their correlation with behavioral symptoms was reported in magnetic resonance imaging (MRI) studies. We demonstrated that prenatal valproic acid (VPA) exposure induced synaptic and molecular changes and decreased neuronal activity in the striatum. Using RNA sequencing (RNA-Seq), we analyzed transcriptome alterations in striatal tissues from 10-week-old prenatally VPA-exposed BALB/c male mice. Among the upregulated genes, Nurr1 was significantly upregulated in striatal tissues from prenatally VPA-exposed mice. Viral knockdown of Nurr1 by shRNA significantly rescued the reduction in dendritic spine density and the number of mature dendritic spines in the striatum and markedly improved social deficits in prenatally VPA-exposed mice. In addition, treatment with amodiaquine, which is a known ligand for Nurr1, mimicked the social deficits and synaptic abnormalities in saline-exposed mice as observed in prenatally VPA-exposed mice. Furthermore, PatDp+/- mice, a commonly used ASD genetic mouse model, also showed increased levels of Nurr1 in the striatum. Taken together, these results suggest that the increase in Nurr1 expression in the striatum is a mechanism related to the changes in synaptic deficits and behavioral phenotypes of the VPA-induced ASD mouse model.
Collapse
|
10
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
McCready FP, Gordillo-Sampedro S, Pradeepan K, Martinez-Trujillo J, Ellis J. Multielectrode Arrays for Functional Phenotyping of Neurons from Induced Pluripotent Stem Cell Models of Neurodevelopmental Disorders. BIOLOGY 2022; 11:316. [PMID: 35205182 PMCID: PMC8868577 DOI: 10.3390/biology11020316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/11/2022]
Abstract
In vitro multielectrode array (MEA) systems are increasingly used as higher-throughput platforms for functional phenotyping studies of neurons in induced pluripotent stem cell (iPSC) disease models. While MEA systems generate large amounts of spatiotemporal activity data from networks of iPSC-derived neurons, the downstream analysis and interpretation of such high-dimensional data often pose a significant challenge to researchers. In this review, we examine how MEA technology is currently deployed in iPSC modeling studies of neurodevelopmental disorders. We first highlight the strengths of in vitro MEA technology by reviewing the history of its development and the original scientific questions MEAs were intended to answer. Methods of generating patient iPSC-derived neurons and astrocytes for MEA co-cultures are summarized. We then discuss challenges associated with MEA data analysis in a disease modeling context, and present novel computational methods used to better interpret network phenotyping data. We end by suggesting best practices for presenting MEA data in research publications, and propose that the creation of a public MEA data repository to enable collaborative data sharing would be of great benefit to the iPSC disease modeling community.
Collapse
Affiliation(s)
- Fraser P. McCready
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (F.P.M.); (S.G.-S.)
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sara Gordillo-Sampedro
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (F.P.M.); (S.G.-S.)
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kartik Pradeepan
- Department of Physiology and Pharmacology, Department of Psychiatry, Robarts Research and Brain and Mind Institutes, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada; (K.P.); (J.M.-T.)
| | - Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Department of Psychiatry, Robarts Research and Brain and Mind Institutes, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5B7, Canada; (K.P.); (J.M.-T.)
| | - James Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; (F.P.M.); (S.G.-S.)
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
12
|
Larizza L, Calzari L, Alari V, Russo S. Genes for RNA-binding proteins involved in neural-specific functions and diseases are downregulated in Rubinstein-Taybi iNeurons. Neural Regen Res 2022; 17:5-14. [PMID: 34100419 PMCID: PMC8451555 DOI: 10.4103/1673-5374.314286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Taking advantage of the fast-growing knowledge of RNA-binding proteins (RBPs) we review the signature of downregulated genes for RBPs in the transcriptome of induced pluripotent stem cell neurons (iNeurons) modelling the neurodevelopmental Rubinstein Taybi Syndrome (RSTS) caused by mutations in the genes encoding CBP/p300 acetyltransferases. We discuss top and functionally connected downregulated genes sorted to “RNA processing” and “Ribonucleoprotein complex biogenesis” Gene Ontology clusters. The first set of downregulated RBPs includes members of hnRNHP (A1, A2B1, D, G, H2-H1, MAGOHB, PAPBC), core subunits of U small nuclear ribonucleoproteins and Serine-Arginine splicing regulators families, acting in precursor messenger RNA alternative splicing and processing. Consistent with literature findings on reduced transcript levels of serine/arginine repetitive matrix 4 (SRRM4) protein, the main regulator of the neural-specific microexons splicing program upon depletion of Ep300 and Crebbp in mouse neurons, RSTS iNeurons show downregulated genes for proteins impacting this network. We link downregulated genes to neurological disorders including the new HNRNPH1-related intellectual disability syndrome with clinical overlap to RSTS. The set of downregulated genes for Ribosome biogenesis includes several components of ribosomal subunits and nucleolar proteins, such NOP58 and fibrillarin that form complexes with snoRNAs with a central role in guiding post-transcriptional modifications needed for rRNA maturation. These nucleolar proteins are “dual” players as fibrillarin is also required for epigenetic regulation of ribosomal genes and conversely NOP58-associated snoRNA levels are under the control of NOP58 interactor BMAL1, a transcriptional regulator of the circadian rhythm. Additional downregulated genes for “dual specificity” RBPs such as RUVBL1 and METTL1 highlight the links between chromatin and the RBP-ome and the contribution of perturbations in their cross-talk to RSTS. We underline the hub position of CBP/p300 in chromatin regulation, the impact of its defect on neurons’ post-transcriptional regulation of gene expression and the potential use of epidrugs in therapeutics of RBP-caused neurodevelopmental disorders.
Collapse
Affiliation(s)
- Lidia Larizza
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Luciano Calzari
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Valentina Alari
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| | - Silvia Russo
- Cytogenetics and Molecular Genetics Laboratory, IRCCS Istituto Auxologico Italiano, Milano, Italy
| |
Collapse
|
13
|
Kanlayaprasit S, Thongkorn S, Panjabud P, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Autism-Related Transcription Factors Underlying the Sex-Specific Effects of Prenatal Bisphenol A Exposure on Transcriptome-Interactome Profiles in the Offspring Prefrontal Cortex. Int J Mol Sci 2021; 22:13201. [PMID: 34947998 PMCID: PMC8708761 DOI: 10.3390/ijms222413201] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/16/2022] Open
Abstract
Bisphenol A (BPA) is an environmental risk factor for autism spectrum disorder (ASD). BPA exposure dysregulates ASD-related genes in the hippocampus and neurological functions of offspring. However, whether prenatal BPA exposure has an impact on genes in the prefrontal cortex, another brain region highly implicated in ASD, and through what mechanisms have not been investigated. Here, we demonstrated that prenatal BPA exposure disrupts the transcriptome-interactome profiles of the prefrontal cortex of neonatal rats. Interestingly, the list of BPA-responsive genes was significantly enriched with known ASD candidate genes, as well as genes that were dysregulated in the postmortem brain tissues of ASD cases from multiple independent studies. Moreover, several differentially expressed genes in the offspring's prefrontal cortex were the targets of ASD-related transcription factors, including AR, ESR1, and RORA. The hypergeometric distribution analysis revealed that BPA may regulate the expression of such genes through these transcription factors in a sex-dependent manner. The molecular docking analysis of BPA and ASD-related transcription factors revealed novel potential targets of BPA, including RORA, SOX5, TCF4, and YY1. Our findings indicated that prenatal BPA exposure disrupts ASD-related genes in the offspring's prefrontal cortex and may increase the risk of ASD through sex-dependent molecular mechanisms, which should be investigated further.
