1
|
Khan M, Khan S, Ahmad S, Alshammary FL, Mahmood T, Khan MS, Rahim M. Designed and synthesized novel tripeptides targeting diabetes and its related pathologies. Eur J Med Chem 2025; 283:117134. [PMID: 39642692 DOI: 10.1016/j.ejmech.2024.117134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/02/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
In diabetes and its associated pathologies, glycation, α-amylase, and α-glucosidase play crucial roles. This study introduces a novel tripeptide, RWW, designed to target glycation and key enzymes in diabetes management. Using in silico methods, RWW was optimized to interact with the glycation-prone Human serum albumin (HSA) sites, as well as inhibit α-amylase and α-glucosidase. Molecular docking and dynamics confirmed its stability. In-vitro assays confirmed RWW's potent inhibition of glycation (84.00 %) and enzyme activities, while in-vivo experiments demonstrated its hypoglycemic and lipid-lowering effects in diabetic mice. Histopathological analysis of kidney tissues further highlighted its protective impact. RWW represents a promising anti-diabetic candidate with dual therapeutic functions.
Collapse
Affiliation(s)
- Mahvish Khan
- Department of Biology, College of Science, Ha'il University, Ha'il, 2440, Saudi Arabia.
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, Ha'il University, Ha'il, Saudi Arabia.
| | - Saheem Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Science, University of Ha'il, Ha'il, 55473, Saudi Arabia.
| | - Freah L Alshammary
- Department of Preventive Dental Sciences, College of Dentistry, University of Ha'il, Ha'il, 55473, Saudi Arabia.
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Lucknow, 226026, India.
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| | - Moniba Rahim
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
2
|
Kapic A, Zaman K, Nguyen V, Prokai-Tatrai K, Prokai L. Identification of Estrogen-Responsive Proteins in Mouse Seminal Vesicles Through Mass Spectrometry-Based Proteomics. Pharmaceuticals (Basel) 2024; 17:1508. [PMID: 39598420 PMCID: PMC11597337 DOI: 10.3390/ph17111508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Although estrogenic compounds promise therapeutic potential in treating various conditions, concerns regarding their endocrine-disrupting effects have been raised. Current methodologies for screening estrogenicity in rodent models are limited to the female-specific uterotrophic bioassay. Studies have reported enlargement of the seminal vesicles in orchiectomized males treated with estrogens. However, identifying estrogenicity strictly through changes in wet weights is uninformative regarding the molecular mechanisms of these agents. Therefore, protein-based biomarkers can complement and improve the sensitivity of weight-based assessments. To this end, we present a discovery-driven proteomic analysis of 17β-estradiol's effects on the seminal vesicles. Methods: We treated orchidectomized mice with the hormone for five days and used the vehicle-treated group as a control. Seminal vesicles were analyzed by shotgun approach using data-dependent nanoflow liquid chromatography-tandem mass spectrometry and label-free quantification. Proteins found to be differentially expressed between the two groups were processed through a bioinformatics pipeline focusing on pathway analyses and assembly of protein interaction networks. Results: Out of 668 identified proteins that passed rigorous validation criteria, 133 were regulated significantly by 17β-estradiol. Ingenuity Pathway Analysis® linked them to several hormone-affected pathways, including those associated with immune function such as neutrophil degranulation. The altered protein interaction networks were also related to functions including endocrine disruption, abnormal metabolism, and therapeutic effects. Conclusions: We identified several potential biomarkers for estrogenicity in mouse seminal vesicles, many of them not previously linked with exogenous 17β-estradiol exposure.
Collapse
Affiliation(s)
| | | | | | | | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (A.K.); (K.Z.); (V.N.); (K.P.-T.)
| |
Collapse
|
3
|
Zhang M, Huang C, Ou J, Liu F, Ou S, Zheng J. Glyoxal in Foods: Formation, Metabolism, Health Hazards, and Its Control Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2434-2450. [PMID: 38284798 DOI: 10.1021/acs.jafc.3c08225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Glyoxal is a highly reactive aldehyde widely present in common diet and environment and inevitably generated through various metabolic pathways in vivo. Glyoxal is easily produced in diets high in carbohydrates and fats via the Maillard reaction, carbohydrate autoxidation, and lipid peroxidation, etc. This leads to dietary intake being a major source of exogenous exposure. Exposure to glyoxal has been positively associated with a number of metabolic diseases, such as diabetes mellitus, atherosclerosis, and Alzheimer's disease. It has been demonstrated that polyphenols, probiotics, hydrocolloids, and amino acids can reduce the content of glyoxal in foods via different mechanisms, thus reducing the risk of exogenous exposure to glyoxal and alleviating carbonyl stresses in the human body. This review discussed the formation and metabolism of glyoxal, its health hazards, and the strategies to reduce such health hazards. Future investigation of glyoxal from different perspectives is also discussed.
Collapse
Affiliation(s)
- Mianzhang Zhang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Juanying Ou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
- Guangzhou College of Technology and Business, 510580 Guangzhou, Guangdong China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, 510632 Guangzhou, Guangdong China
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, 510632 Guangzhou , China
| |
Collapse
|
4
|
Skrajewski-Schuler LA, Soule LD, Geiger M, Spence D. UPLC-MS/MS method for quantitative determination of the advanced glycation endproducts Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6698-6705. [PMID: 38047493 PMCID: PMC10720951 DOI: 10.1039/d3ay01817b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
During blood storage, red blood cells (RBCs) undergo physical, chemical, and metabolic changes that may contribute to post-transfusion complications. Due to the hyperglycemic environment of typical solutions used for RBC storage, the formation of advanced glycation endproducts (AGEs) on the stored RBCs has been implicated as a detrimental chemical change during storage. Unfortunately, there are limited studies involving quantitative determination and differentiation of carboxymethyl-lysine (CML) and carboxyethyl-lysine (CEL), two commonly formed AGEs, and no reported studies comparing these AGEs in experimental storage solutions. In this study, CML and CEL were identified and quantified on freshly drawn blood samples in two types of storage solutions, standard additive solution 1 (AS-1) and a normoglycemic version of AS-1 (AS-1N). To facilitate detection of the AGEs, a novel method was developed to reliably extract AGEs from RBCs, provide Food and Drug Administration (FDA) bioanalytical guidance criteria, and enable acceptable selectivity for these analytes. Ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) was utilized to identify and quantify the AGEs. Results show this method is accurate, precise, has minimal interferences or matrix effects, and overcomes the issue of detecting AGE byproducts. Importantly, AGEs can be detected and quantified in both types of blood storage solutions (AS-1 and AS-1N), thereby enabling long-term (6 weeks) blood storage related studies.
