1
|
Xiong L, Zhu H, Liu J, Wang R, Zhong T, Jiang X, Tang L, Fan Y. Design and synthesis of novel derivatives of bisepoxylignans as potent anti-inflammatory agents involves the modulation of the M1/M2 microglia phenotype via TLR4/NF-κB signaling pathway. Eur J Med Chem 2025; 282:117092. [PMID: 39612567 DOI: 10.1016/j.ejmech.2024.117092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Bisepoxylignans have been reported to possess a variety of biological functions, especially in anti-inflammatory aspects. However, the bis-tetrahydrofuran scaffold restricts the type and position of substituents, which further limits the further optimization of their biological activity and druggability. Here, a series of novel derivative s of bisepoxylignans bearing 7H-pyrrolo[2,3-d]pyrimidin-4-amine and 1H-pyrazolo[3,4-d]pyrimidin-4-amine scaffolds were designed and synthesized by a scaffold hopping strategy. Biological evaluation demonstrated that compound 7x exhibited the most potent anti-inflammatory activity, both in vitro and in vivo. Additionally, 7x displayed an excellent oral safety profile at a dose of 500 mg/kg. The anti-inflammatory effect of 7x is potentially mediated by the inhibition of the TLR4/NF-κB pathway and the promotion of M1 to M2 microglial phenotypic conversion. Taken together, 7x could be a promising lead compound for the development of novel therapeutic agents for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Liang Xiong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Huilin Zhu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jie Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Rongtao Wang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Ting Zhong
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China
| | - Xiaowen Jiang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Lei Tang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| | - Yanhua Fan
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China; Natural Products Research Center of Guizhou Province, Guiyang, 550014, China.
| |
Collapse
|
2
|
Zhang L, Tian Y, Zhang L, Zhang H, Yang J, Wang Y, Lu N, Guo W, Wang L. A Comprehensive Review on the Plant Sources, Pharmacological Activities and Pharmacokinetic Characteristics of Syringaresinol. Pharmacol Res 2024:107572. [PMID: 39742933 DOI: 10.1016/j.phrs.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Syringaresinol, a phytochemical constituent belonging to lignan, is formed from two sinapyl alcohol units linked via a β-β linkage, which can be found in a wide variety of cereals and medicinal plants. Medical researches revealed that Syringaresinol possesses a broad spectrum of biological activities, including anti-inflammatory, anti-oxidation, anticancer, antibacterial, antiviral, neuroprotection, and vasodilation effects. These pharmacological properties lay the foundation for its use in treating various diseases such as inflammatory diseases, neurodegenerative disorders, diabetes and its complication, skin disorders, cancer, cardiovascular and cerebrovascular diseases. As the demand for natural therapeutics increases, Syringaresinol has garnered significant attention for its pharmacological properties. Despite the extensive literature that highlights the various biological activities of this molecule, the underlying mechanisms and the interrelationships between these activities are rarely addressed from a comprehensive perspective. Moreover, no thorough comprehensive summary and evaluation of Syringaresinol has been conducted to offer recommendations for potential future clinical trials and therapeutic applications of this bioactive compound. Thus, a comprehensive review on Syringaresinol is essential to advance scientific understanding, assess its therapeutic applications, ensure safety, and guide future research efforts. This will ultimately contribute to its potential integration into clinical practice and public health. This study aims to provide a comprehensive overview of Syringaresinol on its sources and biological activities to provide insights into its therapeutic potential, and to provide a basis for high-quality studies to determine the clinical efficacy of this compound. Additionally, we explored the pharmacokinetics, toxicology, and drug development aspects of Syringaresinol to guide future research efforts. The review also discussed the limitations of current research on Syringaresinol and put forward some new perspectives and challenges, which laid a solid foundation for further study on clinical application and new drug development of Syringaresinol in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yuqing Tian
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Lingling Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Huanyu Zhang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Jinghua Yang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Yi Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China
| | - Na Lu
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Wei Guo
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| | - Liang Wang
- Research Center of Traditional Chinese Medicine and Clinical Pharmacy, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan 250014, China.
| |
Collapse
|
3
|
Yue Z, Wang J, Hu R, Peng Q, Guo H, Zou H, Xiao J, Jiang Y, Wang Z. Effects of Glutamine or Glucose Deprivation on Inflammation and Tight Junction Disruption in Yak Rumen Epithelial Cells. Animals (Basel) 2024; 14:3232. [PMID: 39595285 PMCID: PMC11591495 DOI: 10.3390/ani14223232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/08/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Yak is a special free-ranging cattle breed in the plateau areas of Qinghai and Tibet. Pasture withering in cold-season pastures results in energy deficiency in yaks, which undermines the rumen epithelial barrier. However, the leading factor causing rumen epithelial injury remains unknown. Glutamine (Gln), a conditionally essential amino acid, is insufficient under pathological conditions. Glucose (GLU) is an important energy source. Thus, we explored the effects of Gln or GLU deprivation on the barrier function of yak rumen epithelial cells and investigated the underlying mechanisms, as well as the differences in rumen epithelial barrier function between Gln deprivation (Gln-D) and GLU deprivation (GLU-D). In previous work, we constructed the yak rumen epithelial cells (YRECs) line by transferring the human telomerase reverse transcriptase gene (hTERT) and simian virus 40 large T antigen (SV40T) into primary YRECs. The YRECs were exposed to normal, Gln-D, GLU-D, and serum replacement (SR) media for 6, 12, and 24 h. Our data displayed that cell viability and tight junction protein expression in the SR group were not significantly changed compared to the normal group. Whereas, compared with the SR group, Gln-D treated for more than 12 h reduced cell viability and proliferation, and GLU-D treated for more than 12 h damaged the cell morphology and reduced cell viability and proliferation. The cell proliferation and cell viability were decreased more in GLU-D than in Gln-D. In addition, Gln-D treated for more than 12 h disrupted YREC cellular partially tight junctions by inducing oxidative stress and inflammation, and GLU-D treated for more than 12 h disrupted YREC cellular tight junctions by inducing apoptosis, oxidative stress, and inflammation. Compared with Gln-D, GLU-D more significantly induced cell injury and reduced tight junction protein levels. Our results provided evidence that GLU-D induced damage through the p38 mitogen-activated protein kinase (p38 MAPK)/c-junN-terminal kinase (JNK) signaling pathway, which was more serious than Gln-D treated for more than 12 h.
Collapse
Affiliation(s)
- Ziqi Yue
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Junmei Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Quanhui Peng
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongrui Guo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huawei Zou
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianxin Xiao
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yahui Jiang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
4
|
Hassanein EHM, Althagafy HS, Baraka MA, Abd-Alhameed EK, Ibrahim IM, Abd El-Maksoud MS, Mohamed NM, Ross SA. The promising antioxidant effects of lignans: Nrf2 activation comes into view. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6439-6458. [PMID: 38695909 PMCID: PMC11422461 DOI: 10.1007/s00210-024-03102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/11/2024] [Indexed: 09/25/2024]
Abstract
Lignans are biologically active compounds widely distributed, recognized, and identified in seeds, fruits, and vegetables. Lignans have several intriguing bioactivities, including anti-inflammatory, antioxidant, and anticancer activities. Nrf2 controls the expression of many cytoprotective genes. Activation of Nrf2 is a promising therapeutic approach for treating and preventing diseases resulting from oxidative injury and inflammation. Lignans have been demonstrated to stimulate Nrf2 signaling in a variety of in vitro and experimental animal models. The review summarizes the findings of fourteen lignans (Schisandrin A, Schisandrin B, Schisandrian C, Magnolol, Honokiol, Sesamin, Sesamol, Sauchinone, Pinoresinol, Phyllanthin, Nectandrin B, Isoeucommin A, Arctigenin, Lariciresinol) as antioxidative and anti-inflammatory agents, affirming how Nrf2 activation affects their pharmacological effects. Therefore, lignans may offer therapeutic candidates for the treatment and prevention of various diseases and may contribute to the development of effective Nrf2 modulators.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad A Baraka
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mostafa S Abd El-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nesma M Mohamed
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Assiut, Assiut, 77771, Egypt.
| | - Samir A Ross
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
- Department of BioMolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| |
Collapse
|
5
|
Rahman MS, Alam MB, Naznin M, Madina MH, Rafiquzzaman SM. Glutamic-Alanine Rich Glycoprotein from Undaria pinnatifida: A Promising Natural Anti-Inflammatory Agent. Mar Drugs 2024; 22:383. [PMID: 39330264 PMCID: PMC11433183 DOI: 10.3390/md22090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
This study aimed to assess the anti-inflammatory properties of a bioactive glutamic-alanine rich glycoprotein (GP) derived from Undaria pinnatifida on both LPS-stimulated RAW264.7 cells, peritoneal macrophages, and mouse models of carrageenan- and xylene-induced inflammation, investigating the underlying molecular mechanisms. In both in-vitro and in-vivo settings, GP was found to reduce the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) while also inhibiting the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in response to lipopolysaccharide (LPS) stimulation. GP treatment significantly impeded the nuclear translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway by blocking the phosphorylation of IKKα and IκBα, leading to a reduction in proinflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Additionally, GP effectively inhibited the activation of mitogen-activated protein kinases (MAPKs), with specific inhibitors of p38 and extra-cellular signal regulated kinase (ERK) enhancing GP's anti-inflammatory efficacy. Notably, GP administration at 10 mg/kg/day (p.o.) markedly reduced carrageenan-induced paw inflammation and xylene-induced ear edema by preventing the infiltration of inflammatory cells into targeted tissues. GP treatment also downregulated key inflammatory markers, including iNOS, COX-2, IκBα, and NF-κB, by suppressing the phosphorylation of p38 and ERK, thereby improving the inflammatory index in both carrageenan- and xylene-induced mouse models. These findings suggest that marine resources, particularly seaweeds like U. pinnatifida, could serve as valuable sources of natural anti-inflammatory proteins for the effective treatment of inflammation and related conditions.
Collapse
Affiliation(s)
- Md Saifur Rahman
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - Md Badrul Alam
- Inner Beauty/Antiaging Center, Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Marufa Naznin
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea;
| | - Mst Hur Madina
- Institution of Nutrition and Functional Foods, Faculty Agricultural and Food Sciences, Laval University, Laval, QC G1V 0A6, Canada;
| | - S. M. Rafiquzzaman
- Department of Fisheries Biology and Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| |
Collapse
|
6
|
Kim K, Yoon J, Lim KM. Syringaresinol Attenuates α-Melanocyte-Stimulating Hormone-Induced Reactive Oxygen Species Generation and Melanogenesis. Antioxidants (Basel) 2024; 13:876. [PMID: 39061944 PMCID: PMC11273534 DOI: 10.3390/antiox13070876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Ginseng has been utilized for centuries in both the medicinal and cosmetic realms. Recent studies have actively investigated the biological activity of ginseng berry and its constituents. (+)-Syringaresinol [(+)-SYR], an active component of ginseng berry, has been demonstrated to have beneficial effects on the skin, but its potential impact on skin pigmentation has not been fully explored. Here, the antioxidant and anti-pigmentary activity of (+)-SYR were evaluated in B16F10 murine melanoma cells and in an artificial human pigmented skin model, Melanoderm™. A real-time PCR, Western blotting, immunofluorescence staining, and histochemistry staining were conducted to confirm the effects of (+)-SYR on pigmentation. (+)-SYR reduced melanogenesis and dendrite elongation in α-melanocyte-stimulating hormone (α-MSH)-primed B16F10 cells with low cytotoxicity. (+)-SYR suppressed the expression of melanogenic genes, namely tyrosinase (TYR), tyrosinase-related protein 1 (TRP-1), and tyrosinase-related protein 2 (TRP-2). Notably, (+)-SYR attenuated α-MSH-induced cytosolic and mitochondrial reactive oxygen species (ROS) generation, which was attributable at least in part to the suppression of NADPH oxidase-4 (NOX 4) expression. Finally, the brightening activities of (+)-SYR were verified using Melanoderm™, underscoring the potential of ginseng berry and (+)-SYR as functional ingredients in skin-brightening cosmetics.