Collapse
Grants
- FRB65_hea(80)_175_37_05 Fundamental Fund, Chulalongkorn University
- AHS-CU 61004 Faculty of Allied Health Sciences Research Fund, Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship, Graduate School, Chulalongkorn University
- The Overseas Research Experience Scholarship for Graduate Students from Graduate School, Chulalongkorn University
- PHD/0029/2561 The Royal Golden Jubilee Ph.D. Programme Scholarship, Thailand Research Fund and National Research Council of Thailand
- National Research Council of Thailand (NRCT)
- GCUGR1125623067D-67 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- 2073011 Chulalongkorn University Laboratory Animal Center (CULAC) Grant
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Surangrat Thongkorn
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.K.); (S.T.); (P.P.)
| | - Depicha Jindatip
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Valerie W. Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
| | - Takako Kikkawa
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai 980-8577, Miyagi, Japan; (T.K.); (N.O.)
| | - Tewarit Sarachana
- Systems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| |
Collapse
|
14
|
Caracci MO, Avila ME, Espinoza-Cavieres FA, López HR, Ugarte GD, De Ferrari GV. Wnt/β-Catenin-Dependent Transcription in Autism Spectrum Disorders. Front Mol Neurosci 2021; 14:764756. [PMID: 34858139 PMCID: PMC8632544 DOI: 10.3389/fnmol.2021.764756] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASD) is a heterogeneous group of neurodevelopmental disorders characterized by synaptic dysfunction and defects in dendritic spine morphology. In the past decade, an extensive list of genes associated with ASD has been identified by genome-wide sequencing initiatives. Several of these genes functionally converge in the regulation of the Wnt/β-catenin signaling pathway, a conserved cascade essential for stem cell pluripotency and cell fate decisions during development. Here, we review current information regarding the transcriptional program of Wnt/β-catenin signaling in ASD. First, we discuss that Wnt/β-catenin gain and loss of function studies recapitulate brain developmental abnormalities associated with ASD. Second, transcriptomic approaches using patient-derived induced pluripotent stem cells (iPSC) cells, featuring mutations in high confidence ASD genes, reveal a significant dysregulation in the expression of Wnt signaling components. Finally, we focus on the activity of chromatin-remodeling proteins and transcription factors considered high confidence ASD genes, including CHD8, ARID1B, ADNP, and TBR1, that regulate Wnt/β-catenin-dependent transcriptional activity in multiple cell types, including pyramidal neurons, interneurons and oligodendrocytes, cells which are becoming increasingly relevant in the study of ASD. We conclude that the level of Wnt/β-catenin signaling activation could explain the high phenotypical heterogeneity of ASD and be instrumental in the development of new diagnostics tools and therapies.
Collapse
Affiliation(s)
- Mario O. Caracci
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Miguel E. Avila
- Faculty of Veterinary Medicine and Agronomy, Nucleus of Applied Research in Veterinary and Agronomic Sciences (NIAVA), Institute of Natural Sciences, Universidad de Las Américas, Santiago, Chile
| | - Francisca A. Espinoza-Cavieres
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Héctor R. López
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giorgia D. Ugarte
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| | - Giancarlo V. De Ferrari
- Faculty of Medicine, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
- Faculty of Life Sciences, Institute of Biomedical Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
15
|
Meganathan K, Prakasam R, Baldridge D, Gontarz P, Zhang B, Urano F, Bonni A, Maloney SE, Turner TN, Huettner JE, Constantino JN, Kroll KL. Altered neuronal physiology, development, and function associated with a common chromosome 15 duplication involving CHRNA7. BMC Biol 2021; 19:147. [PMID: 34320968 PMCID: PMC8317352 DOI: 10.1186/s12915-021-01080-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Ramachandran Prakasam
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Paul Gontarz
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Bo Zhang
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Susan E. Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Tychele N. Turner
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James E. Huettner
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - John N. Constantino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Kristen L. Kroll
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Avenue, Campus, Box 8103, St. Louis, MO 63110 USA
| |
Collapse
|
16
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Protein Phosphorylation Signaling Cascades in Autism: The Role of mTOR Pathway. BIOCHEMISTRY (MOSCOW) 2021; 86:577-596. [PMID: 33993859 DOI: 10.1134/s0006297921050072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is a central regulator of cell metabolism, growth, and survival in response to hormones, growth factors, nutrients, and stress-induced signals. In this review, we analyzed the studies on the molecular abnormalities of the mTOR-associated signaling cascades in autism spectrum disorders (ASDs) and outlined the prospects for the pathogenicity-targeting pharmacotherapeutic approaches to ASDs, in particular syndromic ASDs. Based on available experimental and clinical data, we suggest that very early detection of molecular abnormalities in the ASD risk groups can be facilitated by using peripheral blood platelets. Also, identification of the time window of critical dysregulations in the described pathways in the ASD risk groups might suggest further research directions leading to more efficacious pharmacotherapeutic interventions in ASDs.
Collapse
Affiliation(s)
- Irina S Boksha
- Mental Health Research Center, Moscow, 115522, Russia. .,Gamaleya Research Center of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | | | | | | | | |
Collapse
|
17
|
Frei JA, Niescier RF, Bridi MS, Durens M, Nestor JE, Kilander MBC, Yuan X, Dykxhoorn DM, Nestor MW, Huang S, Blatt GJ, Lin YC. Regulation of Neural Circuit Development by Cadherin-11 Provides Implications for Autism. eNeuro 2021; 8:ENEURO.0066-21.2021. [PMID: 34135003 PMCID: PMC8266214 DOI: 10.1523/eneuro.0066-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 01/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurologic condition characterized by alterations in social interaction and communication, and restricted and/or repetitive behaviors. The classical Type II cadherins cadherin-8 (Cdh8, CDH8) and cadherin-11 (Cdh11, CDH11) have been implicated as autism risk gene candidates. To explore the role of cadherins in the etiology of autism, we investigated their expression patterns during mouse brain development and in autism-specific human tissue. In mice, expression of cadherin-8 and cadherin-11 was developmentally regulated and enriched in the cortex, hippocampus, and thalamus/striatum during the peak of dendrite formation and synaptogenesis. Both cadherins were expressed in synaptic compartments but only cadherin-8 associated with the excitatory synaptic marker neuroligin-1. Induced pluripotent stem cell (iPSC)-derived cortical neural precursor cells (NPCs) and cortical organoids generated from individuals with autism showed upregulated CDH8 expression levels, but downregulated CDH11. We used Cdh11 knock-out (KO) mice of both sexes to analyze the function of cadherin-11, which could help explain phenotypes observed in autism. Cdh11-/- hippocampal neurons exhibited increased dendritic complexity along with altered neuronal and synaptic activity. Similar to the expression profiles in human tissue, levels of cadherin-8 were significantly elevated in Cdh11 KO brains. Additionally, excitatory synaptic markers neuroligin-1 and postsynaptic density (PSD)-95 were both increased. Together, these results strongly suggest that cadherin-11 is involved in regulating the development of neuronal circuitry and that alterations in the expression levels of cadherin-11 may contribute to the etiology of autism.
Collapse
Affiliation(s)
- Jeannine A Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Madel Durens
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Jonathan E Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | | | - Xiaobing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Derek M Dykxhoorn
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Michael W Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Gene J Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201
| |
Collapse
|
18
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021. [PMID: 34169527 DOI: 10.1111/jnc.15081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes. Cover Image for this issue: https://doi.org/10.1111/jnc.15081.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
19
|
Gozal E, Jagadapillai R, Cai J, Barnes GN. Potential crosstalk between sonic hedgehog-WNT signaling and neurovascular molecules: Implications for blood-brain barrier integrity in autism spectrum disorder. J Neurochem 2021; 159:15-28. [PMID: 34169527 DOI: 10.1111/jnc.15460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/20/2021] [Indexed: 12/19/2022]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disease originating from combined genetic and environmental factors. Post-mortem human studies and some animal ASD models have shown brain neuroinflammation, oxidative stress, and changes in blood-brain barrier (BBB) integrity. However, the signaling pathways leading to these inflammatory findings and vascular alterations are currently unclear. The BBB plays a critical role in controlling brain homeostasis and immune response. Its dysfunction can result from developmental genetic abnormalities or neuroinflammatory processes. In this review, we explore the role of the Sonic Hedgehog/Wingless-related integration site (Shh/Wnt) pathways in neurodevelopment, neuroinflammation, and BBB development. The balance between Wnt-β-catenin and Shh pathways controls angiogenesis, barriergenesis, neurodevelopment, central nervous system (CNS) morphogenesis, and neuronal guidance. These interactions are critical to maintain BBB function in the mature CNS to prevent the influx of pathogens and inflammatory cells. Genetic mutations of key components of these pathways have been identified in ASD patients and animal models, which correlate with the severity of ASD symptoms. Disruption of the Shh/Wnt crosstalk may therefore compromise BBB development and function. In turn, impaired Shh signaling and glial activation may cause neuroinflammation that could disrupt the BBB. Elucidating how ASD-related mutations of Shh/Wnt signaling could cause BBB leaks and neuroinflammation will contribute to our understanding of the role of their interactions in ASD pathophysiology. These observations may provide novel targeted therapeutic strategies to prevent or alleviate ASD symptoms while preserving normal developmental processes.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Rekha Jagadapillai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville, Louisville, KY, USA.,Department of Neurology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
20
|
Frei JA, Brandenburg CJ, Nestor JE, Hodzic DM, Plachez C, McNeill H, Dykxhoorn DM, Nestor MW, Blatt GJ, Lin YC. Postnatal expression profiles of atypical cadherin FAT1 suggest its role in autism. Biol Open 2021; 10:bio056457. [PMID: 34100899 PMCID: PMC8214424 DOI: 10.1242/bio.056457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Genetic studies have linked FAT1 (FAT atypical cadherin 1) with autism spectrum disorder (ASD); however, the role that FAT1 plays in ASD remains unknown. In mice, the function of Fat1 has been primarily implicated in embryonic nervous system development with less known about its role in postnatal development. We show for the first time that FAT1 protein is expressed in mouse postnatal brains and is enriched in the cerebellum, where it localizes to granule neurons and Golgi cells in the granule layer, as well as inhibitory neurons in the molecular layer. Furthermore, subcellular characterization revealed FAT1 localization in neurites and soma of granule neurons, as well as being present in the synaptic plasma membrane and postsynaptic densities. Interestingly, FAT1 expression was decreased in induced pluripotent stem cell (iPSC)-derived neural precursor cells (NPCs) from individuals with ASD. These findings suggest a novel role for FAT1 in postnatal development and may be particularly important for cerebellum function. As the cerebellum is one of the vulnerable brain regions in ASD, our study warrants further investigation of FAT1 in the disease etiology.