Collapse
Affiliation(s)
- Lauren A Skrajewski-Schuler
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
| | - Logan D Soule
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Morgan Geiger
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Dana Spence
- Institute for Quantitative Health, Michigan State University, East Lansing, MI 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
5
|
Peel A, Saini A, Deluao JC, McPherson NO. Sperm DNA damage: The possible link between obesity and male infertility, an update of the current literature. Andrology 2023; 11:1635-1652. [PMID: 36789664 DOI: 10.1111/andr.13409] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/13/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Obesity prevalence worldwide is increasing significantly. Whilst maternal obesity has clear detrimental impacts on fertility, pregnancy and foetal outcomes, more recently there has been an increasing focus on the role of paternal obesity in human fertility. Recent meta-analyses have indicated that obesity in men negatively affects basic sperm parameters such as sperm count, concentration and motility, increases the incidence of infertility and reduces the chances of conception. Sperm DNA damage, typically characterised by DNA strand breaks and oxidation of DNA nucleotides, is a specialised marker of sperm quality that has been independently associated with recurrent miscarriage, reduced assisted reproduction success and increased mutational loads in subsequent offspring. Whilst, there are still conflicting data in humans as to the association of obesity in men with sperm DNA damage, evidence from rodent models is clear, indicating that male obesity increases sperm DNA damage. Human data are often conflicting because of the large heterogeneity amongst studies, the use of body mass index as the indicator of obesity and the methods used for detection of sperm DNA damage. Furthermore, comorbidities of obesity (i.e., heat stress, adipokines, insulin resistance, changes in lipids, hypogonadism and obstructive sleep apnoea) are also independently associated with increased sperm DNA damage that is not always modified in men with obesity, and as such may provide a causative link to the discrepancies amongst human studies. In this review, we provide an update on the literature regarding the associations between obesity in men and fertility, basic sperm parameters and sperm DNA damage. We further discuss potential reasons for the discrepancies in the literature and outline possible direct and indirect mechanisms of increased sperm DNA damage resulting from obesity. Finally, we summarise intergenerational obesity through the paternal linage and how sperm DNA damage may contribute to the transmission.
Collapse
Affiliation(s)
- Andrew Peel
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anmol Saini
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Joshua C Deluao
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicole O McPherson
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Freemasons Centre for Male Health and Wellbeing, The University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Health and Medical School, School of Biomedicine, Discipline of Reproduction and Development, The University of Adelaide, Adelaide, South Australia, Australia
- Repromed IVF Adelaide, Dulwich, South Australia, Australia
| |
Collapse
|
6
|
Braun BC, Müller K. Role of glyoxalase I and II in somatic and spermatogenic testicular cells during the postnatal development of the domestic cat. Theriogenology 2023; 197:10-15. [PMID: 36462331 DOI: 10.1016/j.theriogenology.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Like humans, many felid species suffer from teratozoospermia and frequently produce low numbers of normal spermatozoa. Male fertility can be affected by oxidative and dicarbonyl stress. Because of the high level of glycolytic activity in testes, reactive dicarbonyl metabolites may arise as side-products of glycolysis; their generation is further promoted by oxidative stress. Alpha-oxoaldehydes, including methylglyoxal (MG), are reactive dicarbonyl metabolites and substrates for the formation of advanced glycation end products. Elevated levels of both may lead to dicarbonyl stress and cause cellular dysfunction. However, MG and other α-oxoaldehydes can be converted to less dangerous molecules via the glyoxalase pathway. In this pathway, α-oxoaldehydes react with glutathione (GSH), forming a thioacetal, which becomes metabolized by glyoxalase I (GLO I) to S-D-lactoyl-glutathione (SLG). Glyoxalase II (GLO II) converts SLG to d-lactate upon the release of GSH. Nothing is known about the glyoxalase system in the feline testis and its capacity to mitigate an excess of dicarbonyl metabolites. To study whether GLO I and GLO II are present and have a specific function in the testis of the domestic cat, the gene expression of both enzymes were analyzed in testis samples of different developmental stages (prepubertal, pubertal, postpubertal). Furthermore, the presence of GLO I and GLO II proteins was investigated via immunohistochemistry. The GLO I gene expression does not change between developmental stages. Immunohistochemistry revealed strong signals for GLO I in the cytoplasm and nuclei of Sertoli and Leydig cells during all developmental stages. GLO I was described as catalyzing the rate-limiting step in the glyoxalase pathway. This implies a function on the part of this enzyme of sustaining the homeostasis of somatic testicular cells. For GLO II, we observed stage-dependent mRNA expression, which was significantly increased after puberty. In accordance with this observation, clear immunohistochemical GLO II signals were observed in nuclei of individual germ cells. The most intense signals were visible in spermatocytes. The different localizations of the strong GLO I and GLO II signals indicate that GLO II, in addition to the classical glyoxalase pathway, may have additional functions in meiotic germ cells, for example, providing lactate as an energy substrate and/or GSH as an antioxidant. Moreover, protein functions may be modulated via S-glutathionylation.
Collapse
Affiliation(s)
- Beate C Braun
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany.
| | - Karin Müller
- Department of Reproduction Biology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315, Berlin, Germany
| |
Collapse
|
7
|
Aspalathin and Other Rooibos Flavonoids Trapped α-Dicarbonyls and Inhibited Formation of Advanced Glycation End Products In Vitro. Int J Mol Sci 2022; 23:ijms232314738. [PMID: 36499065 PMCID: PMC9738946 DOI: 10.3390/ijms232314738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The excessive dietary intake of simple sugars and abnormal metabolism in certain diseases contribute to the increased production of α-dicarbonyls (α-DCs), such as methylglyoxal (MGO) and glyoxal (GO), the main precursors of the formation of advanced glycation end products (AGEs). AGEs play a vital role, for example, in the development of cardiovascular diseases and diabetes. Aspalathus linearis (Burman f.) R. Dahlgren (known as rooibos tea) exhibits a wide range of activities beneficial for cardio-metabolic health. Thus, the present study aims to investigate unfermented and fermented rooibos extracts and their constituents for the ability to trap MGO and GO. The individual compounds identified in extracts were tested for the capability to inhibit AGEs (with MGO or GO as a glycation agent). Ultra-high-performance liquid chromatography coupled with an electrospray ionization mass spectrometer (UHPLC-ESI-MS) was used to investigate α-DCs' trapping capacities. To evaluate the antiglycation activity, fluorescence measurement was used. The extract from the unfermented rooibos showed a higher ability to capture MGO/GO and inhibit AGE formation than did the extract from fermented rooibos, and this effect was attributed to a higher content of dihydrochalcones. The compounds detected in the extracts, such as aspalathin, nothofagin, vitexin, isovitexin, and eriodictyol, as well as structurally related phloretin and phloroglucinol (formed by the biotransformation of certain flavonoids), trapped MGO, and some also trapped GO. AGE formation was inhibited the most by isovitexin. However, it was the high content of aspalathin and its higher efficiency than that of metformin that determined the antiglycation and trapping properties of green rooibos. Therefore, A. linearis, in addition to other health benefits, could potentially be used as an α-DC trapping agent and AGE inhibitor.