Collapse
Affiliation(s)
| | | | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea; (K.K.); (J.Y.)
| |
Collapse
|
7
|
Javed A, Song BR, Lee CH, Alam MB, Kim SL, Lee SH. Glycoprotein from Sargassum fusiforme exhibiting anti-inflammatory responses in vitro and in vivo via modulation of TLR4/MyD88 and NF-κB signaling. Int J Biol Macromol 2024; 272:132574. [PMID: 38810846 DOI: 10.1016/j.ijbiomac.2024.132574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
This study focuses on the identification and characterization of a glycoprotein from Sargassum fusiforme (Harvey) Setchell (SFGP), as well as investigating its potential anti-inflammatory properties both in vitro and in vivo, along with the underlying mechanism. SDS-PAGE analysis revealed a prominent band with a molecular weight of <10 kDa, consisting of 58.39 % protein and 41.61 % carbohydrates, which was confirmed through glycoprotein staining and Coomassie blue staining. Various analytical techniques, including high-resolution mass spectrometry (HRMS), FTIR, amino acid analysis, and UV-visible spectrometry, provided evidence for the presence of monosaccharides (such as d-glucose and mannose) and 17 amino acids linked by an O-glycopeptide bond. In vitro and in vivo studies were conducted to assess the anti-inflammatory activities of SFGP. The results demonstrated that SFGP effectively attenuated nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expressions in LPS-treated RAW264.7 cells. Moreover, SFGP administration significantly and dose-dependently suppressed TLR4/MyD88 signaling as well as the phosphorylation of MAPKs, IκB, and NF-κB, leading to a reduction in the production of TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW264.7 cells. Furthermore, the anti-inflammatory efficacy of SFGP was validated in a carrageenan-induced inflammatory mouse model. These findings indicate that SFGP exhibits anti-inflammatory characteristics and has the potential to be utilized as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Ahsan Javed
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bo-Rim Song
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Chang Hyung Lee
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Solomon L Kim
- California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
8
|
Ollodart J, Steele LR, Romero-Sandoval EA, Strowd RE, Shiozawa Y. Contributions of neuroimmune interactions to chemotherapy-induced peripheral neuropathy development and its prevention/therapy. Biochem Pharmacol 2024; 222:116070. [PMID: 38387528 PMCID: PMC10964384 DOI: 10.1016/j.bcp.2024.116070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating sequela that is difficult for both clinicians and cancer patients to manage. Precise mechanisms of CIPN remain elusive and current clinically prescribed therapies for CIPN have limited efficacy. Recent studies have begun investigating the interactions between the peripheral and central nervous systems and the immune system. Understanding these neuroimmune interactions may shift the paradigm of elucidating CIPN mechanisms. Although the contribution of immune cells to CIPN pathogenesis represents a promising area of research, its fully defined mechanisms have not yet been established. Therefore, in this review, we will discuss (i) current shortcoming of CIPN treatments, (ii) the roles of neuroimmune interactions in CIPN development and (iii) potential neuroimmune interaction-targeting treatment strategies for CIPN. Interestingly, monocytes/macrophages in dorsal root ganglia; microglia and astrocytes in spinal cord; mast cells in skin; and Schwann cell near peripheral nerves have been identified as inducers of CIPN behaviors, whereas T cells have been found to contribute to CIPN resolution. Additionally, nerve-resident immune cells have been targeted as prevention and/or therapy for CIPN using traditional herbal medicines, small molecule inhibitors, and intravenous immunoglobulins in a preclinical setting. Overall, unveiling neuroimmune interactions associated with CIPN may ultimately reduce cancer mortality and improve cancer patients' quality of life.
Collapse
Affiliation(s)
- Jenna Ollodart
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | - Laiton R Steele
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | | | - Roy E Strowd
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA
| | - Yusuke Shiozawa
- Department of Cancer Biology, Wake Forest University School of Medicine, and Atrium Health Wake Forest Baptist Comprehensive Cancer, Winston-Salem, NC, USA.
| |
Collapse
|
9
|
Yang M, Gao P, Guo J, Qi Y, Li L, Yang S, Zhao Y, Liu J, Yu L. The endophytic fungal community plays a crucial role in the resistance of host plants to necrotic bacterial pathogens. PHYSIOLOGIA PLANTARUM 2024; 176:e14284. [PMID: 38618747 DOI: 10.1111/ppl.14284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/27/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Konjac species (Amorphophallus spp.) are the only plant species in the world that are rich in a large amount of konjac glucomannan (KGM). These plants are widely cultivated as cash crops in tropical and subtropical countries in Asia, including China. Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most destructive bacterial pathogens of konjac. Here, we analyzed the interactions between Pcc and susceptible and resistant konjac species from multiple perspectives. At the transcriptional and metabolic levels, the susceptible species A. konjac and resistant species A. muelleri exhibit similar molecular responses, activating plant hormone signaling pathways and metabolizing defense compounds such as phenylpropanoids and flavonoids to resist infection. Interestingly, we found that Pcc stress can lead to rapid recombination of endophytic microbial communities within a very short period (96 h). Under conditions of bacterial pathogen infection, the relative abundance of most bacterial communities in konjac tissue decreased sharply compared with that in healthy plants, while the relative abundance of some beneficial fungal communities increased significantly. The relative abundance of Cladosporium increased significantly in both kinds of infected konjac compared to that in healthy plants, and the relative abundance in resistant A. muelleri plants was greater than that in susceptible A. konjac plants. Among the isolated cultivable microorganisms, all three strains of Cladosporium strongly inhibited Pcc growth. Our results further elucidate the potential mechanism underlying konjac resistance to Pcc infection, highlighting the important role of endophytic microbial communities in resisting bacterial pathogen infections, especially the more direct role of fungal communities in inhibiting pathogen growth.
Collapse
Affiliation(s)
- Min Yang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Penghua Gao
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Jianwei Guo
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Ying Qi
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Lifang Li
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Shaowu Yang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Yongteng Zhao
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Jiani Liu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| |
Collapse
|
10
|
Gempo N, Yeshi K, Jamtsho T, Jamtsho L, Samten, Wangchuk P. Development of quality control parameters for two Bhutanese medicinal plants ( Aster flaccidus Bunge and Aster diplostephioides (DC.) Benth. ex C.B.Clarke) using traditional and modern pharmacognostical platforms. Heliyon 2024; 10:e24969. [PMID: 38317921 PMCID: PMC10839999 DOI: 10.1016/j.heliyon.2024.e24969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Bhutan's scholarly traditional medical system is called Bhutanese Sowa Rigpa medicine (BSM). It was integrated with the modern healthcare system in 1967. Over 200 medicinal plants are used to produce more than 100 poly-ingredient medicinal formulations. Although BSM is supported by well-documented principles, pharmacopoeias, diagnostic procedures, treatment regimens, and traditional quality assurance systems, modern quality control parameters have become essential to distinguish closely related species and prevent contamination from exogenous impurities. This study aims to establish reliable analytical methods and quality control parameters for Aster flaccidus Bunge and Aster diplostephioides (DC.) Benth. ex C.B. Clarke used as ingredients in the BMS poly-ingredient medicinal formulations. Furthermore, their reported phytochemicals and biological activities are also discussed in this study. Standard pharmacognostic techniques, including macroscopical and microscopical examinations of crude drugs, were employed to establish the quality control parameters for two Aster species. The physicochemical limits were determined as per the World Health Organization (WHO)-recommended guidelines and methods described in the Thai herbal pharmacopoeia. A high-performance thin-layer liquid chromatography (HPTLC) was used to develop a comparative chromatogram/phytochemical fingerprint for the crude extracts obtained from two Aster species. A literature review was conducted to record their isolated phytochemicals and biological activities. Two Aster species possess macro- and microscopic features such as colour, appearance, and shape. Physicochemical analysis of crude drugs from two Aster species including HPTLC fingerprinting of their methanol crude extracts also yielded adequate data to differentiate and confirm two Aster species before adding them to the BSM poly-ingredient medicinal formulations. From the literature review, only A. flaccidus was found to be studied for its phytochemical constituents, whereby 11 pure compounds were isolated from aerial parts and roots. The current study revealed distinct species-specific distinguishing features, including ecological adaptation, micromorphology, anatomy, physicochemical values, HPTLC chromatograms. These parameters can be used to authenticate the species identity and prevent adulterations, thereby improving the quality and safety of BSM formulations.
Collapse
Affiliation(s)
- Ngawang Gempo
- National Organic Flagship Program Center, Department of Agriculture, Thimphu, Bhutan
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
| | - Karma Yeshi
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
- Sherubtse College, Royal University of Bhutan (RUB), Kanglung, Trashigang, Bhutan
| | - Tenzin Jamtsho
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
- Yangchenphu High School, Department of School Education, Ministry of Education (MoE), Thimphu, Bhutan
| | - Lungten Jamtsho
- Menjong Sorig Pharmaceuticals Corporation Limited (MSPCL), Thimphu, Bhutan
| | - Samten
- Menjong Sorig Pharmaceuticals Corporation Limited (MSPCL), Thimphu, Bhutan
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
- College of Public Health, Medical and Veterinary Sciences, McGregor Rd, Smithfield, Cairns, QLD, 4878, Australia
- Menjong Sorig Pharmaceuticals Corporation Limited (MSPCL), Thimphu, Bhutan
| |
Collapse
|
11
|
Liu C, Cheng T, Wang Y, Li G, Wang Y, Tian W, Feng L, Zhang S, Xu Y, Gao Y, Li J, Liu J, Cui J, Yan J, Cao L, Pan Z, Qi Z, Yang L. Syringaresinol Alleviates Early Diabetic Retinopathy by Downregulating HIF-1α/VEGF via Activating Nrf2 Antioxidant Pathway. Mol Nutr Food Res 2024; 68:e2200771. [PMID: 38356045 DOI: 10.1002/mnfr.202200771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/10/2023] [Indexed: 02/16/2024]
Abstract
SCOPE Early diabetic retinopathy (DR) is characterized by chronic inflammation, excessive oxidative stress, and retinal microvascular damage. Syringaresinol (SYR), as a natural polyphenolic compound, has been proved to inhibit many disease progression due to its antiinflammatory and antioxidant properties. The present study focuses on exploring the effect of SYR on hyperglycemia-induced early DR as well as the underlying mechanisms. METHODS AND RESULTS Wild-type (WT) and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout C57BL/6 mice of type 1 diabetes and high glucose (HG)-induced RF/6A cells are used as in vivo and in vitro models, respectively. This study finds that SYR protects the retinal structure and function in diabetic mice and reduces the permeability and apoptosis of HG-treated RF/6A cells. Meanwhile, SYR distinctly mitigates inflammation and oxidative stress in vivo and vitro. The retinal microvascular damages are suppressed by SYR via downregulating hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathway. Whereas, SYR-provided protective effects are diminished in Nrf2-knockout mice, indicating that SYR improves DR progression by activating Nrf2. Similarly, SYR cannot exert protective effects against HG-induced oxidative stress and endothelial injury in small interfering RNA (siRNA)-Nrf2-transfected RF/6A cells. CONCLUSION In summary, SYR suppresses oxidative stress via activating Nrf2 antioxidant pathway, which ameliorates retinal microvascular damage by downregulating HIF-1α/VEGF, thereby alleviating early DR progression.
