1
|
Sandoval-Talamantes AK, Mori MÁ, Santos-Simarro F, García-Miñaur S, Mansilla E, Tenorio JA, Peña C, Adan C, Fernández-Elvira M, Rueda I, Lapunzina P, Nevado J. Chromosomal Microarray in Patients with Non-Syndromic Autism Spectrum Disorders in the Clinical Routine of a Tertiary Hospital. Genes (Basel) 2023; 14:genes14040820. [PMID: 37107578 PMCID: PMC10137620 DOI: 10.3390/genes14040820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Autism spectrum disorders (ASD) comprise a group of neurodevelopmental disorders (NDD) characterized by deficits in communication and social interaction, as well as repetitive and restrictive behaviors, etc. The genetic implications of ASD have been widely documented, and numerous genes have been associated with it. The use of chromosomal microarray analysis (CMA) has proven to be a rapid and effective method for detecting both small and large deletions and duplications associated with ASD. In this article, we present the implementation of CMA as a first-tier test in our clinical laboratory for patients with primary ASD over a prospective period of four years. The cohort was composed of 212 individuals over 3 years of age, who met DSM-5 diagnostic criteria for ASD. The use of a customized array-CGH (comparative genomic hybridization) design (KaryoArray®) found 99 individuals (45.20%) with copy number variants (CNVs); 34 of them carried deletions (34.34%) and 65 duplications (65.65%). A total of 28 of 212 patients had pathogenic or likely pathogenic CNVs, representing approximately 13% of the cohort. In turn, 28 out of 212 (approximately 12%) had variants of uncertain clinical significance (VUS). Our findings involve clinically significant CNVs, known to cause ASD (syndromic and non-syndromic), and other CNVs previously related to other comorbidities such as epilepsy or intellectual disability (ID). Lastly, we observed new rearrangements that will enhance the information available and the collection of genes associated with this disorder. Our data also highlight that CMA could be very useful in diagnosing patients with essential/primary autism, and demonstrate the existence of substantial genetic and clinical heterogeneity in non-syndromic ASD individuals, underscoring the continued challenge for genetic laboratories in terms of its molecular diagnosis.
Collapse
|
2
|
Krgovic D, Gorenjak M, Rihar N, Opalic I, Stangler Herodez S, Gregoric Kumperscak H, Dovc P, Kokalj Vokac N. Impaired Neurodevelopmental Genes in Slovenian Autistic Children Elucidate the Comorbidity of Autism With Other Developmental Disorders. Front Mol Neurosci 2022; 15:912671. [PMID: 35813072 PMCID: PMC9259896 DOI: 10.3389/fnmol.2022.912671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASD) represent a phenotypically heterogeneous group of patients that strongly intertwine with other neurodevelopmental disorders (NDDs), with genetics playing a significant role in their etiology. Whole exome sequencing (WES) has become predominant in molecular diagnostics for ASD by considerably increasing the diagnostic yield. However, the proportion of undiagnosed patients still remains high due to complex clinical presentation, reduced penetrance, and lack of segregation analysis or clinical information. Thus, reverse phenotyping, where we first identified a possible genetic cause and then determine its clinical relevance, has been shown to be a more efficient approach. WES was performed on 147 Slovenian pediatric patients with suspected ASD. Data analysis was focused on identifying ultrarare or “single event” variants in ASD-associated genes and further expanded to NDD-associated genes. Protein function and gene prioritization were performed on detected clinically relevant variants to determine their role in ASD etiology and phenotype. Reverse phenotyping revealed a pathogenic or likely pathogenic variant in ASD-associated genes in 20.4% of patients, with subsequent segregation analysis indicating that 14 were de novo variants and 1 was presumed compound heterozygous. The diagnostic yield was further increased by 2.7% by the analysis of ultrarare or “single event” variants in all NDD-associated genes. Protein function analysis established that genes in which variants of unknown significance (VUS) were detected were predominantly the cause of intellectual disability (ID), and in most cases, features of ASD as well. Using such an approach, variants in rarely described ASD-associated genes, such as SIN3B, NR4A2, and GRIA1, were detected. By expanding the analysis to include functionally similar NDD genes, variants in KCNK9, GNE, and other genes were identified. These would probably have been missed by classic genotype–phenotype analysis. Our study thus demonstrates that in patients with ASD, analysis of ultrarare or “single event” variants obtained using WES with the inclusion of functionally similar genes and reverse phenotyping obtained a higher diagnostic yield despite limited clinical data. The present study also demonstrates that most of the causative genes in our cohort were involved in the syndromic form of ASD and confirms their comorbidity with other developmental disorders.