Collapse
|
8
|
Peña FJ, Ortiz-Rodríguez JM, Gaitskell-Phillips GL, Gil MC, Ortega-Ferrusola C, Martín-Cano FE. An integrated overview on the regulation of sperm metabolism (glycolysis-Krebs cycle-oxidative phosphorylation). Anim Reprod Sci 2022; 246:106805. [PMID: 34275685 DOI: 10.1016/j.anireprosci.2021.106805] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022]
Abstract
An overview of the sperm metabolism is presented; using the stallion as a model we review glycolysis, Krebs Cycle and oxidative phosphorylation, paying special attention to the interactions among them. In addition, metabolism implies a series of coordinated oxidation-reduction reactions and in the course of these reactions reactive oxygen species (ROS) and reactive oxoaldehydes are produced ; the electron transport chain (ETC) in the mitochondria is the main source of the anion superoxide and hydrogen peroxide, while glycolysis produces 2-oxoaldehydes such as methylglyoxal as byproducts; due to the adjacent carbonyl groups are strong electrophiles (steal electrons oxidizing other compounds). Sophisticated mechanisms exist to maintain redox homeostasis, because ROS under controlled production also have important regulatory functions in the spermatozoa. The interactions between metabolism and production of reactive oxygen species are essential for proper sperm function, and deregulation of these processes rapidly leads to sperm malfunction and finally death. Lastly, we briefly describe two techniques that will expand our knowledge on sperm metabolism in the coming decades, metabolic flow cytometry and the use of the "omics" technologies, proteomics and metabolomics, specifically the micro and nano proteomics/metabolomics. A better understanding of the metabolism of the spermatozoa will lead to big improvements in sperm technologies and the diagnosis and treatment of male factor infertility.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma L Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
9
|
Advanced glycation end products induce Aβ 1-42 deposition and cognitive decline through H19/miR-15b/BACE1 axis in diabetic encephalopathy. Brain Res Bull 2022; 188:187-196. [PMID: 35961529 DOI: 10.1016/j.brainresbull.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Diabetic encephalopathy (DE), a chronic complication of diabetes, is characterized by decline of cognitive function. The molecular mechanism of DE remains unclear. The purpose of this study is to evaluate the roles of advanced glycation end products (AGEs) in the pathogenesis of DE and investigate its underlying mechanisms in this process. METHODS DE rats were developed by incorporating a high-fat diet and streptozotocin injection followed by the Morris Water Maze test. HT-22 cells were used to mimic the in vitro neuronal injuries of DE. Expression levels of long non-coding RNA H19, miR-15b and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) mRNA in the hippocampus of DE rats or HT-22 cells were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The levels of BACE1 proteins were analyzed by western blotting or immunohistochemical staining. The contents of Aβ1-42 in supernatant of the cell culture were analyzed by enzyme-linked immu-nosorbent assay (ELISA). The relationship between H19 or BACE1 and miR-15b was verified with dual-luciferase reporter assay. RESULTS We found that the accumulation of Aβ1-42 and the phosphorylation of Tau (Ser404) were increased in the hippocampus CA3 regionof DE rats. MiR-15b was downregulated while H19 and BACE1 were upregulated in the hippocampus CA3 regionof DE rats and AGEs-treated HT-22 cells. The expression of BACE1 protein was negatively regulated by miR-15b at the post-transcriptional level in HT-22 cells. In vivo, administration of miR-15b mimics by the intranasal delivery markedly decreased the BACE1 protein in hippocampal CA3 region and improved the cognitive decline in DE rats. Besides, the luciferase activity assay confirmed the binding site of miR-15b to both the 3'-untranslated region (3'-UTR) of BACE1 mRNA and H19. Then, miR-15b inhibitor reversed H19 knockdown-mediated decrease of Aβ1-42 level in AGEs-treated HT-22 cells. CONCLUSION These results suggested that AGEs induced Aβ1-42 deposition andcognitive decline through H19/miR-15b/ BACE1 axis in DE.
Collapse
|
10
|
Peña FJ, O'Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips G, Gil MC, Ortega Ferrusola C. The Stallion Spermatozoa: A Valuable Model to Help Understand the Interplay Between Metabolism and Redox (De)regulation in Sperm Cells. Antioxid Redox Signal 2022; 37:521-537. [PMID: 35180830 DOI: 10.1089/ars.2021.0092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: Proper functionality of the spermatozoa depends on the tight regulation of their redox status; at the same time these cells are highly energy demanding and in the energetic metabolism, principally in the electron transport chain in the mitochondria, reactive oxygen species are continuously produced, in addition to that observed in the Krebs cycle and during the β-oxidation of fatty acids. Recent Advances: In addition, in glycolysis, elimination of phosphate groups from glyceraldehyde 3-phosphate and dihydroxyacetone phosphate results in the byproducts glyoxal (G) and methylglyoxal (MG); these products are 2-oxoaldehydes. The presence of adjacent carbonyl groups makes them strong electrophiles that react with nucleophiles in proteins, lipids, and DNA, forming advanced glycation end products. Critical Issues: This mechanism is behind subfertility in diabetic patients; in the animal breeding industry, commercial extenders for stallion semen contain a supraphysiological concentration of glucose that promotes MG production, constituting a potential model of interest. Future Directions: Increasing our knowledge of sperm metabolism and its interactions with redox regulation may improve current sperm technologies in use, and shall provide new clues to understanding infertility in males. Moreover, stallion spermatozoa due to its accessibility, intense metabolism, and suitability for proteomics/metabolomic studies may constitute a suitable model for studying regulation of metabolism and interactions between metabolism and redox homeostasis. Antioxid. Redox Signal. 37, 521-537.