Collapse
Affiliation(s)
- Chang Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
- Nankai University Eye Institute, Tianjin, 300071, China
| | - Tianwei Cheng
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yufei Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yachen Wang
- Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Hospital, Tianjin Eye Institute, Nankai University Affiliated Eye Hospital, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, 300020, China
| | - Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
| | - Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Zhongjie Pan
- Tianjin Union Medical Center, Tianjin, 300122, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
- Nankai University Eye Institute, Tianjin, 300071, China
- Tianjin Union Medical Center, Tianjin, 300122, China
- Xinjiang Production and Construction Corps Hospital, Xinjiang, 830002, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University Tianjin, Tianjin, 300071, China
- Tianjin Union Medical Center, Tianjin, 300122, China
| |
Collapse
|
12
|
Liu Y, Wu J, Tan L, Li Z, Gao P, He S, Wang Q, Tang D, Wang C, Wang F, Li P, Liu J. (-)-Syringaresinol attenuates ulcerative colitis by improving intestinal epithelial barrier function and inhibiting inflammatory responses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155292. [PMID: 38190784 DOI: 10.1016/j.phymed.2023.155292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/02/2023] [Accepted: 12/16/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND (-)-Syringaresinol (SYR), a natural lignan with significant antioxidant and anti-inflammatory activities, possesses various pharmacological benefits including cardio-protective, antibacterial, anticancer, and anti-aging effects. It was shown that the effectiveness of (+)-syringaresinol diglucoside on the ulcerative colitis (UC) was attributed to the active metabolite (+)-syringaresinol (the enantiomor of SYR). However, the efficacy of SYR against UC remains unclear, and the associated molecular mechanism has not been revealed yet PURPOSE: This study aimed to assess the protective effect of SYR in UC and its underlying mechanism STUDY DESIGN AND METHODS: We examined SYR's protective impact on the intestinal epithelial barrier and its ability to inhibit inflammatory responses in both a lipopolysaccharide (LPS)-induced Caco-2 cell model and a dextran sodium sulfate (DSS)-induced UC mouse model. We also explored the potential signaling pathways regulated by SYR using transcriptome analysis and western blot assay RESULTS: In Caco-2 cells, SYR significantly increased trans-epithelial electrical resistance, reduced tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-γ (IFN-γ), and cyclooxygenase-2 (COX-2) levels, and enhanced cellular tight junction protein expression and distribution. In mice with UC, oral treatment with SYR (10, 20, 40 mg·kg-1) dose-dependently increased body weight, colon length, and expression of tight junction proteins, decreased disease activity index score, spleen coefficient, cytokine serum levels, bacterial translocation, and intestinal damage, and also preserved the ultrastructure of colonic mucosal cells. Transcriptomics indicated that the anti-UC effect of SYR is mediated via the PI3K-Akt/MAPK/Wnt signaling pathway. CONCLUSION In summary, SYR effectively mitigated the development of UC by enhancing the intestinal epithelial barrier function and attenuating the inflammatory response. The plant-derived product SYR might be a potentially effective therapeutical agent against UC.
Collapse
Affiliation(s)
- Yunhe Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Junzhe Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Luying Tan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Peng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China
| | - Fang Wang
- College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, China; Research Center of Natural Drugs, Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Silva D, Sousa AC, Robalo MP, Martins LO. A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase. N Biotechnol 2023; 77:176-184. [PMID: 36563877 DOI: 10.1016/j.nbt.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Lignin is the second most abundant natural polymer next to cellulose and by far the largest renewable source of aromatic compounds on the planet. Dye-decolourising peroxidases (DyPs) are biocatalysts with immense potential in lignocellulose biorefineries to valorize emerging lignin building blocks for environmentally friendly chemicals and materials. This work investigates the catalytic potential of the engineered PpDyP variant 6E10 for the oxidation of 24 syringyl, guaiacyl and hydroxybenzene lignin-phenolic derivatives. Variant 6E10 exhibited up to 100-fold higher oxidation rates at pH 8 for all the tested phenolic substrates compared to the wild-type enzyme and other acidic DyPs described in the literature. The main products of reactions were dimeric isomers with molecular weights of (2 × MWsubstrate - 2 H). Their structure depends on the substitution pattern of the aromatic ring of substrates, i.e., of the coupling possibilities of the primarily formed radicals upon enzymatic oxidation. Among the dimers identified were syringaresinol, divanillin and diapocynin, important sources of structural scaffolds exploitable in medicinal chemistry, food additives and polymers.
Collapse
Affiliation(s)
- Diogo Silva
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal
| | - Ana Catarina Sousa
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - M Paula Robalo
- Department of Chemical Engineering, Instituto Superior de Engenharia de Lisboa, Polytechnic Institute of Lisbon, R. Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal; Centre for Structural Chemistry, Institute of Molecular Sciences, Complexo I; Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Lígia O Martins
- Institute of Chemical and Biological Technology António Xavier, NOVA New University of Lisbon, Av da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
14
|
Karolczak K, Watala C. Estradiol as the Trigger of Sirtuin-1-Dependent Cell Signaling with a Potential Utility in Anti-Aging Therapies. Int J Mol Sci 2023; 24:13753. [PMID: 37762053 PMCID: PMC10530977 DOI: 10.3390/ijms241813753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Aging entails the inevitable loss of the structural and functional integrity of cells and tissues during the lifetime. It is a highly hormone-dependent process; although, the exact mechanism of hormone involvement, including sex hormones, is unclear. The marked suppression of estradiol synthesis during menopause suggests that the hormone may be crucial in maintaining cell lifespan and viability in women. Recent studies also indicate that the same may be true for men. Similar anti-aging features are attributed to sirtuin 1 (SIRT1), which may possibly be linked at the molecular level with estradiol. This finding may be valuable for understanding the aging process, its regulation, and possible prevention against unhealthy aging. The following article summarizes the initial studies published in this field with a focus on age-associated diseases, like cancer, cardiovascular disease and atherogenic metabolic shift, osteoarthritis, osteoporosis, and muscle damage, as well as neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland;
| | | |
Collapse
|
15
|
Hwang JH, Kang Y, Park HJ, Kim S, Lee SH, Kim H, Nam SJ, Lim KM. Skin wound healing effects of (+)-syringaresinol from ginseng berry. J Ginseng Res 2023; 47:654-661. [PMID: 37720576 PMCID: PMC10499580 DOI: 10.1016/j.jgr.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/22/2023] [Accepted: 04/09/2023] [Indexed: 09/19/2023] Open
Abstract
Background Ginseng has been used as a traditional medicine and functional cosmetic ingredients for many years. Recent studies have focused on the potential biological effects of the ginseng berry and its ingredients. (+)-Syringaresinol (SYR) is enriched in ginseng berry and its beneficial effects on the skin have been recently reported. However, little is known about the its effects on the wound healing process of skin. Methods Here, we evaluated the skin wound healing effect of (+)-SYR using the human fibroblast Hs68 cell and ex vivo pig and human skin tissue model. Scratch wound test and hydrogen peroxide (HPO) induce chemical wound model were employed. Results (+)-SYR promoted the migration and proliferation of Hs68 cells without significant cytotoxicity at the tested concentrations. Especially, in ex vivo pig and human skin tissue, HPO-induced chemical wound was recovered almost completely by (+)-SYR. In line with the finding in Hs68, the protein expression levels of TGF-β and PCNA, a proliferation marker were increased, demonstrating the beneficial effects of (+)-SYR on skin wound repair. Conclusion Collectively, we demonstrated that (+)-SYR from ginseng berry, can enhance the wound healing effect by accelerating cell proliferation and skin regeneration, suggesting the potential utility of (+)-SYR for skin wound repair.
Collapse
Affiliation(s)
- Jee-hyun Hwang
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Yeonsoo Kang
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | - Heui-Jin Park
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| | | | | | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Khater SI, Shalabi M, Alammash BB, Alrais AI, Al-Ahmadi DS, Alqahtani LS, Khameis T, Abdelaziz S, Elkelish A, El-Dawy K. Evaluation of flaxseed lignan-enriched extract targeting autophagy, apoptosis, and hedgehog pathways against experimentally induced obesity. J Adv Vet Anim Res 2023; 10:321-335. [PMID: 37534085 PMCID: PMC10390674 DOI: 10.5455/javar.2023.j684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 08/04/2023] Open
Abstract
Objective This research investigated secoisolariciresinol diglucoside (SDG) flax extract effects on apoptosis, hedgehog (Hh), autophagy, and the anti-oxidation process in experimentally induced obesity. Materials and Methods Forty rats were separated into two sets regarding either receiving a normal balanced diet or a high-fat diet (HFD) and then distributed into four groups: GI: The control group had a regular diet for 12 weeks. GII: animals received a high-fat meal and saline by gastric gavage. GIII: HFD obese rats treated with SDG extract orally (10 mg/kg/b.w.) and 1.18 mg SDG/kg in the diet for 4 weeks GIV: Normal balanced diet rats received SDG extract orally (10 mg/kg/b.w.) and 1.18 mg SDG/kg of chow for 12 weeks in addition to their regular balanced diet. Results The administration of SDG extract exhibited a significant drop in body weight, glucose, lipid profile, and leptin compared to the obese group. It also improved the antioxidant levels (lowering the levels of malondialdehyde while increasing the total antioxidant capacity) and anti-inflammatory status (decreasing interleukin-6 and tumor necrosis factor-alpha). SDG extract downregulates the expression of HH genes (protein patched homolog 1, Hh-interacting protein, glioma-associated oncogene homolog 1, and smoothened receptor) in conjunction with the modulation of autophagy genes and apoptotic proteins. Conclusion SDG extract showed improved anti-inflammatory and antioxidant status and downregulated the expression of HH genes while modulating autophagy genes and apoptotic proteins among obese rats, suggesting that it may be used to avert and manage obesity and its correlated complications by modulating oxidation, inflammation, autophagy, and apoptosis. Advanced future research on the SDG autophagy pathway to address obesity and its complications is mandatory.