Collapse
Affiliation(s)
- Danijela Krgovic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Danijela Krgovic,
| | - Mario Gorenjak
- Centre for Human Molecular Genetics, and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Nika Rihar
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iva Opalic
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
| | - Spela Stangler Herodez
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Peter Dovc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nadja Kokalj Vokac
- Laboratory of Medical Genetics, University Medical Centre Maribor, Maribor, Slovenia
- Department of Molecular Biology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
3
|
An epigenetic association analysis of childhood trauma in psychosis reveals possible overlap with methylation changes associated with PTSD. Transl Psychiatry 2022; 12:177. [PMID: 35501310 PMCID: PMC9061740 DOI: 10.1038/s41398-022-01936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Patients with a severe mental disorder report significantly higher levels of childhood trauma (CT) than healthy individuals. Studies have suggested that CT may affect brain plasticity through epigenetic mechanisms and contribute to developing various psychiatric disorders. We performed a blood-based epigenome-wide association study using the Childhood Trauma Questionnaire-short form in 602 patients with a current severe mental illness, investigating DNA methylation association separately for five trauma subtypes and the total trauma score. The median trauma score was set as the predefined cutoff for determining whether the trauma was present or not. Additionally, we compared our genome-wide results with methylation probes annotated to candidate genes previously associated with CT. Of the patients, 83.2% reported CT above the cutoff in one or more trauma subtypes, and emotional neglect was the trauma subtype most frequently reported. We identified one significant differently methylated position associated with the gene TANGO6 for physical neglect. Seventeen differentially methylated regions (DMRs) were associated with different trauma categories. Several of these DMRs were annotated to genes previously associated with neuropsychiatric disorders such as post-traumatic stress disorder and cognitive impairments. Our results support a biomolecular association between CT and severe mental disorders. Genes that were previously identified as differentially methylated in CT-exposed subjects with and without psychosis did not show methylation differences in our analysis. We discuss this inconsistency, the relevance of our findings, and the limitations of our study.
Collapse
|
4
|
Markova ZG, Minzhenkova ME, Bessonova LA, Shilova NV. A new case of 17p13.3p13.1 microduplication resulted from unbalanced translocation: clinical and molecular cytogenetic characterization. Mol Cytogenet 2021; 14:41. [PMID: 34465353 PMCID: PMC8408977 DOI: 10.1186/s13039-021-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022] Open
Abstract
Copy number gain 17 p13.3p13.1 was detected by chromosomal microarray (CMA) in a girl with developmental/speech delay and facial dysmorphism. FISH studies made it possible to establish that the identified genomic imbalance is the unbalanced t(9;17) translocation of maternal origin. Clinical features of the patient are also discussed. The advisability of using the combination of CMA and FISH analysis is shown. Copy number gains detected by clinical CMA should be confirmed using FISH analysis in order to determine the physical location of the duplicated segment. Parental follow-up studies is an important step to determine the origin of genomic imbalance. This approach not only allows a most comprehensive characterization of an identified chromosomal/genomic imbalance but also provision of an adequate medical and genetic counseling for a family taking into account a balanced chromosomal rearrangement.