Collapse
Affiliation(s)
- Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristian O'Flaherty
- Urology Division, Department of Surgery, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Pharmacology and Therapeutics and Faculty of Medicine, McGill University, Montréal, Quebec, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | - José M Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| |
Collapse
|
11
|
Karevanpour F, Tavalaee M, Kazeminasab F, Abdollahi M, Shirkhani S, Rahmani M, Ghaedi K, Marandi SM, Nasr‐Esfahani MH. The effect of green coffee and/or endurance exercise on sperm function in pre‐diabetic mice. Andrologia 2022; 54:e14560. [DOI: 10.1111/and.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Fatemeh Karevanpour
- ACECR Institute of Higher Education, Isfahan Branch Isfahan Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Marziyeh Tavalaee
- ACECR Institute of Higher Education, Isfahan Branch Isfahan Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Fatemeh Kazeminasab
- Department of Physical Education and Sport Sciences, Faculty of Human Sciences University of Kashan Kashan Iran
| | - Milad Abdollahi
- Department of Exercise Physiology, Faculty of Sport Sciences University of Isfahan Isfahan Iran
| | - Samaneh Shirkhani
- Department of Exercise Physiology, Faculty of Sport Sciences University of Isfahan Isfahan Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology University of Isfahan Isfahan Iran
| | - Sayed Mohammad Marandi
- Department of Exercise Physiology, Faculty of Sport Sciences University of Isfahan Isfahan Iran
| | - Mohammad Hossein Nasr‐Esfahani
- ACECR Institute of Higher Education, Isfahan Branch Isfahan Iran
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center Royan Institute for Biotechnology, ACECR Isfahan Iran
| |
Collapse
|
12
|
Garg SS, Gupta J. Polyol pathway and redox balance in diabetes. Pharmacol Res 2022; 182:106326. [PMID: 35752357 DOI: 10.1016/j.phrs.2022.106326] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
Diabetes is a major public health disease that is globally approaching epidemic proportions. One of the major causes of type 2 diabetes is either a defect in insulin secretion or insulin action which is usually caused by a combination of genetic and environmental factors. Not only these factors but others such as deregulation of various pathways, and oxidative stress are also known to trigger the redox imbalance in diabetics. Increasing evidences suggest that there are tight interactions between the development of diabetes and redox imbalance. An alternate pathway of glucose metabolism, the polyol pathway, becomes active in patients with diabetes that disturbs the balance between NADH and NAD+ . The occurrence of such redox imbalance supports other pathways that lead to oxidative damage to DNA, lipids, and proteins and consequently to oxidative stress which further ascend diabetes and its complications. However, the precise mechanism through which oxidative stress regulates diabetes progression remains to be elucidated. The understanding of how antioxidants and oxidants are controlled and impact the generation of oxidative stress and progression of diabetes is essential. The main focus of this review is to provide an overview of redox imbalance caused by oxidative stress through the polyol pathway. Understanding the pathological role of oxidative stress in diabetes will help to design potential therapeutic strategies against diabetes.
Collapse
Affiliation(s)
- Sourbh Suren Garg
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
13
|
Sarmah S, Goswami A, Kumar Belwal V, Singha Roy A. Mitigation of ribose and glyoxal induced glycation, AGEs formation and aggregation of human serum albumin by citrus fruit phytochemicals naringin and naringenin: An insight into their mechanism of action. Food Res Int 2022; 157:111358. [DOI: 10.1016/j.foodres.2022.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/04/2022]
|
14
|
Baker P, Cooper-Mullin CM, Jimenez AG. Differences in advanced glycation endproducts (AGEs) in plasma from birds and mammals of different body sizes and ages. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111164. [PMID: 35158049 DOI: 10.1016/j.cbpa.2022.111164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 11/24/2022]
Abstract
Birds and mammals provide a physiological paradox: similar-sized mammals live shorter lives than birds; yet, birds have higher blood glucose concentrations than mammals, and higher basal metabolic rates. We have previously shown that oxidative stress patterns between mammals and birds differ, so that birds, generally, have lower blood antioxidant capacity, and lower lipid peroxidation concentration. There is a close association between oxidative stress and the production of carbohydrate-based damaged biomolecules, Advanced Glycation End-products (AGEs). In mammals, AGEs can bind to their receptor (RAGE), which can lead to increases in reactive oxygen species (ROS) production, and can decrease antioxidant capacity. Here, we used plasma from birds and mammals to address whether blood plasma AGE-BSA concentration is associated with body mass and age in these two groups. We found a statistically significantly higher average concentrations of AGE-BSA in birds compared with mammals, and we found a significantly positive correlation between AGE-BSA and age in mammals, though, this correlation disappeared after phylogenetic correction. We propose that the higher AGE concentration in birds is mainly attributable to greater AGE-production due to elevated basal glucose concentrations and decreased AGE-clearance given differences in glomerular filtration rates in birds compared with mammals. Additionally, due to the potential lack of an AGE receptor in birds, AGE accumulation may not be closely linked to oxidative stress and therefore pose a lesser physiological challenge in birds compared to mammals.
Collapse
Affiliation(s)
- Peter Baker
- Colgate University, Department of Biology, 13 Oak Dr., Hamilton, NY 13346, United States of America
| | - Clara M Cooper-Mullin
- University of Rhode Island, Natural Resources Science, 1 Greenhouse Drive, Kingston, RI 02881, United States of America
| | - Ana Gabriela Jimenez
- Colgate University, Department of Biology, 13 Oak Dr., Hamilton, NY 13346, United States of America.