Collapse
Affiliation(s)
- Jeannine A. Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Cheryl J. Brandenburg
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
- Graduate Program in Neuroscience, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan E. Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Didier M. Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Celine Plachez
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Derek M. Dykxhoorn
- Hussman Institute for Human Genomics and John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | - Michael W. Nestor
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Gene J. Blatt
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201, USA
| |
Collapse
|
21
|
Mullegama SV, Klein SD, Williams SR, Innis JW, Probst FJ, Haldeman-Englert C, Martinez-Agosto JA, Yang Y, Tian Y, Elsea SH, Ezashi T. Transcriptome analysis of MBD5-associated neurodevelopmental disorder (MAND) neural progenitor cells reveals dysregulation of autism-associated genes. Sci Rep 2021; 11:11295. [PMID: 34050248 PMCID: PMC8163803 DOI: 10.1038/s41598-021-90798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 04/20/2021] [Indexed: 11/30/2022] Open
Abstract
MBD5-associated neurodevelopmental disorder (MAND) is an autism spectrum disorder (ASD) characterized by intellectual disability, motor delay, speech impairment and behavioral problems; however, the biological role of methyl-CpG-binding domain 5, MBD5, in neurodevelopment and ASD remains largely undefined. Hence, we created neural progenitor cells (NPC) derived from individuals with chromosome 2q23.1 deletion and conducted RNA-seq to identify differentially expressed genes (DEGs) and the biological processes and pathways altered in MAND. Primary skin fibroblasts from three unrelated individuals with MAND and four unrelated controls were converted into induced pluripotent stem cell (iPSC) lines, followed by directed differentiation of iPSC to NPC. Transcriptome analysis of MAND NPC revealed 468 DEGs (q < 0.05), including 20 ASD-associated genes. Comparison of DEGs in MAND with SFARI syndromic autism genes revealed a striking significant overlap in biological processes commonly altered in neurodevelopmental phenotypes, with TGFβ, Hippo signaling, DNA replication, and cell cycle among the top enriched pathways. Overall, these transcriptome deviations provide potential connections to the overlapping neurocognitive and neuropsychiatric phenotypes associated with key high-risk ASD genes, including chromatin modifiers and epigenetic modulators, that play significant roles in these disease states.
Collapse
Affiliation(s)
- Sureni V Mullegama
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Department of Molecular and Cellular Biology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, 77304, USA
| | - Steven D Klein
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Medical Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | - Jeffrey W Innis
- Departments of Human Genetics, Pediatrics and Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Frank J Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | | | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ying Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33612, USA
| | - Yuchen Tian
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Toshihiko Ezashi
- Division of Animal Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
22
|
Imbalance of Excitatory/Inhibitory Neuron Differentiation in Neurodevelopmental Disorders with an NR2F1 Point Mutation. Cell Rep 2021; 31:107521. [PMID: 32320667 DOI: 10.1016/j.celrep.2020.03.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/13/2019] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
Recent studies have revealed an essential role for embryonic cortical development in the pathophysiology of neurodevelopmental disorders, including autism spectrum disorder (ASD). However, the genetic basis and underlying mechanisms remain unclear. Here, we generate mutant human embryonic stem cell lines (Mut hESCs) carrying an NR2F1-R112K mutation that has been identified in a patient with ASD features and investigate their neurodevelopmental alterations. Mut hESCs overproduce ventral telencephalic neuron progenitors (ventral NPCs) and underproduce dorsal NPCs, causing the imbalance of excitatory/inhibitory neurons. These alterations can be mainly attributed to the aberrantly activated Hedgehog signaling pathway. Moreover, the corresponding Nr2f1 point-mutant mice display a similar excitatory/inhibitory neuron imbalance and abnormal behaviors. Antagonizing the increased inhibitory synaptic transmission partially alleviates their behavioral deficits. Together, our results suggest that the NR2F1-dependent imbalance of excitatory/inhibitory neuron differentiation caused by the activated Hedgehog pathway is one precursor of neurodevelopmental disorders and may enlighten the therapeutic approaches.
Collapse
|
23
|
Griesi-Oliveira K, Fogo MS, Pinto BGG, Alves AY, Suzuki AM, Morales AG, Ezquina S, Sosa OJ, Sutton GJ, Sunaga-Franze DY, Bueno AP, Seabra G, Sardinha L, Costa SS, Rosenberg C, Zachi EC, Sertie AL, Martins-de-Souza D, Reis EM, Voineagu I, Passos-Bueno MR. Transcriptome of iPSC-derived neuronal cells reveals a module of co-expressed genes consistently associated with autism spectrum disorder. Mol Psychiatry 2021; 26:1589-1605. [PMID: 32060413 PMCID: PMC8159745 DOI: 10.1038/s41380-020-0669-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/11/2019] [Accepted: 01/28/2020] [Indexed: 01/02/2023]
Abstract
Evaluation of expression profile in autism spectrum disorder (ASD) patients is an important approach to understand possible similar functional consequences that may underlie disease pathophysiology regardless of its genetic heterogeneity. Induced pluripotent stem cell (iPSC)-derived neuronal models have been useful to explore this question, but larger cohorts and different ASD endophenotypes still need to be investigated. Moreover, whether changes seen in this in vitro model reflect previous findings in ASD postmortem brains and how consistent they are across the studies remain underexplored questions. We examined the transcriptome of iPSC-derived neuronal cells from a normocephalic ASD cohort composed mostly of high-functioning individuals and from non-ASD individuals. ASD patients presented expression dysregulation of a module of co-expressed genes involved in protein synthesis in neuronal progenitor cells (NPC), and a module of genes related to synapse/neurotransmission and a module related to translation in neurons. Proteomic analysis in NPC revealed potential molecular links between the modules dysregulated in NPC and in neurons. Remarkably, the comparison of our results to a series of transcriptome studies revealed that the module related to synapse has been consistently found as upregulated in iPSC-derived neurons-which has an expression profile more closely related to fetal brain-while downregulated in postmortem brain tissue, indicating a reliable association of this network to the disease and suggesting that its dysregulation might occur in different directions across development in ASD individuals. Therefore, the expression pattern of this network might be used as biomarker for ASD and should be experimentally explored as a therapeutic target.
Collapse
Affiliation(s)
- K Griesi-Oliveira
- Hospital Israelita Albert Einstein, São Paulo, Brazil.