Collapse
Affiliation(s)
- Safaa I. Khater
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maram Shalabi
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Alaa I. Alrais
- King Fahad Hospital, Ministry of Health, Medina, Saudi Arabia
| | - Doaa S. Al-Ahmadi
- Maternity and Children Hospital (MCH), Ministry of Health, Medina, Saudi Arabia
| | - Leena S. Alqahtani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Tarek Khameis
- Department of Pharmacology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Sahar Abdelaziz
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Kh. El-Dawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Li G, Liu C, Yang L, Feng L, Zhang S, An J, Li J, Gao Y, Pan Z, Xu Y, Liu J, Wang Y, Yan J, Cui J, Qi Z, Yang L. Syringaresinol protects against diabetic nephropathy by inhibiting pyroptosis via NRF2-mediated antioxidant pathway. Cell Biol Toxicol 2023; 39:621-639. [PMID: 36640193 DOI: 10.1007/s10565-023-09790-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Diabetic nephropathy (DN) is one of the serious complications of diabetes that has limited treatment options. As a lytic inflammatory cell death, pyroptosis plays an important role in the pathogenesis of DN. Syringaresinol (SYR) possesses anti-inflammatory and antioxidant properties. However, the therapeutic effects and the underlying mechanism of SYR in DN remain unclear. Herein, we showed that SYR treatment ameliorated renal hypertrophy, fibrosis, mesangial expansion, glomerular basement membrane thickening, and podocyte foot process effacement in streptozotocin (STZ)-induced diabetic mice. Mechanistically, SYR prevented the abundance of pyroptosis-related proteins such as NOD-like receptor family pyrin domain containing 3 (NLRP3), cysteinyl aspartate-specific proteinase 1 (Caspase-1), and gasdermin D (GSDMD), and the biosynthesis of inflammatory cytokines interleukin 1β (IL-1β) and interleukin 18 (IL-18). In addition, SYR promoted the nuclear translocation of nuclear factor E2-related factor 2 (NRF2) and enhanced the downstream antioxidant enzymes heme oxygenase 1 (HO-1) and manganese superoxide dismutase (MnSOD), thereby effectively decreasing excess reactive oxygen species (ROS). Most importantly, knockout of NRF2 abolished SYR-mediated renoprotection and anti-pyroptotic activities in NRF2-KO diabetic mice. Collectively, SYR inhibited the NLRP3/Caspase-1/GSDMD pyroptosis pathway by upregulating NRF2 signaling in DN. These findings suggested that SYR may be promising a therapeutic option for DN.
Collapse
Affiliation(s)
- Guangru Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lifeng Feng
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiale An
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Zhongjie Pan
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yachen Wang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China.
- Xinjiang Production and Construction Corps Hospital, Xinjiang, 830092, China.
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, 300122, China.
| |
Collapse
|
18
|
Suriyaprom S, Srisai P, Intachaisri V, Kaewkod T, Pekkoh J, Desvaux M, Tragoolpua Y. Antioxidant and Anti-Inflammatory Activity on LPS-Stimulated RAW 264.7 Macrophage Cells of White Mulberry ( Morus alba L.) Leaf Extracts. Molecules 2023; 28:molecules28114395. [PMID: 37298871 DOI: 10.3390/molecules28114395] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The white mulberry (Morus alba L.) is widely used as a medicinal plant in Asia. In this study, the bioactive compounds of ethanolic extracts of white mulberry leaves from the Sakon Nakhon and Buriram cultivars were evaluated. The ethanolic extracts of mulberry leaves from the Sakon Nakhon cultivar showed the highest total phenolic content of 49.68 mg GAE/g extract and antioxidant activities of 4.38 mg GAE/g extract, 4.53 mg TEAC/g extract, and 92.78 mg FeSO4/g extract using 2,2 diphenyl-1-picrylhydrazyl (DPPH), 2,20-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS), and ferric reducing antioxidant power (FRAP) assays, respectively. The resveratrol and oxyresveratrol compounds in mulberry leaves were also investigated by high-performance liquid chromatography (HPLC). The mulberry leaf extracts from the Sakon Nakhon and Buriram cultivars showed oxyresveratrol contents of 1.20 ± 0.04 mg/g extract and 0.39 ± 0.02 mg/g extract, respectively, whereas resveratrol was not detected. It was also found that the potent anti-inflammatory properties of mulberry leaf extracts and its compounds, resveratrol and oxyresveratrol, suppressed the LPS-stimulated inflammatory responses in RAW 264.7 macrophage cells by significantly reducing nitric oxide production in a concentration-dependent manner. These compounds further inhibited interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production and suppressed the mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW 264.7 macrophage cells. Therefore, it is established that mulberry leaf extract and its bioactive compounds contribute to its anti-inflammatory activity.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- INRAE, UCA, UMR0454 MEDIS, 63000 Clermont-Ferrand, France
| | | | - Varachaya Intachaisri
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Rivai B, Hasriadi, Dasuni Wasana PW, Chansriniyom C, Towiwat P, Punpreuk Y, Likhitwitayawuid K, Rojsitthisak P, Sritularak B. Potential role of a novel biphenanthrene derivative isolated from Aerides falcata in central nervous system diseases. RSC Adv 2023; 13:10757-10767. [PMID: 37025673 PMCID: PMC10072239 DOI: 10.1039/d3ra01402a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Central nervous system (CNS) diseases are a significant health burden globally, with the development of novel drugs lagging behind clinical needs. Orchidaceae plants have been traditionally used to treat CNS diseases, leading to the identification of therapeutic leads against CNS diseases from the Aerides falcata orchid plant in the present study. The study isolated and characterized ten compounds, including a previously undescribed biphenanthrene derivative, Aerifalcatin (1), for the first time from the A. falcata extract. The novel compound 1 and known compounds, such as 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene (5), agrostonin (7), and syringaresinol (9), showed potential activity in CNS-associated disease models. Notably, compounds 1, 5, 7, and 9 demonstrated the ability to alleviate LPS-induced NO release in BV-2 microglial cells, with IC50 values of 0.9, 2.5, 2.6, and 1.4 μM, respectively. These compounds also significantly inhibited the release of pro-inflammatory cytokines, IL-6 and TNF-α, reflecting their potential anti-neuroinflammatory effects. Additionally, compounds 1, 7, and 9 were found to reduce cell growth and migration of glioblastoma and neuroblastoma cells, indicating their potential use as anticancer agents in the CNS. In summary, the bioactive agents isolated from the A. falcata extract offer plausible therapeutic options for CNS diseases.
Collapse
Affiliation(s)
- Bachtiar Rivai
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand
| | - Hasriadi
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand
| | | | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand
- Natural Products and Nanoparticles Research Unit, Chulalongkorn University Bangkok 10330 Thailand
| | - Pasarapa Towiwat
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University Bangkok 10330 Thailand
| | - Yanyong Punpreuk
- Department of Agriculture, Ministry of Agriculture and Cooperatives Bangkok 10900 Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand
| | - Pornchai Rojsitthisak
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University Bangkok 10330 Thailand
- Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University Bangkok 10330 Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Chulalongkorn University Bangkok 10330 Thailand
| |
Collapse
|
20
|
Gao JF, Tang L, Luo F, Chen L, Zhang YY, Ding H. Myricetin treatment has ameliorative effects in DNFB-induced atopic dermatitis mice under high-fat conditions. Toxicol Sci 2023; 191:308-320. [PMID: 36575998 DOI: 10.1093/toxsci/kfac138] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atopic dermatitis (AD) is a chronic, inflammatory cutaneous disorder. Obesity is associated with increased prevalence and severity of AD for reasons that remain poorly understood. Myricetin, a dietary flavonoid found in fruits and vegetables, is known to have anti-inflammatory effects, but its role in AD is unclear. Thus, we investigated the effects of obesity on exacerbation AD lesions and evaluated the effects of myricetin on obese AD. Mice were fed normal diet (ND) or high-fat diet, and then 2,4-dinitrofluorobenzene was used to induce AD-like lesions. We found that obesity exacerbated AD lesions, and myricetin topical administration ameliorated symptoms and skin lesions of obsess AD mice, such as dermatitis scores, scratching behavior, epidermal thickness, and mast cell infiltration. In addition, myricetin reduced the levels of immunoglobulin E and histamine, inhibited the infiltration of CD4+T cells, and modulated the expression of Th1, Th2, Th17, and Th22 cytokines and pro-inflammatory factors (CCL17, CCL22, IL-1β, and TGF-β). Moreover, myricetin restored impaired barrier function by reducing transepidermal water loss, increasing lamellar body secretion, as well as upregulating the mRNA and protein expression of filaggrin. Western blot results showed that significantly increased levels of phosphorylated IκB and NF-κB p65 was observed in the obese AD mice compared with the AD mice fed ND, whereas the myricetin could downregulated the phosphorylations of IκB and NF-κB, and inhibited mRNA expression of iNOS and COX2. Taken together, our results suggest that myricetin treatment exhibits potentially protective effects against the obeseassociated AD by inhibiting inflammatory response and restoring skin barrier function.
Collapse
Affiliation(s)
- Jie-Fang Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Liu Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China.,Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, PR China
| | - Fei Luo
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Lu Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Yi-Yuan Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei 430060, PR China
| |
Collapse
|
21
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life (Basel) 2023; 13:560. [PMID: 36836916 PMCID: PMC9963806 DOI: 10.3390/life13020560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetic nephropathy (DN), also recognized as diabetic kidney disease, is a kidney malfunction caused by diabetes mellitus. A possible contributing factor to the onset of DN is hyperglycemia. Poorly regulated hyperglycemia can damage blood vessel clusters in the kidneys, leading to kidney damage. Its treatment is difficult and expensive because its causes are extremely complex and poorly understood. Extracts from medicinal plants can be an alternative treatment for DN. The bioactive content in medicinal plants inhibits the progression of DN. This work explores the renoprotective activity and possible mechanisms of various medicinal plant extracts administered to diabetic animal models. Research articles published from 2011 to 2022 were gathered from several databases including PubMed, Scopus, ProQuest, and ScienceDirect to ensure up-to-date findings. Results showed that medicinal plant extracts ameliorated the progression of DN via the reduction in oxidative stress and suppression of inflammation, advanced glycation end-product formation, cell apoptosis, and tissue injury-related protein expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung 80351, Indonesia
- Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
22
|
Jang WY, Kim MY, Cho JY. Antioxidant, Anti-Inflammatory, Anti-Menopausal, and Anti-Cancer Effects of Lignans and Their Metabolites. Int J Mol Sci 2022; 23:ijms232415482. [PMID: 36555124 PMCID: PMC9778916 DOI: 10.3390/ijms232415482] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Since chronic inflammation can be seen in severe, long-lasting diseases such as cancer, there is a high demand for effective methods to modulate inflammatory responses. Among many therapeutic candidates, lignans, absorbed from various plant sources, represent a type of phytoestrogen classified into secoisolariciresionol (Seco), pinoresinol (Pino), matairesinol (Mat), medioresinol (Med), sesamin (Ses), syringaresinol (Syr), and lariciresinol (Lari). Lignans consumed by humans can be further modified into END or ENL by the activities of gut microbiota. Lignans are known to exert antioxidant and anti-inflammatory activities, together with activity in estrogen receptor-dependent pathways. Lignans may have therapeutic potential for postmenopausal symptoms, including cardiovascular disease, osteoporosis, and psychological disorders. Moreover, the antitumor efficacy of lignans has been demonstrated in various cancer cell lines, including hormone-dependent breast cancer and prostate cancer, as well as colorectal cancer. Interestingly, the molecular mechanisms of lignans in these diseases involve the inhibition of inflammatory signals, including the nuclear factor (NF)-κB pathway. Therefore, we summarize the recent in vitro and in vivo studies evaluating the biological effects of various lignans, focusing on their values as effective anti-inflammatory agents.