| |
Collapse
|
15
|
Suppression of COX-2/PGE2 levels by carbazole-linked triazoles via modulating methylglyoxal-AGEs and glucose-AGEs – Induced ROS/NF-κB signaling in monocytes. Cell Signal 2022; 97:110372. [DOI: 10.1016/j.cellsig.2022.110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/23/2022]
|
16
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
17
|
Jahan H, Siddiqui NN, Iqbal S, Basha FZ, Khan MA, Aslam T, Choudhary MI. Indole-linked 1,2,3-triazole derivatives efficiently modulate COX-2 protein and PGE 2 levels in human THP-1 monocytes by suppressing AGE-ROS-NF-kβ nexus. Life Sci 2022; 291:120282. [PMID: 34990649 DOI: 10.1016/j.lfs.2021.120282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/20/2021] [Accepted: 12/26/2021] [Indexed: 12/25/2022]
Abstract
AIMS AGEs augment inflammatory responses by activating inflammatory cascade in monocytes, and hence lead to vascular dysfunction. The current study aims to study a plausible role and mechanism of a new library of indole-tethered 1,2,3-triazoles 2-13 in AGEs-induced inflammation. MATERIAL AND METHODS Initially, the analogs 2-13 were synthesized by cycloaddition reaction between prop-2-yn-1-yl-2-(1H-indol-3-yl) acetate (1) and azidoacetophenone (1a). In vitro glycation, and metabolic assays were employed to investigate antiglycation and cytotoxicity activities of new indole-triazoles. DCFH-DA, immunostaining, Western blotting, and ELISA techniques were used to study the reactive oxygen species (ROS), and pro-inflammatory mediators levels. KEY FINDINGS Among all the synthesized indole-triazoles, compounds 1-3, and 9-13, and their precursor molecule 1 were found to be active against AGEs production in in vitro glucose- and methylglyoxal (MGO)-BSA models. Compounds 1-2, and 11-13 were also found to be nontoxic against HEPG2, and THP-1 cells. Our results show that pretreatment of THP-1 monocytes with selected lead compounds 1-2, and 11-13, particularly compounds 12, and 13, reduced glucose- and MGO-derived AGEs-mediated ROS production (P < 0.001), as compared to standards, PDTC, rutin, and quercetin. They also significantly (P < 0.001) suppressed NF-ĸB translocation in THP-1 monocytes. Moreover, compounds 12, and 13 attenuated the AGEs-induced COX-2 protein levels (P < 0.001), and PGE2 production (P < 0.001) in THP-1 monocytes. SIGNIFICANCE Our data revealed that the indole-triazoles 12, and 13 can significantly attenuate the AGEs-induced proinflammatory COX-2 levels, and associated PGE2 production by suppressing AGE-ROS-NF-Kβ nexus in THP-1 monocytes. These compounds can thus serve as leads for further evaluation as treatment to delay early onset of diabetic complications.
Collapse
Affiliation(s)
- Humera Jahan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Nimra Naz Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Shazia Iqbal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Fatima Z Basha
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Maria Aqeel Khan
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tooba Aslam
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya 60115, Indonesia.
| |
Collapse
|
18
|
Gaitskell-Phillips G, Martín-Cano FE, Ortiz-Rodríguez JM, da Silva-Álvarez E, Masot J, Redondo E, Gil MC, Ortega-Ferrusola C, Peña FJ. Seminal plasma proteins as potential biomarkers for sperm motility and velocities. Theriogenology 2022; 177:34-41. [PMID: 34656835 DOI: 10.1016/j.theriogenology.2021.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/29/2021] [Accepted: 10/09/2021] [Indexed: 10/20/2022]
Abstract
Seminal plasma proteins have important roles in sperm functionality, and different mechanisms including micro-vesicle transport of proteins are involved in the regulation of sperm biology. Due to the role of seminal plasma, we hypothesized that specific proteins present in seminal plasma may be used as discriminant variables with potential to identify stallions producing different quality ejaculates; 10 fertile stallions, with different motility and velocity values (although within normal ranges) were used in this study. Motilities and velocities were studied using computer assisted sperm analysis (CASA), while protein composition of the seminal plasma was studied using UHPLC-MS/MS. Specific proteins were more abundant in samples with poorer percentages of total motility, average path velocity and circular velocity, and were: Secreted phosphoprotein 1, Fructose-bisphosphate aldolase (p = 1,95E-09; q = 0.0005) and Malate dehydrogenase 1 (p = 1,41E-11; q = 0.002), to the contrary samples with better straight-line velocity values were enriched in Glutathione peroxidase (p=0.00013; q=0.04) and Triosephosphate isomerase (p=0.00015; q=0.04).
Collapse
Affiliation(s)
- Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José M Ortiz-Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eva da Silva-Álvarez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Javier Masot
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eloy Redondo
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Maria C Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
19
|
Xie MZ, Guo C, Dong JQ, Zhang J, Sun KT, Lu GJ, Wang L, Bo DY, Jiao LY, Zhao GA. Glyoxal damages human aortic endothelial cells by perturbing the glutathione, mitochondrial membrane potential, and mitogen-activated protein kinase pathways. BMC Cardiovasc Disord 2021; 21:603. [PMID: 34922451 PMCID: PMC8684178 DOI: 10.1186/s12872-021-02418-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/07/2021] [Indexed: 11/25/2022] Open
Abstract
Background Exposure to glyoxal, the smallest dialdehyde, is associated with several diseases; humans are routinely exposed to glyoxal because of its ubiquitous presence in foods and the environment. The aim of this study was to examine the damage caused by glyoxal in human aortic endothelial cells.
Methods Cell survival assays and quantitative fluorescence assays were performed to measure DNA damage; oxidative stress was detected by colorimetric assays and quantitative fluorescence, and the mitogen-activated protein kinase pathways were assessed using western blotting. Results Exposure to glyoxal was found to be linked to abnormal glutathione activity, the collapse of mitochondrial membrane potential, and the activation of mitogen-activated protein kinase pathways. However, DNA damage and thioredoxin oxidation were not induced by dialdehydes. Conclusions Intracellular glutathione, members of the mitogen-activated protein kinase pathways, and the mitochondrial membrane potential are all critical targets of glyoxal. These findings provide novel insights into the molecular mechanisms perturbed by glyoxal, and may facilitate the development of new therapeutics and diagnostic markers for cardiovascular diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02418-3.