Collapse
Affiliation(s)
- Zhanna G Markova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522.
| | - Marina E Minzhenkova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| | - Lyudmila A Bessonova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| | - Nadezda V Shilova
- Research Centre for Medical Genetics, Moskvorechye St., 1, Moscow, Russia, 115522
| |
Collapse
|
5
|
Benítez-Burraco A, Fernández-Urquiza M, Jiménez-Romero MS. Language Impairment with a Partial Duplication of DOCK8. Mol Syndromol 2021; 11:243-263. [PMID: 33510598 DOI: 10.1159/000511972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 12/20/2022] Open
Abstract
Duplications of the distal region of the short arm of chromosome 9 are rare, but are associated with learning disabilities and behavioral disturbances. We report in detail the cognitive and language features of a child with a duplication in the 9p24.3 region, arr[hg19] 9p24.3(266,045-459,076)×3. The proband exhibits marked expressive and receptive problems, which affect both structural and functional aspects of language. These problems might result from a severe underlying deficit in working memory. Regarding the molecular causes of the observed symptoms, they might result from the altered expression of selected genes involved in procedural learning, particularly some of components of the SLIT/ROBO/FOXP2 network, strongly related to the development and evolution of language. Dysregulation of specific components of this network can result in turn from an altered interaction between DOCK8, affected by the microduplication, and CDC42, acting as the hub component of the network encompassing language-related genes.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), University of Seville, Seville, Spain
| | | | | |
Collapse
|
6
|
Yue F, Yu Y, Zhang X, Jiang Y, Li L, Liu R, Zhang H. Prenatal detection of terminal 9p24.3 microduplication encompassing DOCK8 gene: A variant of likely benign. Medicine (Baltimore) 2021; 100:e23967. [PMID: 33545980 PMCID: PMC7837864 DOI: 10.1097/md.0000000000023967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022] Open
Abstract
Trisomy 9p is one of the most common chromosomal partial trisomies in newborns. However, reports on prenatal 9p microduplications are rare in the clinic. This study aimed to examine the genotype-phenotype correlation and assess the clinical significance of 9p24.3 microduplication encompassing the DOCK8 gene. Eight pregnant women underwent amniocentesis for cytogenetic and genetic testing for various indications for prenatal diagnosis from January 2019 to January 2020. Chromosomal karyotypic analysis was performed on G-band metaphases that were prepared from cultured amniotic fluid cells. Chromosomal microarray analysis was carried out to detect chromosomal copy number variations. We also performed a literature review on clinical data on similar 9p24.3 microduplications to determine the genotype-phenotype correlation. We detected 123-248-kb microduplications in the region of 9p24.3 (chr9: 208454-469022), involving part of or the entire DOCK8 gene. The indications for prenatal diagnosis mainly focused on the risk of maternal serum screening for trisomy 21/18, advanced maternal age, and increased nuchal translucency. No evident structural abnormalities were observed for all fetuses, except for case 5 who presented with increased nuchal translucency in prenatal ultrasound findings. Follow-up of postnatal health was performed and showed no apparent abnormalities for cases 1 to 6 after birth. The parents of case 7 chose to terminate the pregnancy while the parents of case 8 chose to continue the pregnancy. We propose that 9p24.3 microduplications that encompass part of or the entire DOCK8 gene are variants that might be benign. However, further large-scale studies are necessary to evaluate the clinical pathogenicity. For prenatal cases with 9p24.3 microduplication, postnatal health and growth should be followed up and assessed regularly from childhood to adulthood.
Collapse
Affiliation(s)
- Fagui Yue
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun 130021, China
| | - Yang Yu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun 130021, China
| | - Xinyue Zhang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun 130021, China
| | - Yuting Jiang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun 130021, China
| | - Leilei Li
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun 130021, China
| | - Ruizhi Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun 130021, China
| | - Hongguo Zhang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun 130021, China
| |
Collapse
|
7
|
Capkova Z, Capkova P, Srovnal J, Adamova K, Prochazka M, Hajduch M. Duplication of 9p24.3 in three unrelated patients and their phenotypes, considering affected genes, and similar recurrent variants. Mol Genet Genomic Med 2021; 9:e1592. [PMID: 33455084 PMCID: PMC8104183 DOI: 10.1002/mgg3.1592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 11/22/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022] Open
Abstract
Background Recent studies suggest that duplication of the 9p24.3 chromosomal locus, which includes the DOCK8 and KANK1 genes, is associated with autism spectrum disorders (ASD), intellectual disability/developmental delay (ID/DD), learning problems, language disorders, hyperactivity, and epilepsy. Correlation between this duplication and the carrier phenotype needs further discussion. Methods In this study, three unrelated patients with ID/DD and ASD underwent SNP aCGH and MLPA testing. Similarities in the phenotypes of patients with 9p24.3, 15q11.2, and 16p11.2 duplications were also observed. Results All patients with ID/DD and ASD carried the 9p24.3 duplication and showed intragenic duplication of DOCK8. Additionally, two patients had ADHD, one was hearing impaired and obese, and one had macrocephaly. Inheritance of the 9p24.3 duplication was confirmed in one patient and his sibling. In one patient KANK1 was duplicated along with DOCK8. Carriers of 9p24.3, 15q11.2, and 16p11.2 duplications showed several phenotypic similarities, with ID/DD more strongly associated with duplication of 9p24.3 than of 15q11.2 and 16p11.2. Conclusion We concluded that 9p24.3 is a likely cause of ASD and ID/DD, especially in cases of DOCK8 intragenic duplication. DOCK8 is a likely causative gene, and KANK1 aberrations a modulator, of the clinical phenotype observed. Other modulators were not excluded.