Collapse
Affiliation(s)
- Won Young Jang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.: +82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
23
|
Syringaresinol Alleviates Oxaliplatin-Induced Neuropathic Pain Symptoms by Inhibiting the Inflammatory Responses of Spinal Microglia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238138. [PMID: 36500231 PMCID: PMC9736412 DOI: 10.3390/molecules27238138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Oxaliplatin-induced peripheral neuropathy (OIPN) is a serious side effect that impairs the quality of life of patients treated with the chemotherapeutic agent, oxaliplatin. The underlying pathophysiology of OIPN remains unclear, and there are no effective therapeutics. This study aimed to investigate the causal relationship between spinal microglial activation and OIPN and explore the analgesic effects of syringaresinol, a phytochemical from the bark of Cinnamomum cassia, on OIPN symptoms. The causality between microglial activation and OIPN was investigated by assessing cold and mechanical allodynia in mice after intrathecal injection of the serum supernatant from a BV-2 microglial cell line treated with oxaliplatin. The microglial inflammatory response was measured based on inducible nitric oxide synthase (iNOS), phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated nuclear factor-kappa B (p-NF-κB) expression in the spinal dorsal horn. The effects of syringaresinol were tested using behavioral and immunohistochemical assays. We found that oxaliplatin treatment activated the microglia to increase inflammatory responses, leading to the induction of pain. Syringaresinol treatment significantly ameliorated oxaliplatin-induced pain and suppressed microglial expression of inflammatory signaling molecules. Thus, we concluded that the analgesic effects of syringaresinol on OIPN were achieved via the modulation of spinal microglial inflammatory responses.
Collapse
|
24
|
Zheng S, Szymański J, Shahaf N, Malitsky S, Meir S, Wang X, Aharoni A, Rogachev I. Metabolic diversity in a collection of wild and cultivated Brassica rapa subspecies. Front Mol Biosci 2022; 9:953189. [DOI: 10.3389/fmolb.2022.953189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Brassica rapa (B. rapa) and its subspecies contain many bioactive metabolites that are important for plant defense and human health. This study aimed at investigating the metabolite composition and variation among a large collection of B. rapa genotypes, including subspecies and their accessions. Metabolite profiling of leaves of 102 B. rapa genotypes was performed using ultra-performance liquid chromatography coupled with a photodiode array detector and quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOF-MS/MS). In total, 346 metabolites belonging to different chemical classes were tentatively identified; 36 out of them were assigned with high confidence using authentic standards and 184 were those reported in B. rapa leaves for the first time. The accumulation and variation of metabolites among genotypes were characterized and compared to their phylogenetic distance. We found 47 metabolites, mostly representing anthocyanins, flavonols, and hydroxycinnamic acid derivatives that displayed a significant correlation to the phylogenetic relatedness and determined four major phylometabolic branches; 1) Chinese cabbage, 2) yellow sarson and rapid cycling, 3) the mizuna-komatsuna-turnip-caitai; and 4) a mixed cluster. These metabolites denote the selective pressure on the metabolic network during B. rapa breeding. We present a unique study that combines metabolite profiling data with phylogenetic analysis in a large collection of B. rapa subspecies. We showed how selective breeding utilizes the biochemical potential of wild B. rapa leading to highly diverse metabolic phenotypes. Our work provides the basis for further studies on B. rapa metabolism and nutritional traits improvement.
Collapse
|
25
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
26
|
Zhai L, Peng J, Zhuang M, Chang YY, Cheng KW, Ning ZW, Huang T, Lin C, Wong HLX, Lam YY, Tan HY, Xiao HT, Bian ZX. Therapeutic effects and mechanisms of Zhen-Wu-Bu-Qi Decoction on dextran sulfate sodium-induced chronic colitis in mice assessed by multi-omics approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154001. [PMID: 35240530 DOI: 10.1016/j.phymed.2022.154001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Zhen-Wu-Bu-Qi Decoction (ZWBQD), a traditional Chinese medicine formula comprising Poria, Radix Paeoniae Alba, Rhizoma Atractylodis Macrocephalae, Rhizoma Zingiberis Recens, Radix Codonopsis and Rhizoma Coptidis, is used for treating ulcerative colitis (UC). In a previous study, we have reported ZWBQD mitigates the severity of dextran sulfate sodium (DSS)-induced colitis in mice. HYPOTHESIS In this study, we aimed to understand the systemic actions and underlying mechanisms of ZWBQD on experimental colitis in mice. METHODS We used multi-omics techniques and immunoblotting approach to study the pharmacological actions and mechanisms of ZWBQD in DSS-induced chronic colitic mice. RESULTS We showed that ZWBQD exhibited potent anti-inflammatory properties and significantly protected DSS-induced colitic mice against colon injury by regulating the PI3K-AKT, MAPK signaling pathway and NF-κB signaling pathways. We also revealed that ZWBQD significantly ameliorated gut microbiota dysbiosis and abnormalities of tryptophan catabolites induced by DSS. CONCLUSIONS We demonstrated that the therapeutic effects of ZWBQD on experimental colitis are mediated by regulating multiple signaling pathways and modulation of gut microbiota. Our study employed an integrative strategy to elucidate novel mechanisms of ZWBQD, which provides new insights into the development of Chinese herbal medicine-based therapeutics for UC.
Collapse
Affiliation(s)
- Lixiang Zhai
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiao Peng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China; Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China; School of Pharmacy, Guiyang Medical University, Guiyang 550004, China
| | - Min Zhuang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yao-Yao Chang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zi-Wan Ning
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Tao Huang
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hoi Leong Xavier Wong
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yan Y Lam
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor Yue Tan
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hai-Tao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| | - Zhao-Xiang Bian
- Centre for Chinese Herbal Medicine Drug Development and School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
27
|
Zhuo Y, Yang L, Li D, Zhang L, Zhang Q, Zhang S, Li C, Cui L, Hao J, Li J, Wang X. Syringaresinol Resisted Sepsis-Induced Acute Lung Injury by Suppressing Pyroptosis Via the Oestrogen Receptor-β Signalling Pathway. Inflammation 2021; 45:824-837. [PMID: 34807349 DOI: 10.1007/s10753-021-01587-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/08/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
Acute lung injury (ALI) is a common lung disease characterized by severe acute inflammatory lung injury in patients with sepsis. Syringaresinol (SYR) has been reported to have anti-apoptotic and anti-inflammatory effects, but whether it could prevent pyroptosis to improve sepsis-induced ALI remains unclear. The purpose of this work was to examine the impact of SYR on sepsis-induced ALI and investigate the underlying mechanisms. The ALI model was induced by caecal ligation and puncture (CLP) in C57BL/6 mice, structural damage in the lung tissues was determined using haematoxylin and eosin (HE) staining, and the levels of related inflammatory cytokines and macrophage polarization were examined by enzyme-linked immunosorbent assays (ELISAs) and flow cytometry, respectively. The activation of the NLRP3 inflammasome and the protein levels of TLR4, NF-κB and MAPKs was measured by western blotting. The results demonstrated that SYR pretreatment significantly reduced lung tissue histological damage, inhibited the production of proinflammatory cytokines and albumin in bronchoalveolar lavage fluid (BALF), and decreased myeloperoxidase (MPO) levels, thereby alleviating lung tissue injury. Meanwhile, septic mice treated with SYR displayed a higher survival rate and lower percentage of M1 macrophages in the BALF and spleen than septic mice. In addition, lung tissues from the CLP + SYR group exhibited downregulated protein expression of NLRP3, ASC, GSDMD caspase-1 p20 and TLR4, along with decreased phosphorylated levels of NF-κB, ERK, JNK and P38, indicating that SYR administration effectively prevented CLP-induced pyroptosis in the lung. SYR also suppressed LPS-induced pyroptosis in RAW 264.7 cells by inhibiting the activation of the NLRP3 inflammasome, which was abolished by an oestrogen receptor-β (ERβ) antagonist (PHTPP). In conclusion, SYR exerted protective effects on CLP-induced ALI via the oestrogen receptor-β signalling pathway.
Collapse
Affiliation(s)
- Yuzhen Zhuo
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lei Yang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Dihua Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lanqiu Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Qi Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Shukun Zhang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Caixia Li
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Lihua Cui
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China
| | - Jian Hao
- Department of Orthopaedics, Shenzhen Pingle Orthopaedics Hospital, Shenzhen, 518010, China
| | - Jiarui Li
- Department of Nephrology, Tianjin Nankai Hospital, Tianjin, 300100, China.
| | - Ximo Wang
- Tianjin Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin, 300100, China. .,Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine for Acute Abdominal Diseases, Integrated Chinese and Western Medicine Hospital, Tianjin University, Tianjin, 300100, China.
| |
Collapse
|
28
|
Gastroprotective effects and metabolomic profiling of Chasteberry fruits against indomethacin-induced gastric injury in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
29
|
Sakyi PO, Amewu RK, Devine RNOA, Ismaila E, Miller WA, Kwofie SK. The Search for Putative Hits in Combating Leishmaniasis: The Contributions of Natural Products Over the Last Decade. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:489-544. [PMID: 34260050 PMCID: PMC8279035 DOI: 10.1007/s13659-021-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/07/2021] [Indexed: 05/12/2023]
Abstract
Despite advancements in the areas of omics and chemoinformatics, potent novel biotherapeutic molecules with new modes of actions are needed for leishmaniasis. The socioeconomic burden of leishmaniasis remains alarming in endemic regions. Currently, reports from existing endemic areas such as Nepal, Iran, Brazil, India, Sudan and Afghanistan, as well as newly affected countries such as Peru, Bolivia and Somalia indicate concerns of chemoresistance to the classical antimonial treatment. As a result, effective antileishmanial agents which are safe and affordable are urgently needed. Natural products from both flora and fauna have contributed immensely to chemotherapeutics and serve as vital sources of new chemical agents. This review focuses on a systematic cross-sectional view of all characterized anti-leishmanial compounds from natural sources over the last decade. Furthermore, IC50/EC50, cytotoxicity and suggested mechanisms of action of some of these natural products are provided. The natural product classification includes alkaloids, terpenes, terpenoids, and phenolics. The plethora of reported mechanisms involve calcium channel inhibition, immunomodulation and apoptosis. Making available enriched data pertaining to bioactivity and mechanisms of natural products complement current efforts geared towards unraveling potent leishmanicides of therapeutic relevance.