Collapse
Affiliation(s)
- Ming-Zhang Xie
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Chun Guo
- Henan Key Laboratory of Neural Regeneration (Henan Joint International Research Laboratory of Neurorestoratology for Senile Dementia), First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jia-Qi Dong
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Jie Zhang
- Department of Integrating Western and Chinese of Internal Medicine, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Ke-Tao Sun
- Department of Laboratory, Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Guang-Jian Lu
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lei Wang
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - De-Ying Bo
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China
| | - Lu-Yang Jiao
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| | - Guo-An Zhao
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, People's Republic of China.
| |
Collapse
|
20
|
Kashani MH, Ramezani M, Piravar Z. The effect of acrylamide on sperm oxidative stress, total antioxidant levels, tyrosine phosphorylation, and carboxymethyl-lysine expression: A laboratory study. Int J Reprod Biomed 2021; 19:625-636. [PMID: 34458671 PMCID: PMC8387708 DOI: 10.18502/ijrm.v19i7.9473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/01/2020] [Accepted: 12/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background Acrylamide (AA) is a reactive molecule produced during food processing at temperatures above 120∘C. Objective To evaluate the impact of different concentrations of AA on human sperm parameters, oxidative stress and total antioxidant capacity (TAC). Materials and Methods In this laboratory study, semen samples were obtained from healthy donors referred to the Taleghani Hospital, Tehran, Iran between June and July 2019. Samples were divided into four groups (n = 10/each): one control and three treatment groups (0.5, 1, and 2 mM of AA). After 2 hr of exposure to AA, the superoxide dismutase and malondialdehyde levels were measured based on colorimetric methods. The TAC was determined by the ferric-reducing antioxidant power assay. Flow cytometry was performed to measure the intracellular reactive oxygen species generation. Also, immunohistochemistry was done to determine the effect of AA on tyrosine phosphorylation and carboxymethyl-lysine expression. Results Results of the study demonstrated that the motility and viability of spermatozoa were significantly decreased after AA exposure (p < 0.001). This decrease was also seen in the TAC and superoxide dismutase activity as well as in the phosphotyrosine percentage compared with the control (p < 0.01). However, the carboxymethyl-lysine and prooxidant activity including reactive oxygen species generation and lipid peroxidation level increased (p < 0.001). Conclusion Overall, the results confirmed the detrimental effect of AA on human spermatozoa which may be due to oxidative stress and decreased total antioxidant levels. AA may reduce fertility by reducing sperm capacitation and motility.
Collapse
Affiliation(s)
- Mojdeh Hosseinpoor Kashani
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mina Ramezani
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Zeinab Piravar
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
21
|
Akbarian F, Rahmani M, Tavalaee M, Abedpoor N, Taki M, Ghaedi K, Nasr-Esfahani MH. Effect of Different High-Fat and Advanced Glycation End-Products Diets in Obesity and Diabetes-Prone C57BL/6 Mice on Sperm Function. INTERNATIONAL JOURNAL OF FERTILITY & STERILITY 2021; 15:226-233. [PMID: 34155870 PMCID: PMC8233922 DOI: 10.22074/ijfs.2021.137231.1022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022]
Abstract
Background: We aimed to compare the effects of using high-fat (HF) and advanced glycation end-products (AGEs)
containing diets to induce obesity and diabetes on sperm function in mice. Materials and Methods: In this experimental study, twenty-five 4-week old C57BL/6 mice were divided into 5
groups and were fed with control, 45% HF, 60% HF, 45% AGEs-HF, or 60% AGEs-HF diet. After 28 weeks, fast
blood sugar, glucose intolerance, insulin concentration, homeostatic model assessments (HOMA) for insulin resistance (IR) and HOMA for beta cells (HOMA beta) from systematic blood were assessed. In addition, body weight,
morphometric characteristics of testes, sperm parameters, DNA damage (AO), protamine deficiency (CMAA3), and
sperm membrane (DCFH-DA) and intracellular (BODIPY) lipid peroxidation were measured. Results: Body mass and fasting blood sugar increased significantly in all experimental groups compared to the control
group. Insulin concentration, glucose intolerance, HOMA IR, and HOMA beta were also increased significantly with
higher levels of fat and AGEs in all four diets (P<0.05). The changes in the 60% HF-AGEs group, however, were more
significant (P<0.001). Morphometric characteristics of the testis, sperm concentration, and sperm morphology in the
diet groups did not significantly differ from the control group, while sperm motility and DNA damage in the 45%HF
were significantly low. Although for protamine deficiency, both 60% HF-AGEs and 45% HF showed a significant
increase compared to the control, the mean of sperm lipid in the 45% HF group and intracellular peroxidation in the
60% HF-AGEs group had the highest and the lowest increases, respectively. Conclusion: Our results, interestingly, showed that is the negative effects of a diet containing AGEs on examined parameters are less than those in HF diets. One possible reason is detoxification through the activation of the protective
glyoxalase pathway as the result of the chronic AGEs increase in the body.
Collapse
Affiliation(s)
- Fahimeh Akbarian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Navid Abedpoor
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mozhdeh Taki
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
22
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
23
|
Nakano T, Kono M, Segawa K, Kurosaka S, Nakaoka Y, Morimoto Y, Mitani T. Effects of exposure to methylglyoxal on sperm motility and embryonic development after fertilization in mice. J Reprod Dev 2021; 67:123-133. [PMID: 33551390 PMCID: PMC8075723 DOI: 10.1262/jrd.2020-150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Methylglyoxal (MG) is a precursor for the generation of endogenous advanced glycation end-products involved in various diseases, including infertility. The
present study evaluated the motility and developmental competence after in vitro fertilization of mouse sperm which were exposed to MG in the
capacitation medium for 1.5 h. Sperm motility was analyzed using an SQA-V automated sperm quality analyzer. Intracellular reactive oxygen species (ROS),
membrane integrity, mitochondrial membrane potential, and DNA damage were assessed using flow cytometry. The matured oocytes were inseminated with MG-exposed
sperm, and subsequently, the fertilization and embryonic development in vitro were evaluated in vitro. The exposure of sperm
to MG did not considerably affect the swim-up of sperm but resulted in a deteriorated sperm motility in a concentration-dependent manner, which was associated
with a decreased mitochondrial activity. However, these effects was not accompanied by obvious ROS accumulation or DNA damage. Furthermore, MG diminished the
fertilization rate and developmental competence, even after normal fertilization. Collectively, a short-term exposure to MG during sperm capacitation had a
critical impact on sperm motility and subsequent embryonic development after fertilization. Considering that sperm would remain in vivo for up
to 3 days until fertilization, our findings suggest that sperm can be affected by MG in the female reproductive organs, which may be associated with
infertility.