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| | - M S Fogo
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - B G G Pinto
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - A Y Alves
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - A M Suzuki
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - A G Morales
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - S Ezquina
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - O J Sosa
- Programa Interunidades de Pós-Graduação em Bioinformática, Universidade de São Paulo, São Paulo, Brazil
| | - G J Sutton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - D Y Sunaga-Franze
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - A P Bueno
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - G Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - L Sardinha
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - S S Costa
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - C Rosenberg
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - E C Zachi
- Núcleo de Neurociências e Comportamento, Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| | - A L Sertie
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - D Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), São Paulo, Brazil
- Experimental Medicine Research Cluster (EMC), University of Campinas, Campinas, Brazil
| | - E M Reis
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - I Voineagu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - M R Passos-Bueno
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Schafer ST, Gage FH. The When and Where: Molecular and Cellular Convergence in Autism. Biol Psychiatry 2021; 89:419-420. [PMID: 33541523 DOI: 10.1016/j.biopsych.2020.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Simon T Schafer
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California.
| |
Collapse
|
25
|
Pintacuda G, Martín JM, Eggan KC. Mind the translational gap: using iPS cell models to bridge from genetic discoveries to perturbed pathways and therapeutic targets. Mol Autism 2021; 12:10. [PMID: 33557935 PMCID: PMC7869517 DOI: 10.1186/s13229-021-00417-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by impaired social interactions as well as the presentation of restrictive and repetitive behaviors. ASD is highly heritable but genetically heterogenous with both common and rare genetic variants collaborating to predispose individuals to the disorder. In this review, we synthesize recent efforts to develop human induced pluripotent stem cell (iPSC)-derived models of ASD-related phenotypes. We firstly address concerns regarding the relevance and validity of available neuronal iPSC-derived models. We then critically evaluate the robustness of various differentiation and cell culture protocols used for producing cell types of relevance to ASD. By exploring iPSC models of ASD reported thus far, we examine to what extent cellular and neuronal phenotypes with potential relevance to ASD can be linked to genetic variants found to underlie it. Lastly, we outline promising strategies by which iPSC technology can both enhance the power of genetic studies to identify ASD risk factors and nominate pathways that are disrupted across groups of ASD patients that might serve as common points for therapeutic intervention.
Collapse
Affiliation(s)
- Greta Pintacuda
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Jacqueline M Martín
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kevin C Eggan
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
26
|
Griesi-Oliveira K, Passos-Bueno MR. Reply to Lombardo, 2020: An additional route of investigation: what are the mechanisms controlling ribosomal protein genes dysregulation in autistic neuronal cells? Mol Psychiatry 2021; 26:1436-1437. [PMID: 32467646 PMCID: PMC8159728 DOI: 10.1038/s41380-020-0792-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 02/04/2023]
Affiliation(s)
| | - Maria Rita Passos-Bueno
- grid.11899.380000 0004 1937 0722Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
27
|
Reilly J, Gallagher L, Leader G, Shen S. Coupling of autism genes to tissue-wide expression and dysfunction of synapse, calcium signalling and transcriptional regulation. PLoS One 2020; 15:e0242773. [PMID: 33338084 PMCID: PMC7748153 DOI: 10.1371/journal.pone.0242773] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied with many co-morbidities. Recent genetic studies have identified various pathways from hundreds of candidate risk genes with varying levels of association to ASD. However, it is unknown which pathways are specific to the core symptoms or which are shared by the co-morbidities. We hypothesised that critical ASD candidates should appear widely across different scoring systems, and that comorbidity pathways should be constituted by genes expressed in the relevant tissues. We analysed the Simons Foundation for Autism Research Initiative (SFARI) database and four independently published scoring systems and identified 292 overlapping genes. We examined their mRNA expression using the Genotype-Tissue Expression (GTEx) database and validated protein expression levels using the human protein atlas (HPA) dataset. This led to clustering of the overlapping ASD genes into 2 groups; one with 91 genes primarily expressed in the central nervous system (CNS geneset) and another with 201 genes expressed in both CNS and peripheral tissues (CNS+PT geneset). Bioinformatic analyses showed a high enrichment of CNS development and synaptic transmission in the CNS geneset, and an enrichment of synapse, chromatin remodelling, gene regulation and endocrine signalling in the CNS+PT geneset. Calcium signalling and the glutamatergic synapse were found to be highly interconnected among pathways in the combined geneset. Our analyses demonstrate that 2/3 of ASD genes are expressed beyond the brain, which may impact peripheral function and involve in ASD co-morbidities, and relevant pathways may be explored for the treatment of ASD co-morbidities.
Collapse
Affiliation(s)
- Jamie Reilly
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- * E-mail: (JR); (SS)
| | - Louise Gallagher
- Discipline of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences—Trinity College Dublin, St. James’s Hospital, Dublin, Ireland
| | - Geraldine Leader
- Irish Centre for Autism and Neurodevelopmental Research (ICAN), Department of Psychology, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute, School of Medicine, Biomedical Science Building, National University of Ireland (NUI) Galway, Galway, Ireland
- FutureNeuro Research Centre, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
- * E-mail: (JR); (SS)
| |
Collapse
|
28
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
29
|
Stock R, Jeckel P, Kraushaar U, Wüst R, Fallgatter A, Volkmer H. The potential of induced pluripotent stem cells for discriminating neurodevelopmental disorders. Stem Cells Transl Med 2020; 10:50-56. [PMID: 32864861 PMCID: PMC7780807 DOI: 10.1002/sctm.20-0206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Studying human disease‐specific processes and mechanisms in vitro is limited by a lack of valid human test systems. Induced pluripotent stem cells (iPSCs) evolve as an important and promising tool to better understand the molecular pathology of neurodevelopmental disorders. Patient‐derived iPSCs enable analysis of unique disease mechanisms and may also serve for preclinical drug development. Here, we review the current knowledge on iPSC models for schizophrenia and autism spectrum disorders with emphasis on the discrimination between them. It appears that transcriptomic analyses and functional read‐outs are the most promising approaches to uncover specific disease mechanisms in vitro.
Collapse
Affiliation(s)
- Ricarda Stock
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Pauline Jeckel
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Udo Kraushaar
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Richard Wüst
- Department of Psychiatry, University of Tübingen, Tübingen, Germany
| | | | - Hansjürgen Volkmer
- Department of Molecular Biology, NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
30
|
Transcriptome Analysis of iPSC-Derived Neurons from Rubinstein-Taybi Patients Reveals Deficits in Neuronal Differentiation. Mol Neurobiol 2020; 57:3685-3701. [PMID: 32562237 PMCID: PMC7399686 DOI: 10.1007/s12035-020-01983-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare multisystem developmental disorder with moderate to severe intellectual disability caused by heterozygous mutations of either CREBBP or EP300 genes encoding CBP/p300 chromatin regulators. We explored the gene programs and processes underlying the morphological and functional alterations shown by iPSC-derived neurons modeling RSTS to bridge the molecular changes resulting from defective CBP/p300 to cognitive impairment. By global transcriptome analysis, we compared the differentially expressed genes (DEGs) marking the transition from iPSC-derived neural progenitors to cortical neurons (iNeurons) of five RSTS patients carrying private CREBBP/EP300 mutations and manifesting differently graded neurocognitive signs with those of four healthy controls. Our data shows a defective and altered neuroprogenitor to neuron transcriptional program in the cells from RSTS patients. First, transcriptional regulation is weaker in RSTS as less genes than in controls are modulated, including genes of key processes of mature functional neurons, such as those for voltage-gated channels and neurotransmitters and their receptors. Second, regulation is subverted as genes acting at pre-terminal stages of neural differentiation in cell polarity and adhesive functions (members of the cadherin family) and axon extension/guidance (members of the semaphorins and SLIT receptors families) are improperly upregulated. Impairment or delay of RSTS neuronal differentiation program is also evidenced by decreased modulation of the overall number of neural differentiation markers, significantly impacting the initial and final stages of the differentiation cascade. Last, extensive downregulation of genes for RNA/DNA metabolic processes confirms that RSTS is a global transcription disorder, consistent with a syndrome driven by chromatin dysregulation. Interestingly, the morphological and functional alterations we have previously appointed as biomarkers of RSTS iNeurons provide functional support to the herein designed transcriptome profile pointing to key dysregulated neuronal genes as main contributors to patients’ cognitive deficit. The impact of RSTS transcriptome may go beyond RSTS as comparison of dysregulated genes across modeled neurodevelopmental disorders could unveil convergent genes of cognitive impairment.