Collapse
Affiliation(s)
- Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Richard K. Amewu
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, P. O. BOX LG 56, Legon, Accra, Ghana
| | - Robert N. O. A. Devine
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Emahi Ismaila
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Box 214, Sunyani, Ghana
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Molecular Pharmacology and Neuroscience, Loyola University Medical Center, Maywood, IL 60153 USA
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, P.O. Box LG 54, Accra, Ghana
| |
Collapse
|
30
|
Syringaresinol derived from Panax ginseng berry attenuates oxidative stress-induced skin aging via autophagy. J Ginseng Res 2021; 46:536-542. [PMID: 35818428 PMCID: PMC9270644 DOI: 10.1016/j.jgr.2021.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
Background In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0–200 μg/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 μg/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.
Collapse
|
31
|
Zhang L, Jiang X, Zhang J, Gao H, Yang L, Li D, Zhang Q, Wang B, Cui L, Wang X. (-)-Syringaresinol suppressed LPS-induced microglia activation via downregulation of NF-κB p65 signaling and interaction with ERβ. Int Immunopharmacol 2021; 99:107986. [PMID: 34303280 DOI: 10.1016/j.intimp.2021.107986] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/01/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Albiziae Cortex (AC) is a well-known traditional Chinese medicine with sedative-hypnotic effects and neuroprotective ability. However, the bioactive components of AC responsible for the neuro-protective actitivity remain unknown. Here, we investigated the anti-neuroinflammatory effects of (-)-syringaresinol (SYR) extracted from AC in microglia cells and wild-type mice. As a result, (-)-SYR significantly reduced lipopolysaccharide (LPS)-induced production of interleukin - 6 (IL-6), tumor necrosis factor α (TNF-α), interleukin -1 beta (IL-1β), cycloxygenase-2 (COX-2), and nitric oxide (NO) in BV2 microglia cells. (-)-SYR also significantly reduced M1 marker CD40 expression and increased M2 marker CD206 expression. Moreover, we found that (-)-SYR inhibited LPS-induced NF-κB activation by suppressing the translocation of NF-κB p65 into the nucleus in a concentration-dependent manner. Meanwhile, estrogen receptor β (ERβ) was found to be implied in the anti-inflammatory activity of (-)-SYR in BV2 microglia. In vivo experiments revealed that administration of (-)-SYR in mice significantly reduced microglia/astrocytes activation and mRNA levels of proinflammatory mediators. Taken together, our data indicated that (-)-SYR exerted the anti-neuroinflammatory effects by inhibiting NF-κB activation and modulation of microglia polarization, and via interaction with ERβ. The anti-neuroinflammatory activity of (-)-SYR may provide a new therapeutic avenue for the treatment of brain diseases associated with inflammation.
Collapse
Affiliation(s)
- Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China.
| | - Xiaolin Jiang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Jinlu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Hejun Gao
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Botao Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China
| | - Ximo Wang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin 300100, China.
| |
Collapse
|
32
|
Kaur N, Guan Y, Raja R, Ruiz-Velasco A, Liu W. Mechanisms and Therapeutic Prospects of Diabetic Cardiomyopathy Through the Inflammatory Response. Front Physiol 2021; 12:694864. [PMID: 34234695 PMCID: PMC8257042 DOI: 10.3389/fphys.2021.694864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The incidence of heart failure (HF) continues to increase rapidly in patients with diabetes. It is marked by myocardial remodeling, including fibrosis, hypertrophy, and cell death, leading to diastolic dysfunction with or without systolic dysfunction. Diabetic cardiomyopathy (DCM) is a distinct myocardial disease in the absence of coronary artery disease. DCM is partially induced by chronic systemic inflammation, underpinned by a hostile environment due to hyperglycemia, hyperlipidemia, hyperinsulinemia, and insulin resistance. The detrimental role of leukocytes, cytokines, and chemokines is evident in the diabetic heart, yet the precise role of inflammation as a cause or consequence of DCM remains incompletely understood. Here, we provide a concise review of the inflammatory signaling mechanisms contributing to the clinical complications of diabetes-associated HF. Overall, the impact of inflammation on the onset and development of DCM suggests the potential benefits of targeting inflammatory cascades to prevent DCM. This review is tailored to outline the known effects of the current anti-diabetic drugs, anti-inflammatory therapies, and natural compounds on inflammation, which mitigate HF progression in diabetic populations.
Collapse
Affiliation(s)
| | | | | | | | - Wei Liu
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Wang Y, Zhang X, Li L, Zhang Z, Wei C, Gong G. Ethyl ferulate contributes to the inhibition of the inflammatory responses in murine RAW 264.7 macrophage cells and acute lung injury in mice. PLoS One 2021; 16:e0251578. [PMID: 34038447 PMCID: PMC8153479 DOI: 10.1371/journal.pone.0251578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 01/12/2023] Open
Abstract
Background Ethyl ferulate (EF) is a derivative of ferulic acid (FA), which is a monomeric component purified from the traditional medicinal herb Ferula, but its effects have not been clear yet. The purpose of this study was to evaluate whether EF can reduce inflammation levels in macrophages by regulating the Nrf2-HO-1 and NF-кB pathway. Methods The LPS-induced raw 264.7 macrophage cells model was used to determine the anti-inflammatory and anti-oxidative stress effects of EF. The levels of IL-1β, IL-6, TNF-α and PGE2 were analyzed by ELISA. The mRNA and protein of COX-2, iNOS, TNF-α, IL-6, HO-1 and Nrf2 were identified by RT-PCR analysis and western blotting. Intracellular ROS levels were assessed with DCFH oxidation staining. The expressions of NF-кB p-p65 and Nrf2 were analyzed by immunofluorescence assay. The inhibitory effect of Nrf2 inhibitor ML385 (2μM) on mediatation of antioxidant activity by raw 264.7 macrophage cells was evaluated. The effect of EF was confirmed in acute lung injury mice model. Results In our research, EF reduced the expression of iNOS, COX2 and the production of PGE2. EF could inhibit the production of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) in lipopolysaccharide (LPS) stimulated macrophages and decreased expression of IL-6 and TNF-α in LPS stimulated macrophages. Furthermore, EF inhibited NF-кB p65 from transporting to the nucleus, decreased the expression of p-IкBα, significantly decreased the level of intracellular reactive oxygen species (ROS) and activated Nrf2/HO-1 pathways. EF could attenuate the degree of leukocyte infiltration, reduced MPO activity, mRNA levels and secretion of TNF-α and IL-6 in vivo. EF exhibited potent protective effects against LPS-induced acute lung injury in mice. Conclusions Collectively, our data showed that EF relieved LPS-induced inflammatory responses by inhibiting NF-κB pathway and activating Nrf2/HO-1 pathway, known to be involved in the regulation of inflammatory responses by Nrf2.
Collapse
Affiliation(s)
- Yu Wang
- Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Xuan Zhang
- Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Linger Li
- Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Zhao Zhang
- Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Chengxi Wei
- Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
| | - Guohua Gong
- Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Tongliao, Inner Mongolia, P.R. China
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia, P.R. China
- * E-mail:
| |
Collapse
|
34
|
Activation of Nrf2/HO-1 by Peptide YD1 Attenuates Inflammatory Symptoms through Suppression of TLR4/MYyD88/NF-κB Signaling Cascade. Int J Mol Sci 2021; 22:ijms22105161. [PMID: 34068193 PMCID: PMC8152960 DOI: 10.3390/ijms22105161] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we investigate the immunomodulatory effects of a novel antimicrobial peptide, YD1, isolated from Kimchi, in both in vitro and in vivo models. We establish that YD1 exerts its anti-inflammatory effects via up-regulation of the Nrf2 pathway, resulting in the production of HO-1, which suppresses activation of the NF-κB pathway, including the subsequent proinflammatory cytokines IL-1β, IL-6, and TNF-α. We also found that YD1 robustly suppresses nitric oxide (NO) and prostaglandin E2 (PGE2) production by down-regulating the expression of the upstream genes, iNOS and COX-2, acting as a strong antioxidant. Collectively, YD1 exhibits vigorous anti-inflammatory and antioxidant activity, presenting it as an interesting potential therapeutic agent.
Collapse
|
35
|
Chang SW, Lee JS, Lee JH, Kim JY, Hong J, Kim SK, Lee D, Jang DS. Aromatic and Aliphatic Apiuronides from the Bark of Cinnamomum cassia. JOURNAL OF NATURAL PRODUCTS 2021; 84:553-561. [PMID: 33684292 DOI: 10.1021/acs.jnatprod.0c01062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cinnamomum cassia Presl (Cinnamon) has been widely cultivated in the tropical or subtropical areas, such as Yunnan, Fujian, Guandong, and Hainan in China, as well as India, Vietnam, Thailand, and Malaysia. Four new glycosides bearing apiuronic acid (1, 4, 6, and 7) and their sodium or potassium salts (2, 3, and 5), together with 31 known compounds, were isolated from a hot water extract of the bark of C. cassia via repeated chromatography. The structures of the new compounds (1-7) were determined by NMR, IR, MS, and ICP-AES data and by acid hydrolysis and sugar analysis. This is the first report of the presence of apiuronic acid glycosides. Some of the isolates were evaluated for their analgesic effects on a neuropathic pain animal model induced by paclitaxel. Cinnzeylanol (8), cinnacaside (9), kelampayoside A (10), and syringaresinol (11) showed analgesic effects against paclitaxel-induced cold allodynia.
Collapse
Affiliation(s)
- Suk Woo Chang
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin Su Lee
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji Hwan Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Young Kim
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dongho Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Dae Sik Jang
- Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
36
|
Laprasert C, Chansriniyom C, Limpanasithikul W. S-deoxydihydroglyparvin from Glycosmis parva inhibits lipopolysaccharide induced murine macrophage activation through inactivating p38 mitogen activated protein kinase. J Adv Pharm Technol Res 2021; 12:32-39. [PMID: 33532352 PMCID: PMC7832183 DOI: 10.4103/japtr.japtr_64_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/16/2020] [Accepted: 09/25/2020] [Indexed: 11/04/2022] Open
Abstract
Macrophages play major roles to produce several pro-inflammatory and inflammatory mediators in chronic inflammatory diseases. All current anti-inflammatory drugs target these mediators to alleviate inflammation. Searching for new anti-inflammatory agents is always needed due to problems from the clinical use of current anti-inflammatory drugs. We intended to evaluate the anti-inflammatory potential of three main compounds, arborinine, methylatalaphylline, and S-deoxydihydroglyparvin (DDGP), from Glycosmis parva leaves and branches on macrophage stimulated by lipopolysaccharide (LPS). Only DDGP demonstrated a potent inhibitor of LPS-activated macrophages. Results indicated that the mRNA level of inducible nitric oxide synthase (iNOS) was inhibited by the treatment in accompany with the decreased nitric oxide (IC50 at 3.47 ± 0.1 μM). DDGP was shown to suppress tumor necrosis factor-α, interleukin (IL)-1, and IL-6 at the mRNA expression and at the released protein levels. In addition, DDGP inhibited the several chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory proteins-1α, and enzymes for prostaglandin (PG) synthesis. It also inhibited PGE2 production. On LPS signaling pathways, DDGP profoundly decreased phosphorylation of p38 mitogen-activated protein kinase (MAPK) in the LPS-treated cells. It had little or no effect on the activation of JNK, ERK and nuclear factor kappa B. In conclusion, results suggested that DDGP from G. parva inhibited expression and production of inflammatory molecules in LPS-activated macrophages through suppressing p38 MAPK activation. DDGP should be a good candidate anti-inflammatory agent in the future.