Collapse
Affiliation(s)
- Tatsuya Nakano
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,IVF Namba Clinic, Osaka 550-0015, Japan
| | - Mizuki Kono
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Kazuki Segawa
- Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| | - Satoshi Kurosaka
- Institute of Advanced Technology, Kindai University, Wakayama 642-0017, Japan
| | | | | | - Tasuku Mitani
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan.,Department of Biology-Oriented Science and Technology, Kindai University, Wakayama 649-6493, Japan
| |
Collapse
|
24
|
Guillon C, Ferraro S, Clément S, Bouschbacher M, Sigaudo-Roussel D, Bonod C. Glycation by glyoxal leads to profound changes in the behavior of dermal fibroblasts. BMJ Open Diabetes Res Care 2021; 9:9/1/e002091. [PMID: 33903117 PMCID: PMC8076933 DOI: 10.1136/bmjdrc-2020-002091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes is a worldwide health problem that is associated with severe complications. Advanced Glycation End products (AGEs) such as Nε-(carboxymethyl)lysine, which result from chronic hyperglycemia, accumulate in the skin of patients with diabetes. The effect of AGEs on fibroblast functionality and their impact on wound healing are still poorly understood. RESEARCH DESIGN AND METHODS To investigate this, we treated cultured human fibroblasts with 0.6 mM glyoxal to induce acute glycation. The behavior of fibroblasts was analyzed by time-lapse monolayer wounding healing assay, seahorse technology and atomic force microscopy. Production of extracellular matrix was studied by transmission electronic microscopy and western blot. Lipid metabolism was investigated by staining of lipid droplets (LDs) with BODIPY 493/503. RESULTS We found that the proliferative and migratory capacities of the cells were greatly reduced by glycation, which could be explained by an increase in fibroblast tensile strength. Measurement of the cellular energy balance did not indicate that there was a change in the rate of oxygen consumption of the fibroblasts. Assessment of collagen I revealed that glyoxal did not influence type I collagen secretion although it did disrupt collagen I maturation and it prevented its deposition in the extracellular matrix. We noted a pronounced increase in the number of LDs after glyoxal treatment. AMPK phosphorylation was reduced by glyoxal treatment but it was not responsible for the accumulation of LDs. CONCLUSION Glyoxal promotes a change in fibroblast behavior in favor of lipogenic activity that could be involved in delaying wound healing.
Collapse
Affiliation(s)
- Cécile Guillon
- Urgo Research Innovation and Development, Chenôve, France
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sandra Ferraro
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| | - Sophie Clément
- Urgo Research Innovation and Development, Chenôve, France
| | | | | | - Christelle Bonod
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, LBTI UMR 5305, Lyon, France
| |
Collapse
|
25
|
Schuh CMAP, Benso B, Naulin PA, Barrera NP, Bozec L, Aguayo S. Modulatory Effect of Glycated Collagen on Oral Streptococcal Nanoadhesion. J Dent Res 2020; 100:82-89. [PMID: 32758105 DOI: 10.1177/0022034520946320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biofilm-mediated oral diseases such as dental caries and periodontal disease remain highly prevalent in populations worldwide. Biofilm formation initiates with the attachment of primary colonizers onto surfaces, and in the context of caries, the adhesion of oral streptococci to dentinal collagen is crucial for biofilm progression. It is known that dentinal collagen suffers from glucose-associated crosslinking as a function of aging or disease; however, the effect of collagen crosslinking on the early adhesion and subsequent biofilm formation of relevant oral streptococci remains unknown. Therefore, the aim of this work was to determine the impact of collagen glycation on the initial adhesion of primary colonizers such as Streptococcus mutans UA159 and Streptococcus sanguinis SK 36, as well as its effect on the early stages of streptococcal biofilm formation in vitro. Type I collagen matrices were crosslinked with either glucose or methylglyoxal. Atomic force microscopy nanocharacterization revealed morphologic and mechanical changes within the collagen matrix as a function of crosslinking, such as a significantly increased elastic modulus in crosslinked fibrils. Increased nanoadhesion forces were observed for S. mutans on crosslinked collagen surfaces as compared with the control, and retraction curves obtained for both streptococcal strains demonstrated nanoscale unbinding behavior consistent with bacterial adhesin-substrate coupling. Overall, glucose-crosslinked substrates specifically promoted the initial adhesion, biofilm formation, and insoluble extracellular polysaccharide production of S. mutans, while methylglyoxal treatment reduced biofilm formation for both strains. Changes in the adhesion behavior and biofilm formation of oral streptococci as a function of collagen glycation could help explain the biofilm dysbiosis seen in older people and patients with diabetes. Further studies are necessary to determine the influence of collagen crosslinking on the balance between acidogenic and nonacidogenic streptococci to aid in the development of novel preventive and therapeutic treatment against dental caries in these patients.
Collapse
Affiliation(s)
- C M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - B Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - P A Naulin
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - N P Barrera
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - S Aguayo
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Zhu JL, Cai YQ, Long SL, Chen Z, Mo ZC. The role of advanced glycation end products in human infertility. Life Sci 2020; 255:117830. [PMID: 32450172 DOI: 10.1016/j.lfs.2020.117830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/09/2020] [Accepted: 05/19/2020] [Indexed: 01/03/2023]
Abstract
Advanced glycation end products (AGEs) are heterogeneous products of the non-enzymatic interaction between proteins and reducing sugars. Numerous studies have shown that AGEs are associated with senescence, diabetes, vascular disease, aging and kidney disease. Infertility has been affected approximately 10 to15% of couples of reproductive ages. AGEs accumulation has been shown to play a crucial role in pathogenesis of infertility-related diseases. The present review provides the generation process, mechanism and pathological significance of AGEs and the novel treatment targeting AGEs for infertility.
Collapse
Affiliation(s)
- Jing-Ling Zhu
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China; Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ya-Qin Cai
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China; Clinical Anatomy & Reproductive Medicine Application Institute, Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Shuang-Lian Long
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China
| | - Zhuo Chen
- Hunan Province Innovative Training Base for Medical Postgraduates, University of South China and Yueyang Women & Children's Medical Center, Yueyang 416000, Hunan, China.
| | - Zhong-Cheng Mo
- Institute of Basic Medical Science, Center for Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin 541199, Guangxi, China.