Collapse
|
31
|
Drakulic D, Djurovic S, Syed YA, Trattaro S, Caporale N, Falk A, Ofir R, Heine VM, Chawner SJRA, Rodriguez-Moreno A, van den Bree MBM, Testa G, Petrakis S, Harwood AJ. Copy number variants (CNVs): a powerful tool for iPSC-based modelling of ASD. Mol Autism 2020; 11:42. [PMID: 32487215 PMCID: PMC7268297 DOI: 10.1186/s13229-020-00343-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Patients diagnosed with chromosome microdeletions or duplications, known as copy number variants (CNVs), present a unique opportunity to investigate the relationship between patient genotype and cell phenotype. CNVs have high genetic penetrance and give a good correlation between gene locus and patient clinical phenotype. This is especially effective for the study of patients with neurodevelopmental disorders (NDD), including those falling within the autism spectrum disorders (ASD). A key question is whether this correlation between genetics and clinical presentation at the level of the patient can be translated to the cell phenotypes arising from the neurodevelopment of patient induced pluripotent stem cells (iPSCs).Here, we examine how iPSCs derived from ASD patients with an associated CNV inform our understanding of the genetic and biological mechanisms underlying the aetiology of ASD. We consider selection of genetically characterised patient iPSCs; use of appropriate control lines; aspects of human neurocellular biology that can capture in vitro the patient clinical phenotype; and current limitations of patient iPSC-based studies. Finally, we consider how future research may be enhanced to maximise the utility of CNV patients for research of pathological mechanisms or therapeutic targets.
Collapse
Affiliation(s)
- Danijela Drakulic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, 11042 Belgrade, 152, Serbia
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
- NORMENT, Department of Clinical Science, University of Bergen, 5007, Bergen, Norway
| | - Yasir Ahmed Syed
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Sebastiano Trattaro
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Nicolò Caporale
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Rivka Ofir
- BGU-iPSC Core Facility, The Regenerative Medicine & Stem Cell (RMSC) Research Center, Ben Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Vivi M Heine
- Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Child and Youth Psychiatry, Emma Children's Hospital, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081, Amsterdam, The Netherlands
| | - Samuel J R A Chawner
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Antonio Rodriguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Ctra. de Utrera, Km 1, 41013, Seville, Spain
| | - Marianne B M van den Bree
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Giuseppe Testa
- Laboratory of Stem Cell Epigenetics, IEO, European Institute of Oncology, IRCCS, 20146, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, Via Cristina Belgioioso 171, 20157, Milan, Italy
| | - Spyros Petrakis
- Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece.
| | - Adrian J Harwood
- Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
32
|
Park DI. Genomics, transcriptomics, proteomics and big data analysis in the discovery of new diagnostic markers and targets for therapy development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 173:61-90. [PMID: 32711818 DOI: 10.1016/bs.pmbts.2020.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly complex endophenotypes and underlying molecular mechanisms have prevented effective diagnosis and treatment of autism spectrum disorder. Despite extensive studies to identify relevant biosignatures, no biomarker and therapeutic targets are available in the current clinical practice. While our current knowledge is still largely incomplete, -omics technology and machine learning-based big data analysis have provided novel insights on the etiology of autism spectrum disorders, elucidating systemic impairments that can be translated into biomarker and therapy target candidates. However, more integrated and sophisticated approaches are vital to realize molecular stratification and individualized treatment strategy. Ultimately, systemic approaches based on -omics and big data analysis will significantly contribute to more effective biomarker and therapy development for autism spectrum disorder.
Collapse
Affiliation(s)
- Dong Ik Park
- Danish Research Institute of Translational Neuroscience (DANDRITE)-Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Danish National Research Foundation Center, PROMEMO, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
33
|
Courchesne E, Gazestani VH, Lewis NE. Prenatal Origins of ASD: The When, What, and How of ASD Development. Trends Neurosci 2020; 43:326-342. [PMID: 32353336 PMCID: PMC7373219 DOI: 10.1016/j.tins.2020.03.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/28/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a largely heritable, multistage prenatal disorder that impacts a child's ability to perceive and react to social information. Most ASD risk genes are expressed prenatally in many ASD-relevant brain regions and fall into two categories: broadly expressed regulatory genes that are expressed in the brain and other organs, and brain-specific genes. In trimesters one to three (Epoch-1), one set of broadly expressed (the majority) and brain-specific risk genes disrupts cell proliferation, neurogenesis, migration, and cell fate, while in trimester three and early postnatally (Epoch-2) another set (the majority being brain specific) disrupts neurite outgrowth, synaptogenesis, and the 'wiring' of the cortex. A proposed model is that upstream, highly interconnected regulatory ASD gene mutations disrupt transcriptional programs or signaling pathways resulting in dysregulation of downstream processes such as proliferation, neurogenesis, synaptogenesis, and neural activity. Dysregulation of signaling pathways is correlated with ASD social symptom severity. Since the majority of ASD risk genes are broadly expressed, many ASD individuals may benefit by being treated as having a broader medical disorder. An important future direction is the noninvasive study of ASD cell biology.
Collapse
Affiliation(s)
- Eric Courchesne
- Department of Neuroscience, University of California, San Diego, San Diego, CA 92093, USA; Autism Center of Excellence, University of California, San Diego, San Diego, CA 92037, USA.
| | - Vahid H Gazestani
- Department of Neuroscience, University of California, San Diego, San Diego, CA 92093, USA; Autism Center of Excellence, University of California, San Diego, San Diego, CA 92037, USA; Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, San Diego, CA 92093, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA 92093, USA
| |
Collapse
|
34
|
Murtaza N, Uy J, Singh KK. Emerging proteomic approaches to identify the underlying pathophysiology of neurodevelopmental and neurodegenerative disorders. Mol Autism 2020; 11:27. [PMID: 32317014 PMCID: PMC7171839 DOI: 10.1186/s13229-020-00334-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Proteomics is the large-scale study of the total protein content and their overall function within a cell through multiple facets of research. Advancements in proteomic methods have moved past the simple quantification of proteins to the identification of post-translational modifications (PTMs) and the ability to probe interactions between these proteins, spatially and temporally. Increased sensitivity and resolution of mass spectrometers and sample preparation protocols have drastically reduced the large amount of cells required and the experimental variability that had previously hindered its use in studying human neurological disorders. Proteomics offers a new perspective to study the altered molecular pathways and networks that are associated with autism spectrum disorders (ASD). The differences between the transcriptome and proteome, combined with the various types of post-translation modifications that regulate protein function and localization, highlight a novel level of research that has not been appropriately investigated. In this review, we will discuss strategies using proteomics to study ASD and other neurological disorders, with a focus on how these approaches can be combined with induced pluripotent stem cell (iPSC) studies. Proteomic analysis of iPSC-derived neurons have already been used to measure changes in the proteome caused by patient mutations, analyze changes in PTMs that resulted in altered biological pathways, and identify potential biomarkers. Further advancements in both proteomic techniques and human iPSC differentiation protocols will continue to push the field towards better understanding ASD disease pathophysiology. Proteomics using iPSC-derived neurons from individuals with ASD offers a window for observing the altered proteome, which is necessary in the future development of therapeutics against specific targets.
Collapse
Affiliation(s)
- Nadeem Murtaza
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Jarryll Uy
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Karun K Singh
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada.
| |
Collapse
|
35
|
Gordon A, Geschwind DH. Human in vitro models for understanding mechanisms of autism spectrum disorder. Mol Autism 2020; 11:26. [PMID: 32299488 PMCID: PMC7164291 DOI: 10.1186/s13229-020-00332-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Early brain development is a critical epoch for the development of autism spectrum disorder (ASD). In vivo animal models have, until recently, been the principal tool used to study early brain development and the changes occurring in neurodevelopmental disorders such as ASD. In vitro models of brain development represent a significant advance in the field. Here, we review the main methods available to study human brain development in vitro and the applications of these models for studying ASD and other psychiatric disorders. We discuss the main findings from stem cell models to date focusing on cell cycle and proliferation, cell death, cell differentiation and maturation, and neuronal signaling and synaptic stimuli. To be able to generalize the results from these studies, we propose a framework of experimental design and power considerations for using in vitro models to study ASD. These include both technical issues such as reproducibility and power analysis and conceptual issues such as the brain region and cell types being modeled.