Collapse
Affiliation(s)
- Zuzana Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic.,Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic.,Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Josef Srovnal
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Katerina Adamova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic.,Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Prochazka
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic.,Department of Medical Genetics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
8
|
Espeche LD, Solari AP, Mori MÁ, Arenas RM, Palomares M, Pérez M, Martínez C, Lotersztein V, Segovia M, Armando R, Dain LB, Nevado J, Lapunzina P, Rozental S. Implementation of chromosomal microarrays in a cohort of patients with intellectual disability at the Argentinean public health system. Mol Biol Rep 2020; 47:6863-6878. [PMID: 32920771 DOI: 10.1007/s11033-020-05743-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
Intellectual disability is a neurodevelopmental disorder in which genetic, epigenetic and environmental factors are involved. In consequence, the determination of its etiology is usually complex. Though many countries have migrated from conventional cytogenetic analysis to chromosomal microarrays as the first-tier genetic test for patients with this condition, this last technique was implemented in our country a few years ago. We report on the results of the implementation of chromosomal microarrays in a cohort of 133 patients with intellectual disability and dysmorphic features, normal karyotype and normal subtelomeric MLPA results in an Argentinean public health institution. Clinically relevant copy number variants were found in 12% of the patients and one or more copy number variants classified as variants of uncertain significance were found in 5.3% of them. Although the diagnostic yield of chromosomal microarrays is greater than conventional cytogenetics for these patients, there are financial limitations to adopt this technique as a first-tier test in our country, especially in the public health system.
Collapse
Affiliation(s)
- Lucía Daniela Espeche
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Andrea Paula Solari
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - María Ángeles Mori
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Rubén Martín Arenas
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - María Palomares
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Myriam Pérez
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Cinthia Martínez
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Vanesa Lotersztein
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Mabel Segovia
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Romina Armando
- Servicio de Genética, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, Argentina
| | - Liliana Beatriz Dain
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina
| | - Julián Nevado
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Pablo Lapunzina
- Instituto de Genética Médica y Molecular (INGEMM), IdiPAZ, Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, Spain.,CIBERER (Centro de Investigación Biomédica en Red de Enfermedades Raras), ISCIII, Madrid, Spain.,ITHACA European Reference Network, Madrid, Spain
| | - Sandra Rozental
- Centro Nacional de Genética Médica "Dr. Eduardo Castilla"- ANLIS "Dr. Carlos G. Malbrán", Ministerio de Salud, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Mao JH, Kim YM, Zhou YX, Hu D, Zhong C, Chang H, Brislawn CJ, Fansler S, Langley S, Wang Y, Peisl BYL, Celniker SE, Threadgill DW, Wilmes P, Orr G, Metz TO, Jansson JK, Snijders AM. Genetic and metabolic links between the murine microbiome and memory. MICROBIOME 2020; 8:53. [PMID: 32299497 PMCID: PMC7164142 DOI: 10.1186/s40168-020-00817-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Recent evidence has linked the gut microbiome to host behavior via the gut-brain axis [1-3]; however, the underlying mechanisms remain unexplored. Here, we determined the links between host genetics, the gut microbiome and memory using the genetically defined Collaborative Cross (CC) mouse cohort, complemented with microbiome and metabolomic analyses in conventional and germ-free (GF) mice. RESULTS A genome-wide association analysis (GWAS) identified 715 of 76,080 single-nucleotide polymorphisms (SNPs) that were significantly associated with short-term memory using the passive avoidance model. The identified SNPs were enriched in genes known to be involved