Collapse
Affiliation(s)
- Chanyanuch Laprasert
- Interdisciplinary Program of Pharmacology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Chaisak Chansriniyom
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.,Natural Products and Nanoparticles Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
37
|
Tang L, Cao X, Li X, Ding H. Topical application with conjugated linoleic acid ameliorates 2, 4-dinitrofluorobenzene-induced atopic dermatitis-like lesions in BALB/c mice. Exp Dermatol 2021; 30:237-248. [PMID: 33206422 DOI: 10.1111/exd.14242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/22/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Atopic dermatitis (AD) is a multifactorial chronic inflammatory skin disease characterized by skin barrier dysfunction, eczematous lesions, pruritus, and abnormal immune responses. In this study, we assessed the therapeutic effect of topical applied conjugated linoleic acid (CLA) on a murine AD model that was developed by repetitive applications of 2, 4-dinitrofluorobenzene (DNFB). 2% or 5% CLA could markedly ameliorate AD-like skin lesions, scratching behaviour and skin inflammation as evidenced by the reduced inflammatory blood cells, IgE and Th2-related cytokine levels, and the infiltration of mast cells and inflammatory cells to the dermal tissues. Moreover, topical application with CLA modulated skin barrier repair including maintaining a balanced skin pH and increasing skin hydration, partially mediated by upregulating skin barrier-related protein, filaggrin (FLG). In addition, topical CLA significantly dose-dependently inhibited pro-inflammatory cytokines including interleukin (IL)-6, IL-1β, tumour necrosis factor (TNF)-α and pro-inflammatory enzyme expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in inflamed mice skin. Its anti-inflammatory effect was associated with the inhibition of DNFB-stimulated IκBα and NF-κB p65 phosphorylation in mouse skin. Taken together, our results suggest that locally applied CLA exerts potentially protective effects against AD lesional skin at least in part, due to regulation of skin barrier function and inflammatory response.
Collapse
Affiliation(s)
- Liu Tang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaoqin Cao
- College of Medicine, Jianghan University, Wuhan, China
| | - Xiaolei Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Hong Ding
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Haque ME, Azam S, Balakrishnan R, Akther M, Kim IS. Therapeutic Potential of Lindera obtusiloba: Focus on Antioxidative and Pharmacological Properties. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1765. [PMID: 33322185 PMCID: PMC7763160 DOI: 10.3390/plants9121765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Lindera obtusiloba (LO) BLUME from the genus Lindera (Lauraceae) is a medicinal herb traditionally used in Southeast Asian countries. Indigenously, extracts of different parts of the plant have been used to improve blood circulation and treat allergy, inflammation, rheumatism, and liver diseases. LO is a rich source of therapeutically beneficial antioxidative phytochemicals, such as flavonoids, butenolides, lignans and neolignans. Moreover, recent studies have unravelled the pharmacological properties of several newly found active constituents of LO, such as anti-inflammatory antioxidants (+)-syringaresinol, linderin A, anti-atherosclerotic antioxidant (+)-episesamin, anti-melanogenic antioxidants quercitrin and afzelin, cytotoxic 2-(1-methoxy-11-dodecenyl)-penta-2,4-dien-4-olide, (2Z,3S,4S)-2-(11-dodecenylidene)-3-hydroxy-4-methyl butanolide, anti-allergic koaburaside, (6-hydroxyphenyl)-1-O-beta-d-glucopyranoside and 2,6-dimethoxy-4-hydroxyphenyl-1-O-beta-d-glucopyranoside and the antiplatelet-activity compound Secolincomolide A. These findings demonstrate that LO can be a potential source of antioxidants and other prospective therapeutically active constituents that can lead to the development of oxidative stress-mediated diseases, such as cardiovascular disorders, neurodegenerative disorders, allergies, inflammation, hepatotoxicity, and cancer. Here, the antioxidant properties of different species of Lindera genus are discussed briefly. The traditional use, phytochemistry, antioxidative and pharmacological properties of LO are also considered to help researchers screen potential lead compounds and design and develop future therapeutic agents to treat oxidative stress-mediated disorders.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
| |
Collapse
|
39
|
Mohamed MFA, Marzouk AA, Nafady A, El-Gamal DA, Allam RM, Abuo-Rahma GEDA, El Subbagh HI, Moustafa AH. Design, synthesis and molecular modeling of novel aryl carboximidamides and 3-aryl-1,2,4-oxadiazoles derived from indomethacin as potent anti-inflammatory iNOS/PGE2 inhibitors. Bioorg Chem 2020; 105:104439. [PMID: 33161252 DOI: 10.1016/j.bioorg.2020.104439] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
The development of NSAIDs/iNOS inhibitor hybrids is a new strategy for the treatment of inflammatory diseases by suppression of the overproduction of PGE2 and NO. A novel series of aryl carboximidamides 4a-g and their cyclized 3-aryl-1,2,4-oxadiazoles 5a-g counterparts derived from indomethacin 1 were synthesized. Most of the target compounds displayed lower LPS-induced NO production IC50 in RAW 264.7 cells and potent in vitro iNOS and PGE2 inhibitory activity than indomethacin. Moreover, in carrageenan-induced rat paw oedema method, most of them exhibited higher in vivo anti-inflammatory activity than the reference drug indomethacin. Notably, 4 hrs after carrageenan injection, compound 4a proved to be the most potent anti-inflammatory agent in this study, with almost two- and eight-fold more active than the reference drugs indomethacin (1) and celecoxib, respectively. Compound 4a proved to be inhibitor to LPS-induced NO production, iNOS activity and PGE2 with IC50 of 10.70 μM, 2.31 μM, and 29 nM; respectively. Compounds 4a and 5b possessed the lowest ulcerogenic liabilities (35% and 38%, respectively) compared to 1. Histopathological analysis revealed that compounds 4a and 5b demonstrated reduced degeneration and healing of ulcers. Molecular docking studies into the catalytic binding pocket of the iNOS protein receptor (PDB ID: 1r35) showed good correlation with the obtained biological results. Parameters of Lipinski's rule of five and ADMET analysis were calculated where compound 4a had reasonable drug-likeness with acceptable physicochemical properties so it could be used as promising orally absorbed anti-inflammatory therapy and entitled to be used as future template for further investigations.
Collapse
Affiliation(s)
- Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| | - Adel A Marzouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dalia A El-Gamal
- Histology Department, Faculty of Medicine, Assiut University, 71526 Assiut, Egypt
| | - Rasha M Allam
- Pharmacology Department, National Research Centre, Giza 11865, Egypt
| | | | - Hussein I El Subbagh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Amr H Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag 82524, Egypt
| |
Collapse
|
40
|
Molecular Insight into the Anti-Inflammatory Effects of the Curcumin Ester Prodrug Curcumin Diglutaric Acid In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21165700. [PMID: 32784830 PMCID: PMC7461142 DOI: 10.3390/ijms21165700] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin diglutaric acid (CurDG), an ester prodrug of curcumin, has the potential to be developed as an anti-inflammatory agent due to its improved solubility and stability. In this study, the anti-inflammatory effects of CurDG were evaluated. The effects of CurDG on inflammatory mediators were evaluated in LPS-stimulated RAW 264.7 macrophage cells. CurDG reduced the increased levels of NO, IL-6, and TNF- α, as well as iNOS and COX-2 expression in cells to a greater extent than those of curcumin, along with the potent inhibition of MAPK (ERK1/2, JNK, and p38) activity. The anti-inflammatory effects were assessed in vivo by employing a carrageenan-induced mouse paw edema model. Oral administration of CurDG demonstrated significant anti-inflammatory effects in a dose-dependent manner in mice. The effects were significantly higher compared to those of curcumin at the corresponding doses (p < 0.05). Moreover, 25 mg/kg curcumin did not exert a significant anti-inflammatory effect for the overall time course as indicated by the area under the curve data, while the equimolar dose of CurDG produced significant anti-inflammatory effects comparable with 50, 100, and 200 mg/kg curcumin (p < 0.05). Similarly, CurDG significantly reduced the proinflammatory cytokine expression in paw edema tissues compared to curcumin (p < 0.05). These results provide the first experimental evidence for CurDG as a promising anti-inflammatory agent.
Collapse
|
41
|
Li G, Yang L, Feng L, Yang J, Li Y, An J, Li D, Xu Y, Gao Y, Li J, Liu J, Yang L, Qi Z. Syringaresinol Protects against Type 1 Diabetic Cardiomyopathy by Alleviating Inflammation Responses, Cardiac Fibrosis, and Oxidative Stress. Mol Nutr Food Res 2020; 64:e2000231. [PMID: 32729956 DOI: 10.1002/mnfr.202000231] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/03/2020] [Indexed: 12/18/2022]
Abstract
SCOPE Syringaresinol (SYR) is a phenolic compound, which could be found in various cereals and medicinal plants. It exerts both anti-inflammatory and antioxidant pharmacological properties. However, little is known about the effect of SYR on modulating diabetic cardiomyopathy. The present study aimed to investigate the pharmacodynamic effect of SYR on diabetic cardiomyopathy and the underlying molecular mechanism. METHODS AND RESULTS In STZ-induced type 1 diabetic mice, orally administration with SYR in every other day for 8 weeks significantly improves cardiac dysfunction and preventes cardiac hypertrophy and fibrosis. The macrophage infiltration and oxidative stress biomarkers are also suppressed by SYR without affecting hyperglycemia and body weight. In neonatal cardiomyocytes, high glucose-induced cell apoptosis and fibrosis are potently decreased by SYR, and the inflammatory response and oxidant stress are also alleviated by SYR incubation. Mechanistically, SYR may exert protective effects by restoring suppression of antioxidant kelch-like ECH-associated protein 1 (Keap1)/nuclear factor-E2-related factor 2 (Nrf2) system and abnormal activation of transforming growth factor-β (TGF-β)/mothers against decapentaplegic homolog (Smad) signaling pathway in vitro and in vivo. CONCLUSION The results indicated that SYR could be a potential therapeutic agent for the treatment of diabetic cardiomyopathy by inhibiting inflammation, fibrosis, and oxidative stress. The signaling pathway of Keap1/Nrf2 and TGF-β/Smad could be used as therapeutic targets for diabetic complications.