Collapse
Affiliation(s)
- Aaron Gordon
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Nehme R, Barrett LE. Using human pluripotent stem cell models to study autism in the era of big data. Mol Autism 2020; 11:21. [PMID: 32293529 PMCID: PMC7087382 DOI: 10.1186/s13229-020-00322-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Advances in human pluripotent stem cell (hPSC) biology coupled with protocols to generate diverse brain cell types in vitro have provided neuroscientists with opportunities to dissect basic and disease mechanisms in increasingly relevant cellular substrates. At the same time, large data collections and analyses have facilitated unprecedented insights into autism genetics, normal human genetic variation, and the molecular landscape of the developing human brain. While such insights have enabled the investigation of key mechanistic questions in autism, they also highlight important limitations associated with the use of existing hPSC models. In this review, we discuss four such issues which influence the efficacy of hPSC models for studying autism, including (i) sources of variance, (ii) scale and format of study design, (iii) divergence from the human brain in vivo, and (iv) regulatory policies and compliance governing the use of hPSCs. Moreover, we advocate for a set of immediate and long-term priorities to address these issues and to accelerate the generation and reproducibility of data in order to facilitate future fundamental as well as therapeutic discoveries.
Collapse
Affiliation(s)
- Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lindy E Barrett
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
37
|
Seranova E, Palhegyi AM, Verma S, Dimova S, Lasry R, Naama M, Sun C, Barrett T, Rosenstock TR, Kumar D, Cohen MA, Buganim Y, Sarkar S. Human Induced Pluripotent Stem Cell Models of Neurodegenerative Disorders for Studying the Biomedical Implications of Autophagy. J Mol Biol 2020; 432:2754-2798. [PMID: 32044344 DOI: 10.1016/j.jmb.2020.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
Autophagy is an intracellular degradation process that is essential for cellular survival, tissue homeostasis, and human health. The housekeeping functions of autophagy in mediating the clearance of aggregation-prone proteins and damaged organelles are vital for post-mitotic neurons. Improper functioning of this process contributes to the pathology of myriad human diseases, including neurodegeneration. Impairment in autophagy has been reported in several neurodegenerative diseases where pharmacological induction of autophagy has therapeutic benefits in cellular and transgenic animal models. However, emerging studies suggest that the efficacy of autophagy inducers, as well as the nature of the autophagy defects, may be context-dependent, and therefore, studies in disease-relevant experimental systems may provide more insights for clinical translation to patients. With the advancements in human stem cell technology, it is now possible to establish disease-affected cellular platforms from patients for investigating disease mechanisms and identifying candidate drugs in the appropriate cell types, such as neurons that are otherwise not accessible. Towards this, patient-derived human induced pluripotent stem cells (hiPSCs) have demonstrated considerable promise in constituting a platform for effective disease modeling and drug discovery. Multiple studies have utilized hiPSC models of neurodegenerative diseases to study autophagy and evaluate the therapeutic efficacy of autophagy inducers in neuronal cells. This review provides an overview of the regulation of autophagy, generation of hiPSCs via cellular reprogramming, and neuronal differentiation. It outlines the findings in various neurodegenerative disorders where autophagy has been studied using hiPSC models.
Collapse
Affiliation(s)
- Elena Seranova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Adina Maria Palhegyi
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Surbhi Verma
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom; Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Simona Dimova
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rachel Lasry
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Moriyah Naama
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Congxin Sun
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy Barrett
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tatiana Rosado Rosenstock
- Department of Physiological Science, Santa Casa de São Paulo School of Medical Sciences, São Paulo, SP, 01221-020, Brazil
| | - Dhiraj Kumar
- Cellular Immunology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Malkiel A Cohen
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | - Sovan Sarkar
- Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
38
|
Ganesan H, Balasubramanian V, Iyer M, Venugopal A, Subramaniam MD, Cho SG, Vellingiri B. mTOR signalling pathway - A root cause for idiopathic autism? BMB Rep 2020. [PMID: 31186084 PMCID: PMC6675248 DOI: 10.5483/bmbrep.2019.52.7.137] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental monogenic disorder with a strong genetic influence. Idiopathic autism could be defined as a type of autism that does not have a specific causative agent. Among signalling cascades, mTOR signalling pathway plays a pivotal role not only in cell cycle, but also in protein synthesis and regulation of brain homeostasis in ASD patients. The present review highlights, underlying mechanism of mTOR and its role in altered signalling cascades as a triggering factor in the onset of idiopathic autism. Further, this review discusses how distorted mTOR signalling pathway stimulates truncated translation in neuronal cells and leads to downregulation of protein synthesis at dendritic spines of the brain. This review concludes by suggesting downstream regulators such as p70S6K, eIF4B, eIF4E of mTOR signalling pathway as promising therapeutic targets for idiopathic autistic individuals. [BMB Reports 2019; 52(7): 424-433].
Collapse
Affiliation(s)
- Harsha Ganesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Venkatesh Balasubramanian
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, Tamil Nadu, India
| | - Anila Venugopal
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, Tamil Nadu, India
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| |
Collapse
|
39
|
Negri J, Menon V, Young-Pearse TL. Assessment of Spontaneous Neuronal Activity In Vitro Using Multi-Well Multi-Electrode Arrays: Implications for Assay Development. eNeuro 2020; 7:ENEURO.0080-19.2019. [PMID: 31896559 PMCID: PMC6984810 DOI: 10.1523/eneuro.0080-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Multi-electrode arrays (MEAs) are being more widely used by researchers as an instrument platform for monitoring prolonged, non-destructive recordings of spontaneously firing neurons in vitro for applications in modeling Alzheimer's, Parkinson's, schizophrenia, and many other diseases of the human CNS. With the more widespread use of these instruments, there is a need to examine the prior art of studies utilizing MEAs and delineate best practices for data acquisition and analysis to avoid errors in interpretation of the resultant data. Using a dataset of recordings from primary rat (Rattus norvegicus) cortical cultures, methods and statistical power for discerning changes in neuronal activity on the array level are examined. Further, a method for unsupervised spike sorting is implemented, allowing for the resolution of action potential incidents down to the single neuron level. Following implementation of spike sorting, the dynamics of firing frequency across populations of individual neurons and networks are examined longitudinally. Finally, the ability to detect a frequency independent phenotype, the change in action potential amplitude, is demonstrated through the use of pore-forming neurotoxin treatments. Taken together, this study provides guidance and tools for users wishing to incorporate multi-well MEA usage into their studies.
Collapse
Affiliation(s)
- Joseph Negri
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Graduate Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard University, Cambridge, MA 02138
| | - Vilas Menon
- Department of Neurology, Columbia University Medical Center, New York, NY 10032
| | - Tracy L Young-Pearse
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
40
|
Development of a 3-D Organoid System Using Human Induced Pluripotent Stem Cells to Model Idiopathic Autism. ADVANCES IN NEUROBIOLOGY 2020; 25:259-297. [PMID: 32578151 DOI: 10.1007/978-3-030-45493-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Autism spectrum condition (ASC) is a complex set of behavioral and neurological responses reflecting a likely interaction between autism susceptibility genes and the environment. Autism represents a spectrum in which heterogeneous genetic backgrounds are expressed with similar heterogeneity in the affected domains of communication, social interaction, and behavior. The impact of gene-environment interactions may also account for differences in underlying neurology and wide variation in observed behaviors. For these reasons, it has been difficult for geneticists and neuroscientists to build adequate systems to model the complex neurobiology causes of autism. In addition, the development of therapeutics for individuals with autism has been painstakingly slow, with most treatment options reduced to repurposed medications developed for other neurological diseases. Adequately developing therapeutics that are sensitive to the genetic and neurobiological diversity of individuals with autism necessitates personalized models of ASC that can capture some common pathways that reflect the neurophysiological and genetic backgrounds of varying individuals. Testing cohorts of individuals with and without autism for these potentially convergent pathways on a scalable platform for therapeutic development requires large numbers of samples from a diverse population. To date, human induced pluripotent stem cells (iPSCs) represent one of the best systems for conducting these types of assays in a clinically relevant and scalable way. The discovery of the four Yamanaka transcription factors (OCT3/4, SOX2, c-Myc, and KLF4) [1] allows for the induction of iPSCs from fibroblasts [2], peripheral blood mononuclear cells (PBMCs, i.e. lymphocytes and monocytes) [3, 4], or dental pulp cells [5] that retain the original genetics of the individual from which they were derived [6], making iPSCs a powerful tool to model neurophysiological conditions. iPSCs are a readily renewable cell type that can be developed on a small scale for boutique-style proof-of-principle phenotypic studies and scaled to an industrial level for drug screening and other high-content assays. This flexibility, along with the ability to represent the true genetic diversity of autism, underscores the importance of using iPSCs to model neurophysiological aspects of ASC.