in learning and memory functions. By 16S rRNA gene sequencing of the gut microbial community in the same CC cohort, we identified specific microorganisms that were significantly correlated with longer latencies in our retention test, including a positive correlation with Lactobacillus. Inoculation of GF mice with individual species of Lactobacillus (L. reuteri F275, L. plantarum BDGP2 or L. brevis BDGP6) resulted in significantly improved memory compared to uninoculated or E. coli DH10B inoculated controls. Untargeted metabolomics analysis revealed significantly higher levels of several metabolites, including lactate, in the stools of Lactobacillus-colonized mice, when compared to GF control mice. Moreover, we demonstrate that dietary lactate treatment alone boosted memory in conventional mice. Mechanistically, we show that both inoculation with Lactobacillus or lactate treatment significantly increased the levels of the neurotransmitter, gamma-aminobutyric acid (GABA), in the hippocampus of the mice. CONCLUSION Together, this study provides new evidence for a link between Lactobacillus and memory and our results open possible new avenues for treating memory impairment disorders using specific gut microbial inoculants and/or metabolites. Video Abstract.
Collapse
Affiliation(s)
- Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Young-Mo Kim
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Yan-Xia Zhou
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Marine College, Shandong University, Weihai, 264209 China
| | - Dehong Hu
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Chenhan Zhong
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Colin J. Brislawn
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sarah Fansler
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Sasha Langley
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Yunshan Wang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250033 Shandong China
| | - B. Y. Loulou Peisl
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - David W. Threadgill
- Department of Veterinary Pathobiology, A&M University, College Station, Texas, USA
- Department of Molecular and Cellular Medicine Texas, A&M University, College Station, Texas, USA
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, 7, Avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Galya Orr
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Thomas O. Metz
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Janet K. Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA USA
| | - Antoine M. Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
10
|
Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020; 9:cells9040835. [PMID: 32244264 PMCID: PMC7226772 DOI: 10.3390/cells9040835] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.
Collapse
|
11
|
Cicatiello R, Pignataro P, Izzo A, Mollo N, Pezone L, Maruotti GM, Sarno L, Sglavo G, Conti A, Genesio R, Nitsch L. Chromosomal Microarray Analysis versus Karyotyping in Fetuses with Increased Nuchal Translucency. Med Sci (Basel) 2019; 7:medsci7030040. [PMID: 30818867 PMCID: PMC6473420 DOI: 10.3390/medsci7030040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 11/26/2022] Open
Abstract
We have carried out a retrospective study of chromosome anomalies associated with increased nuchal translucency (NT) in order to compare yield rates of karyotype, chromosome microarray analysis (CMA), and non-invasive prenatal testing (NIPT) in this condition. Presenting with increased NT or cystic hygroma ≥3.5 mm as an isolated sign, 249 fetuses underwent karyotype and/or CMA from 11 to 18 gestational weeks. Karyotype and fluorescence in situ hybridization (FISH) analyses detected 103 chromosomal anomalies including 95 aneuploidies and eight chromosomal rearrangements or derivatives. Further, seven pathogenic copy number variants (CNV), five likely pathogenic CNVs, and 15 variants of unknown significance (VOUS) were detected by CMA in fetuses with normal karyotype. Genetic testing is now facing new challenges due to results with uncertain clinical impacts. Additional investigations will be necessary to interpret these findings. More than 15% of the anomalies that we have diagnosed with invasive techniques could not be detected by NIPT. It is therefore definitely not recommended in the case of ultrasound anomalies. These results, while corroborating the use of CMA in fetuses with increased NT as a second tier after rapid aneuploidy testing, do not suggest a dismissal of karyotype analysis.