| |
Collapse
|
27
|
Omolaoye TS, du Plessis SS. Male infertility: A proximate look at the advanced glycation end products. Reprod Toxicol 2020; 93:169-177. [DOI: 10.1016/j.reprotox.2020.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 01/07/2023]
|
28
|
Maciel VL, Tamashiro LK, Bertolla RP. Post-translational modifications of seminal proteins and their importance in male fertility potential. Expert Rev Proteomics 2019; 16:941-950. [PMID: 31726898 DOI: 10.1080/14789450.2019.1693895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The seminal proteome has been shown to directly influence the male fertile potential. Post-translational modifications (PTMs) are significant changes that play a role in the biological regulation of proteins. Sperm cells are transcriptionally and translationally inactive and these modifications are essential to control protein function.Areas covered: Here we reviewed seven PTMs which importance for male reproductive function investigated in the past decade, namely S-nitrosylation and tyrosine nitration (both occurring by the action of NO), glycosylation, ubiquitination, acetylation, methylation, and SUMOylation. Since they were previously identified in human semen, we focus on their role in sperm function, as well as in physiological and pathophysiological processes which could contribute to the fertility potential. The following keywords were applied: 'post-translational modification', 'sperm', 'semen', 'seminal plasma', 'male infertility', 'nitrosylation', 'nitration', 'histone methylation', 'SUMOylation', 'ubiquitination', 'ubiquitilation', 'glycosylation', and 'acetylation'.Expert opinion: Most biological processes orchestrated by proteins require PTMs for their activation or inhibition. Most of them are dynamic and occur in mature sperm, modulating protein function, thus exerting a significant role in sperm function and fertility. Finally, the study of PTMs should be also addressed in pathophysiological processes, as different clinical conditions are known to alter the proteome.
Collapse
Affiliation(s)
- Valter Luiz Maciel
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Letícia Kaory Tamashiro
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Departamento de Cirurgia, Disciplina de Urologia, Centro de pesquisa em Urologia, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Peña FJ, O’Flaherty C, Ortiz Rodríguez JM, Martín Cano FE, Gaitskell-Phillips GL, Gil MC, Ortega Ferrusola C. Redox Regulation and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants (Basel) 2019; 8:antiox8110567. [PMID: 31752408 PMCID: PMC6912273 DOI: 10.3390/antiox8110567] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/05/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023] Open
Abstract
Redox regulation and oxidative stress have become areas of major interest in spermatology. Alteration of redox homeostasis is recognized as a significant cause of male factor infertility and is behind the damage that spermatozoa experience after freezing and thawing or conservation in a liquid state. While for a long time, oxidative stress was just considered an overproduction of reactive oxygen species, nowadays it is considered as a consequence of redox deregulation. Many essential aspects of spermatozoa functionality are redox regulated, with reversible oxidation of thiols in cysteine residues of key proteins acting as an “on–off” switch controlling sperm function. However, if deregulation occurs, these residues may experience irreversible oxidation and oxidative stress, leading to malfunction and ultimately death of the spermatozoa. Stallion spermatozoa are “professional producers” of reactive oxygen species due to their intense mitochondrial activity, and thus sophisticated systems to control redox homeostasis are also characteristic of the spermatozoa in the horse. As a result, and combined with the fact that embryos can easily be collected in this species, horses are a good model for the study of redox biology in the spermatozoa and its impact on the embryo.
Collapse
Affiliation(s)
- Fernando J. Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
- Correspondence: ; Tel.: +34-927-257-167
| | - Cristian O’Flaherty
- Departments of Surgery (Urology Division) and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montréal, QC H4A 3J1, Canada;
| | - José M. Ortiz Rodríguez
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Francisco E. Martín Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Gemma L. Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - María C. Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| | - Cristina Ortega Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, 10003 Cáceres, Spain; (J.M.O.R.); (F.E.M.C.); (G.L.G.-P.); (M.C.G.); (C.O.F.)
| |
Collapse
|
30
|
Hyperglycemia induces spermatogenic disruption via major pathways of diabetes pathogenesis. Sci Rep 2019; 9:13074. [PMID: 31506549 PMCID: PMC6736974 DOI: 10.1038/s41598-019-49600-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/27/2019] [Indexed: 01/23/2023] Open
Abstract
Diabetes-induced hyperglycemia has previously been shown to impact on male sub-/infertility, however, still little is known about the underlying mechanisms. In the present study we have addressed three major biochemical pathways implicated in the pathogenesis of hyperglycemia induced organ damage (the advanced glycation end product (AGE) formation pathway, the diacylglycerol-protein kinase C pathway (PKC), and the polyol pathway) in both testis and epididymis of the Ins2Akita mouse model of Type 1 diabetes (T1DM). Hyperglycemia activated both the PKC and the polyol pathway in a significant and progressive manner within the testis, but not within the epididymis. While the AGE receptor was ubiquitiously expressed in the testis, concentrations of precursor methylglyoxal and AGE carboxymethyllysine were increased in both epididymis and testis in diabetic mice. However, AGEs did not activate intracellular pathways of ERK1, ERK2, Rela, Nrf-2, IkBkB, NFkB except CDC42, Akt1. In conclusion, two of the major pathways of hyperglycemia-induced organ damage were clearly activated within the testis of T1DM mice. This provides therapeutical opportunities in the treatment of diabetic male reproductive dysfunction.
Collapse
|
31
|
Endogenous advanced glycation end products in pancreatic islets after short-term carbohydrate intervention in obese, diabetes-prone mice. Nutr Diabetes 2019; 9:9. [PMID: 30858378 PMCID: PMC6411991 DOI: 10.1038/s41387-019-0077-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 01/31/2019] [Indexed: 01/14/2023] Open
Abstract
Diet-induced hyperglycemia is described as one major contributor to the formation of advanced glycation end products (AGEs) under inflammatory conditions, crucial in type 2 diabetes progression. Previous studies have indicated high postprandial plasma AGE-levels in diabetic patients and after long-term carbohydrate feeding in animal models. Pancreatic islets play a key role in glucose metabolism; thus, their susceptibility to glycation reactions due to high amounts of dietary carbohydrates is of special interest. Therefore, diabetes-prone New Zealand Obese (NZO) mice received either a carbohydrate-free, high-fat diet (CFD) for 11 weeks or were additionally fed with a carbohydrate-rich diet (CRD) for 7 days. In the CRD group, hyperglycemia and hyperinsulinemia were induced accompanied by increasing plasma 3-nitrotyrosine (3-NT) levels, higher amounts of 3-NT and inducible nitric oxide synthase (iNOS) within pancreatic islets. Furthermore, N-ε-carboxymethyllysine (CML) was increased in the plasma of CRD-fed NZO mice and substantially higher amounts of arg-pyrimidine, pentosidine and the receptor for advanced glycation end products (RAGE) were observed in pancreatic islets. These findings indicate that a short-term intervention with carbohydrates is sufficient to form endogenous AGEs in plasma and pancreatic islets of NZO mice under hyperglycemic and inflammatory conditions.
Collapse
|