Collapse
Affiliation(s)
- Guangru Li
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Lifeng Feng
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiu Yang
- Clinical laboratory, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300197, China
| | - Yafei Li
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiale An
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Dihua Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin, 300100, China
| | - Yang Xu
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Gao
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jing Li
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jie Liu
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhi Qi
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin, 300071, China
| |
Collapse
|
42
|
Ormazabal P, Cifuentes M, Varì R, Scazzocchio B, Masella R, Pacheco I, Vega W, Paredes A, Morales G. Hydroethanolic Extract of Lampaya Medicinalis Phil. ( Verbenaceae) Decreases Proinflammatory Marker Expression in Palmitic Acid-exposed Macrophages. Endocr Metab Immune Disord Drug Targets 2020; 20:1309-1320. [PMID: 32400338 DOI: 10.2174/1871530320666200513082300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Obesity is a major health problem associated with increased comorbidities, which are partially triggered by inflammation. Proinflammatory macrophage infiltration in adipose tissue of individuals with obesity increases chronic inflammation. Obesity is associated with elevated plasma levels of saturated fatty acids, such as palmitic acid (PA), which promotes inflammation in vivo and in vitro. Infusions of Lampaya medicinalis Phil. (Verbenaceae) are used in the folk medicine of Northern Chile to counteract inflammation of rheumatic diseases. Hydroethanolic extract of lampaya (HEL) contains spectrophotometrically defined compounds that may contribute to the observed effect on inflammation. METHODS We evaluated the phytochemical composition of HEL by high-performance liquid chromatography coupled to diode array detection (HPLC-DAD) and liquid chromatography-electrospray ionization- tandem mass spectrometry (LC-ESI-MS/MS). We assessed whether the exposure to HEL affects PA-induced expression of proinflammatory factors in THP-1 macrophages. RESULTS HPLC-DAD and LC-ESI-MS/MS analyses showed the presence of considerable amounts of flavonoids in HEL. The PA-induced phosphorylation of the inflammatory pathway mediators IKK and NF-κB, as well as the elevated expression and secretion of proinflammatory cytokines (IL-6, TNF-α), were reduced in cells pre-exposed to HEL. CONCLUSION These findings give new insights about the effect of HEL reducing IKK/NF-κB proinflammatory pathway, likely explained by the number of flavonoids contained in the extract. More studies would be needed to define the possible role of Lampaya as a preventive approach in subjects with obesity whose circulating PA might contribute to chronic inflammation.
Collapse
Affiliation(s)
- Paulina Ormazabal
- Institute of Health Sciences, Universidad de O'Higgins, Av. Libertador Bernardo O'Higgins 611, 2820000 Rancagua, Chile.,Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Mariana Cifuentes
- Laboratory of Obesity and Metabolism in Geriatrics and Adults (OMEGA), Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Rosaria Varì
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Beatrice Scazzocchio
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Roberta Masella
- Center for Gender- Specific Medicine, Italian National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Igor Pacheco
- Laboratorio de Bioinformatica y Expresion Genica, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Wladimir Vega
- Laboratorio de Bioinformatica y Expresion Genica, Institute of Nutrition and Food Technology (INTA), Universidad de Chile, Av. El Líbano 5524, 7830490 Macul, Santiago, Chile
| | - Adrián Paredes
- Laboratorio de Quimica Biologica, Instituto Antofagasta (IA) and Departamento de Quimica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| | - Glauco Morales
- Laboratorio de Quimica Biologica, Instituto Antofagasta (IA) and Departamento de Quimica, Facultad de Ciencias Basicas, Universidad de Antofagasta, Av. Angamos 601, 1240000 Antofagasta, Chile
| |
Collapse
|
43
|
Woo M, Kwon DH, Choi YH, Noh JS. Inhibitory effects of skate cartilage chondroitin sulfate-rich extract on the production of inflammatory mediators and ROS in lipopolysaccharide-treated murine macrophages: a comparison with shark cartilage chondroitin sulfate. In Vitro Cell Dev Biol Anim 2020; 56:271-276. [DOI: 10.1007/s11626-020-00443-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
|
44
|
Chang FP, Huang SS, Lee TH, Chang CI, Kuo TF, Huang GJ, Kuo YH. Four New Iridoid Metabolites Have Been Isolated from the Stems of Neonauclea reticulata (Havil.) Merr. with Anti-Inflammatory Activities on LPS-Induced RAW264.7 Cells. Molecules 2019; 24:E4271. [PMID: 31771186 PMCID: PMC6930649 DOI: 10.3390/molecules24234271] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023] Open
Abstract
One new iridoid, namely neonanin C (1) one monocyclic iridoid ring-opened derivative namely neonanin D (2), two new bis-iridoid derivatives namely reticunin A (3) and reticunin B (4) with sixteen known compounds (5-20) were isolated from the stems of Neonauclea reticulata (Havil.) Merr. These new structures were determined by the detailed analysis of spectroscopic data and comparison with the data of known analogues. Compounds 1-20 were evaluated for inhibition of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages cell line. The results showed that all compounds exhibited no obvious cytotoxicity compared to the control group and five compounds including isoboonein (7), syringaresinol (10), (+)-medioresinol (12), protocatechuic acid (14) and trans-caffeic acid (15) exhibited inhibitory activities with IC50 values at 86.27 ± 3.45; 9.18 ± 1.90; 76.18 ± 2.42; 72.91 ± 4.97 and 95.16 ± 1.20 µg/mL, respectively.
Collapse
Affiliation(s)
- Fang-Pin Chang
- The Ph.D Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan;
| | - Shyh-Shyun Huang
- School of Pharmacy, China Medical University, Taichung 404, Taiwan;
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106, Taiwan;
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Tzong-Fu Kuo
- Department of Post-Baccalaureate Veterinary Medicine, Asia University, Taichung 413, Taiwan;
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Yueh-Hsiung Kuo
- The Ph.D Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan;
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
45
|
Guevara M, Tejera E, Iturralde GA, Jaramillo-Vivanco T, Granda-Albuja MG, Granja-Albuja S, Santos-Buelga C, González-Paramás AM, Álvarez-Suarez JM. Anti-inflammatory effect of the medicinal herbal mixture infusion, Horchata, from southern Ecuador against LPS-induced cytotoxic damage in RAW 264.7 macrophages. Food Chem Toxicol 2019; 131:110594. [DOI: 10.1016/j.fct.2019.110594] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023]
|
46
|
Yu HH, Lin Y, Zeng R, Li X, Zhang T, Tasneem S, Chen C, Qiu YX, Li B, Liao J, Wang YH, Cai X, Wang W. Analgesic and anti-inflammatory effects and molecular mechanisms of Kadsura heteroclita stems, an anti-arthritic Chinese Tujia ethnomedicinal herb. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111902. [PMID: 31018145 DOI: 10.1016/j.jep.2019.111902] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by failure of spontaneous resolution of inflammation. The stem of Kadsura heteroclite (KHS) is a well-known anti-arthritic Tujia ethnomedicinal plant, which named Xuetong in folk, has long been used for the prevention and treatment of rheumatic and arthritic diseases. AIM OF THE STUDY The analgesic and anti-inflammatory effects and the potential mechanisms behind such effects of KHS would be investigated by using different animal models. MATERIALS AND METHODS The abdominal writhing episodes of mice induced by intraperitoneal injection of acetic acid and the tail-flick response induced by radiant heat stimulation were used to evaluate the analgesic effect of KHS. The number of abdominal writhing episodes of mice and the latency of tail-flick in rats were measured and recorded. In acute inflammatory models, the ear edema of mice was induced by applying xylene on the ear surface, while the paw edema of male and female rats was induced by subcutaneous injection of carrageenan into the right hind paws of animals. The carrageenan-induced paw swelling in rats were selected as an anti-acute inflammatory mechanism of KHS. Serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF-α) were measured by ELISA, and protein expression of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were detected by Western blot. RESULTS The maximal tolerated single dose of KHS was determined to be 26 g/kg in both sexes of mice. Pharmacological studies showed that KHS at the dose of 200 mg/kg significantly prolonged the reaction time of rats to radiant heat stimulation and suppressed abdominal writhing episodes of mice induced by intraperitoneal injection of acetic acid. KHS at the dose of 200, 400, and 800 mg/kg, showed dose-dependent inhibition of xylene-induced ear swelling in mice. KHS at the dose of 100, 200, 400, and 800 mg/kg demonstrated dose- and time-dependent suppression of paw edema induced by subcutaneous injection of carrageenan in both all rats. Mechanistic studies revealed that the anti-inflammatory effect of KHS was associated with inhibition of the production of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α and effectively decreased the expression of COX and iNOS proteins in the carrageenan-injected rat serum, paw tissues and inflammatory exudates. The positive reference drug, rotundine at a dosage of 100 mg/kg and indomethacin at a dosage of 10 mg/kg were used in both mice and rat models. CONCLUSION These results suggested that KHS has significant effects on analgesia and anti-inflammation with decreasing the pro-inflammation cytokines of IL-1β, IL-6, and TNF-α and inhibiting the proteins expression of COX-2 and iNOS.
Collapse
Affiliation(s)
- Huang-He Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Ye Lin
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Rong Zeng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Xin Li
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Ting Zhang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Shumaila Tasneem
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Cong Chen
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yi-Xing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jin Liao
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yu-Hong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
47
|
Protopine attenuates inflammation stimulated by carrageenan and LPS via the MAPK/NF-κB pathway. Food Chem Toxicol 2019; 131:110583. [PMID: 31220533 DOI: 10.1016/j.fct.2019.110583] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/26/2022]
Abstract
We investigated the anti-inflammatory activity of protopine (PTP) and sought to determine its mechanism of action in LPS-stimulated BV2 cells and a carrageenan (CA)-induced mouse model. Treatment with PTP (5, 10, and 20 μM) significantly suppresses the secretion of NO and PGE2 in a concentration-dependent manner without affecting cell viability by downregulating iNOS and COX-2 expression in LPS-induced BV2 cells. PTP also attenuates the production of pro-inflammatory chemokines, such as MCP-1, and cytokines, including TNF-α, IL-1β and IL-6, and augments the expression of the anti-inflammatory cytokine IL-10. In addition, PTP suppresses the nuclear translocation of NF-κB by hindering the degradation of IκB and downregulating the expression of mitogen-activated protein kinases (MAPKs), including p38, ERK1/2 and JNK protein. Furthermore, PTP treatment significantly suppresses CA-induced paw oedema in mice compared to that seen in untreated mice. Expression of iNOS and COX-2 proteins is also abrogated by PTP (50 mg/kg) treatment in CA-induced mice. PTP treatment also abolishes IκB phosphorylation, which hinders the activation of NF-κB. Collectively, these results suggest PTP has potential for attenuating CA- and LPS-induced inflammatory symptoms through modulation of MAPKs/NF-κB signaling cascades.
Collapse
|
48
|
Berberis lycium Royle fruit extract mitigates oxi-inflammatory stress by suppressing NF-κB/MAPK signalling cascade in activated macrophages and Treg proliferation in splenic lymphocytes. Inflammopharmacology 2018; 28:1053-1072. [DOI: 10.1007/s10787-018-0548-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
|