Collapse
|
41
|
Cellular and molecular characterization of multiplex autism in human induced pluripotent stem cell-derived neurons. Mol Autism 2019; 10:51. [PMID: 31893020 PMCID: PMC6936127 DOI: 10.1186/s13229-019-0306-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder with pronounced heritability in the general population. This is largely attributable to the effects of polygenic susceptibility, with inherited liability exhibiting distinct sex differences in phenotypic expression. Attempts to model ASD in human cellular systems have principally involved rare de novo mutations associated with ASD phenocopies. However, by definition, these models are not representative of polygenic liability, which accounts for the vast share of population-attributable risk. Methods Here, we performed what is, to our knowledge, the first attempt to model multiplex autism using patient-derived induced pluripotent stem cells (iPSCs) in a family manifesting incremental degrees of phenotypic expression of inherited liability (absent, intermediate, severe). The family members share an inherited variant of uncertain significance (VUS) in GPD2, a gene that was previously associated with developmental disability but here is insufficient by itself to cause ASD. iPSCs from three first-degree relatives and an unrelated control were differentiated into both cortical excitatory (cExN) and cortical inhibitory (cIN) neurons, and cellular phenotyping and transcriptomic analysis were conducted. Results cExN neurospheres from the two affected individuals were reduced in size, compared to those derived from unaffected related and unrelated individuals. This reduction was, at least in part, due to increased apoptosis of cells from affected individuals upon initiation of cExN neural induction. Likewise, cIN neural progenitor cells from affected individuals exhibited increased apoptosis, compared to both unaffected individuals. Transcriptomic analysis of both cExN and cIN neural progenitor cells revealed distinct molecular signatures associated with affectation, including the misregulation of suites of genes associated with neural development, neuronal function, and behavior, as well as altered expression of ASD risk-associated genes. Conclusions We have provided evidence of morphological, physiological, and transcriptomic signatures of polygenic liability to ASD from an analysis of cellular models derived from a multiplex autism family. ASD is commonly inherited on the basis of additive genetic liability. Therefore, identifying convergent cellular and molecular phenotypes resulting from polygenic and monogenic susceptibility may provide a critical bridge for determining which of the disparate effects of rare highly deleterious mutations might also apply to common autistic syndromes.
Collapse
|
42
|
3β, 6β-dichloro-5-hydroxy-5α-cholestane facilitates neuronal development through modulating TrkA signaling regulated proteins in primary hippocampal neuron. Sci Rep 2019; 9:18919. [PMID: 31831796 PMCID: PMC6908615 DOI: 10.1038/s41598-019-55364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.
Collapse
|
43
|
Ojeda J, Ávila A. Early Actions of Neurotransmitters During Cortex Development and Maturation of Reprogrammed Neurons. Front Synaptic Neurosci 2019; 11:33. [PMID: 31824293 PMCID: PMC6881277 DOI: 10.3389/fnsyn.2019.00033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
The development of the brain is shaped by a myriad of factors among which neurotransmitters play remarkable roles before and during the formation and maturation of synaptic circuits. Cellular processes such as neurogenesis, morphological development, synaptogenesis and maturation of synapses are temporary and spatially regulated by the local or distal influence of neurotransmitters in the developing cortex. Thus, research on this area has contributed to the understanding of fundamental mechanisms of brain development and to shed light on the etiology of various human neurodevelopmental disorders such as autism and Rett syndrome (RTT), among others. Recently, the field of neuroscience has been shaken by an explosive advance of experimental approaches linked to the use of induced pluripotent stem cells and reprogrammed neurons. This new technology has allowed researchers for the first time to model in the lab the unique events that take place during early human brain development and to explore the mechanisms that cause synaptopathies. In this context, the role of neurotransmitters during early stages of cortex development is beginning to be re-evaluated and a revision of the state of the art has become necessary in a time when new protocols are being worked out to differentiate stem cells into functional neurons. New perspectives on reconsidering the function of neurotransmitters include opportunities for methodological advances, a better understanding of the origin of mental disorders and the potential for development of new treatments.
Collapse
Affiliation(s)
- Jorge Ojeda
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Sciences Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
44
|
Crutcher E, Pal R, Naini F, Zhang P, Laugsch M, Kim J, Bajic A, Schaaf CP. mTOR and autophagy pathways are dysregulated in murine and human models of Schaaf-Yang syndrome. Sci Rep 2019; 9:15935. [PMID: 31685878 PMCID: PMC6828689 DOI: 10.1038/s41598-019-52287-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/11/2019] [Indexed: 11/09/2022] Open
Abstract
MAGEL2 is a maternally imprinted, paternally expressed gene, located in the Prader-Willi region of human chromosome 15. Pathogenic variants in the paternal copy of MAGEL2 cause Schaaf-Yang syndrome (SHFYNG), a neurodevelopmental disorder related to Prader-Willi syndrome (PWS). Patients with SHFYNG, like PWS, manifest neonatal hypotonia, feeding difficulties, hypogonadism, intellectual disability and sleep apnea. However, individuals with SHFYNG have joint contractures, greater cognitive impairment, and higher prevalence of autism than seen in PWS. Additionally, SHFYNG is associated with a lower prevalence of hyperphagia and obesity than PWS. Previous studies have shown that truncating variants in MAGEL2 lead to SHFYNG. However, the molecular pathways involved in manifestation of the SHFYNG disease phenotype are still unknown. Here we show that a Magel2 null mouse model and fibroblast cell lines from individuals with SHFYNG exhibit increased expression of mammalian target of rapamycin (mTOR) and decreased autophagy. Additionally, we show that SHFYNG induced pluripotent stem cell (iPSC)-derived neurons exhibit impaired dendrite formation. Alterations in SHFYNG patient fibroblast lines and iPSC-derived neurons are rescued by treatment with the mTOR inhibitor rapamycin. Collectively, our findings identify mTOR as a potential target for the development of pharmacological treatments for SHFYNG.
Collapse
Affiliation(s)
- Emeline Crutcher
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Rituraj Pal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Fatemeh Naini
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Neural Differentiation Core, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ping Zhang
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Stem Cell Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, 69120, Heidelberg, Germany
| | - Jean Kim
- Department of Molecular and Cellular Biology, Stem Cells and Regenerative Medicine Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Stem Cell Core, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Human Neural Differentiation Core, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Christian P Schaaf
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA.
- Institute of Human Genetics, Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
45
|
Yang G, Shcheglovitov A. Probing disrupted neurodevelopment in autism using human stem cell-derived neurons and organoids: An outlook into future diagnostics and drug development. Dev Dyn 2019; 249:6-33. [PMID: 31398277 DOI: 10.1002/dvdy.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorders (ASDs) represent a spectrum of neurodevelopmental disorders characterized by impaired social interaction, repetitive or restrictive behaviors, and problems with speech. According to a recent report by the Centers for Disease Control and Prevention, one in 68 children in the US is diagnosed with ASDs. Although ASD-related diagnostics and the knowledge of ASD-associated genetic abnormalities have improved in recent years, our understanding of the cellular and molecular pathways disrupted in ASD remains very limited. As a result, no specific therapies or medications are available for individuals with ASDs. In this review, we describe the neurodevelopmental processes that are likely affected in the brains of individuals with ASDs and discuss how patient-specific stem cell-derived neurons and organoids can be used for investigating these processes at the cellular and molecular levels. Finally, we propose a discovery pipeline to be used in the future for identifying the cellular and molecular deficits and developing novel personalized therapies for individuals with idiopathic ASDs.