Collapse
Affiliation(s)
- Rita Cicatiello
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Piero Pignataro
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Antonella Izzo
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Nunzia Mollo
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Lucia Pezone
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Giuseppe Maria Maruotti
- Maternal-child Department, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Laura Sarno
- Maternal-child Department, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Gabriella Sglavo
- Maternal-child Department, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Anna Conti
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Rita Genesio
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Lucio Nitsch
- Dept. Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
- Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy.
| |
Collapse
|
12
|
Capkova P, Srovnal J, Capkova Z, Staffova K, Becvarova V, Trkova M, Adamova K, Santava A, Curtisova V, Hajduch M, Prochazka M. MLPA is a practical and complementary alternative to CMA for diagnostic testing in patients with autism spectrum disorders and identifying new candidate CNVs associated with autism. PeerJ 2019; 6:e6183. [PMID: 30647996 PMCID: PMC6330045 DOI: 10.7717/peerj.6183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/28/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a complex heterogeneous developmental disease with a significant genetic background that is frequently caused by rare copy number variants (CNVs). Microarray-based whole-genome approaches for CNV detection are widely accepted. However, the clinical significance of most CNV is poorly understood, so results obtained using such methods are sometimes ambiguous. We therefore evaluated a targeted approach based on multiplex ligation-dependent probe amplification (MLPA) using selected probemixes to detect clinically relevant variants for diagnostic testing of ASD patients. We compare the reliability and efficiency of this test to those of chromosomal microarray analysis (CMA) and other tests available to our laboratory. In addition, we identify new candidate genes for ASD identified in a cohort of ASD-diagnosed patients. METHOD We describe the use of MLPA, CMA, and karyotyping to detect CNV in 92 ASD patients and evaluate their clinical significance. RESULT Pathogenic and likely pathogenic mutations were identified by CMA in eight (8.07% of the studied cohort) and 12 (13.04%) ASD patients, respectively, and in eight (8.07%) and four (4.35%) patients, respectively, by MLPA. The detected mutations include the 22q13.3 deletion, which was attributed to ring chromosome 22 formation based on karyotyping. CMA revealed a total of 91 rare CNV in 55 patients: eight pathogenic, 15 designated variants of unknown significance (VOUS)-likely pathogenic, 10 VOUS-uncertain, and 58 VOUS-likely benign or benign. MLPA revealed 18 CNV in 18 individuals: eight pathogenic, four designated as VOUS-likely pathogenic, and six designated as VOUS-likely benign/benign. Rare CNVs were detected in 17 (58.62%) out of 29 females and 38 (60.32%) out of 63 males in the cohort. Two genes, DOCK8 and PARK2, were found to be overlapped by CNV designated pathogenic, VOUS-likely pathogenic, or VOUS-uncertain in multiple patients. Moreover, the studied ASD cohort exhibited significant (p < 0.05) enrichment of duplications encompassing DOCK8. CONCLUSION Multiplex ligation-dependent probe amplification and CMA yielded concordant results for 12 patients bearing CNV designated pathogenic or VOUS-likely pathogenic. Unambiguous diagnoses were achieved for eight patients (corresponding to 8.7% of the total studied population) by both MLPA and CMA, for one (1.09%) patient by karyotyping, and for one (1.09%) patient by FRAXA testing. MLPA and CMA thus achieved identical reliability with respect to clinically relevant findings. As such, MLPA could be useful as a fast and inexpensive test in patients with syndromic autism. The detection rate of potentially pathogenic variants (VOUS-likely pathogenic) achieved by CMA was higher than that for MLPA (13.04% vs. 4.35%). However, there was no corresponding difference in the rate of unambiguous diagnoses of ASD patients. In addition, the results obtained suggest that DOCK8 may play a role in the etiology of ASD.
Collapse
Affiliation(s)
- Pavlina Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Josef Srovnal
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Zuzana Capkova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Katerina Staffova
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | | | - Katerina Adamova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Alena Santava
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Vaclava Curtisova
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Martin Prochazka
- Department of Medical Genetics, University Hospital Olomouc, Olomouc, Czech Republic
| |
Collapse
|