Collapse
Affiliation(s)
- Guang Yang
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| | - Alex Shcheglovitov
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah.,Neuroscience Graduate Program, University of Utah, Salt Lake City, Utah
| |
Collapse
|
46
|
Amatya DN, Linker SB, Mendes APD, Santos R, Erikson G, Shokhirev MN, Zhou Y, Sharpee T, Gage FH, Marchetto MC, Kim Y. Dynamical Electrical Complexity Is Reduced during Neuronal Differentiation in Autism Spectrum Disorder. Stem Cell Reports 2019; 13:474-484. [PMID: 31474529 PMCID: PMC6739708 DOI: 10.1016/j.stemcr.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/03/2019] [Accepted: 08/04/2019] [Indexed: 02/07/2023] Open
Abstract
Neuronal activity can be modeled as a nonlinear dynamical system to yield measures of neuronal state and dysfunction. The electrical recordings of stem cell-derived neurons from individuals with autism spectrum disorder (ASD) and controls were analyzed using minimum embedding dimension (MED) analysis to characterize their dynamical complexity. MED analysis revealed a significant reduction in dynamical complexity in ASD neurons during differentiation, which was correlated to bursting and spike interval measures. MED was associated with clinical endpoints, such as nonverbal intelligence, and was correlated with 53 differentially expressed genes, which were overrepresented with ASD risk genes related to neurodevelopment, cell morphology, and cell migration. Spatiotemporal analysis also showed a prenatal temporal enrichment in cortical and deep brain structures. Together, we present dynamical analysis as a paradigm that can be used to distinguish disease-associated cellular electrophysiological and transcriptional signatures, while taking into account patient variability in neuropsychiatric disorders. Electrical recordings of iPSC-derived neurons can be modeled as a dynamical system Dynamical complexity is characterized by minimum embedding dimension (MED) MED is reduced in ASD neuronal lines during differentiation MED is correlated to gene expression changes relevant to prenatal neurodevelopment
Collapse
Affiliation(s)
- Debha N Amatya
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA; University of California San Diego, Department of Neurosciences, La Jolla, CA 92093, USA
| | - Sara B Linker
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Ana P D Mendes
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Renata Santos
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA; Institute of Psychiatry and Neuroscience of Paris (UMR_S1266 INSERM, University of Paris), Laboratory of Dynamic of Neuronal Structure in Health and Disease, Paris, France
| | - Galina Erikson
- The Salk Institute, Integrative Genomics and Bioinformatics Core, La Jolla, CA 92037, USA
| | - Maxim N Shokhirev
- The Salk Institute, Integrative Genomics and Bioinformatics Core, La Jolla, CA 92037, USA
| | - Yuansheng Zhou
- The Salk Institute, Computational Neurobiology Laboratory, La Jolla, CA 92037, USA; University of California San Diego, Division of Biological Sciences, La Jolla, CA 92093, USA
| | - Tatyana Sharpee
- The Salk Institute, Computational Neurobiology Laboratory, La Jolla, CA 92037, USA
| | - Fred H Gage
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA
| | - Maria C Marchetto
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA.
| | - Yeni Kim
- The Salk Institute, Laboratory of Genetics, La Jolla, CA 92037, USA; Department of Child and Adolescent Psychiatry, National Center for Mental Health, 127 Yongmasanro, Gwangjin-gu, Seoul 04933, South Korea.
| |
Collapse
|
47
|
Lam M, Moslem M, Bryois J, Pronk RJ, Uhlin E, Ellström ID, Laan L, Olive J, Morse R, Rönnholm H, Louhivuori L, Korol SV, Dahl N, Uhlén P, Anderlid BM, Kele M, Sullivan PF, Falk A. Single cell analysis of autism patient with bi-allelic NRXN1-alpha deletion reveals skewed fate choice in neural progenitors and impaired neuronal functionality. Exp Cell Res 2019; 383:111469. [PMID: 31302032 DOI: 10.1016/j.yexcr.2019.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022]
Abstract
We generated human iPS derived neural stem cells and differentiated cells from healthy control individuals and an individual with autism spectrum disorder carrying bi-allelic NRXN1-alpha deletion. We investigated the expression of NRXN1-alpha during neural induction and neural differentiation and observed a pivotal role for NRXN1-alpha during early neural induction and neuronal differentiation. Single cell RNA-seq pinpointed neural stem cells carrying NRXN1-alpha deletion shifting towards radial glia-like cell identity and revealed higher proportion of differentiated astroglia. Furthermore, neuronal cells carrying NRXN1-alpha deletion were identified as immature by single cell RNA-seq analysis, displayed significant depression in calcium signaling activity and presented impaired maturation action potential profile in neurons investigated with electrophysiology. Our observations propose NRXN1-alpha plays an important role for the efficient establishment of neural stem cells, in neuronal differentiation and in maturation of functional excitatory neuronal cells.
Collapse
Affiliation(s)
- Matti Lam
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Julien Bryois
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Robin J Pronk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elias Uhlin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ivar Dehnisch Ellström
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Loora Laan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Olive
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rebecca Morse
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Harriet Rönnholm
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lauri Louhivuori
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sergiy V Korol
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Niklas Dahl
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Per Uhlén
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Malin Kele
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Patrick F Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
48
|
Microglia along sex lines: From brain colonization, maturation and function, to implication in neurodevelopmental disorders. Semin Cell Dev Biol 2019; 94:152-163. [PMID: 31201858 DOI: 10.1016/j.semcdb.2019.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
In addition to their traditional role as immune sentinels, recent discoveries over the last decade have shown that microglial functions now include regulation of neuronal/glial cell migration, differentiation and maturation, as well as neuronal network formation. It was thus proposed that disruption of these microglial roles, during critical periods of brain development, could lead to the pathological onset of several neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder, epilepsy, schizophrenia, and major depressive disorder. The prevalence of these disorders exhibits a clear distinction along sex lines with very little known about the mechanisms underlying this difference. One of the fundamental discoveries that arose from recent research into the physiological roles of microglia in neurodevelopment is their sexual dimorphism, raising the intriguing possibility that sex differences in microglial colonization, maturation and/or function in the developing brain could underlie the emergence of various neurodevelopmental disorders. This review discusses the physiological roles of microglia across neurodevelopment, these roles in the two sexes, and the recent evidence that microglial sexually dimorphic nature may contribute, at least partially, to neurodevelopmental disorders.
Collapse
|
49
|
Maussion G, Rocha C, Bernard G, Beitel LK, Durcan TM. Patient-Derived Stem Cells, Another in vitro Model, or the Missing Link Toward Novel Therapies for Autism Spectrum Disorders? Front Pediatr 2019; 7:225. [PMID: 31245336 PMCID: PMC6562499 DOI: 10.3389/fped.2019.00225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/20/2019] [Indexed: 12/28/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) is a multigenic and multifactorial neurodevelopmental group of disorders diagnosed in early childhood, leading to deficits in social interaction, verbal and non-verbal communication and characterized by restricted and repetitive behaviors and interests. To date, genetic, descriptive and mechanistic aspects of the ASDs have been investigated using mouse models and post-mortem brain tissue. More recently, the technology to generate stem cells from patients' samples has brought a new avenue for modeling ASD through 2D and 3D neuronal models that are derived from a patient's own cells, with the goal of building new therapeutic strategies for treating ASDs. This review analyses how studies performed on mouse models and human samples can complement each other, advancing our current knowledge into the pathophysiology of the ASDs. Regardless of the genetic and phenotypic heterogeneities of ASDs, convergent information regarding the molecular and cellular mechanisms involved in these disorders can be extracted from these models. Thus, considering the complexities of these disorders, patient-derived models have immense potential to elucidate molecular deregulations that contributed to the different autistic phenotypes. Through these direct investigations with the human in vitro models, they offer the potential for opening new therapeutic avenues that can be translated into the clinic.
Collapse
Affiliation(s)
- Gilles Maussion
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Cecilia Rocha
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Division of Medical Genetics, Department of Internal Medicine, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
- MyeliNeuroGene Laboratory, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Lenore K. Beitel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Thomas M. Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
50
|
Papariello A, Newell-Litwa K. Human-Derived Brain Models: Windows into Neuropsychiatric Disorders and Drug Therapies. Assay Drug Dev Technol 2019; 18:79-88. [PMID: 31090445 DOI: 10.1089/adt.2019.922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Human-derived neurons and brain organoids have revolutionized our ability to model brain development in a dish. In this review, we discuss the potential for human brain models to advance drug discovery for complex neuropsychiatric disorders. First, we address the advantages of human brain models to screen for new drugs capable of altering CNS activity. Next, we propose an experimental pipeline for using human-derived neurons and brain organoids to rapidly assess drug impact on key events in brain development, including neurite extension, synapse formation, and neural activity. The experimental pipeline begins with automated high content imaging for analysis of neurites, synapses, and neuronal viability. Following morphological examination, multi-well microelectrode array technology examines neural activity in response to drug treatment. These techniques can be combined with high throughput sequencing and mass spectrometry to assess associated transcriptional and proteomic changes. These combined technologies provide a foundation for neuropsychiatric drug discovery and future clinical assessment of patient-specific drug responses.
Collapse
Affiliation(s)
- Alexis Papariello
- Graduate Program of Pharmacology and Toxicology, East Carolina University Brody School of Medicine, Greenville, North Carolina
| | - Karen Newell-Litwa
- Department of Anatomy and Cell Biology, East Carolina University Brody School of Medicine, Greenville, North Carolina
| |
Collapse
|