1
|
Visalli A, Begliomini C, Mioni G. The effect of emotion intensity on time perception: a study with transcranial random noise stimulation. Exp Brain Res 2023:10.1007/s00221-023-06668-9. [PMID: 37477666 PMCID: PMC10386931 DOI: 10.1007/s00221-023-06668-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023]
Abstract
Emotional facial expressions provide cues for social interactions and emotional events can distort our sense of time. The present study investigates the effect of facial emotional stimuli of anger and sadness on time perception. Moreover, to investigate the causal role of the orbitofrontal cortex (OFC) in emotional recognition, we employed transcranial random noise stimulation (tRNS) over OFC and tested the effect on participants' emotional recognition as well as on time processing. Participants performed a timing task in which they were asked to categorize as "short" or "long" temporal intervals marked by images of people expressing anger, sad or neutral emotional facial expressions. In addition, they were asked to judge if the image presented was of a person expressing anger or sadness. The visual stimuli were facial emotional stimuli indicating anger or sadness with different degrees of intensity at high (80%), medium (60%) and low (40%) intensity, along with neutral emotional face stimuli. In the emotional recognition task, results showed that participants were faster and more accurate when emotional intensity was higher. Moreover, tRNS over OFC interfered with emotion recognition, which is in line with its proposed role in emotion recognition. In the timing task, participants overestimated the duration of angry facial expressions, although neither emotional intensity not OFC stimulation significantly modulated this effect. Conversely, as the emotional intensity increased, participants exhibited a greater tendency to overestimate the duration of sad faces in the sham condition. However, this tendency disappeared with tRNS. Taken together, our results are partially consistent with previous findings showing an overestimation effect of emotionally arousing stimuli, revealing the involvement of OFC in emotional distortions of time, which needs further investigation.
Collapse
Affiliation(s)
| | - Chiara Begliomini
- Department of General Psychology, University of Padova, 35131, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| | - Giovanna Mioni
- Department of General Psychology, University of Padova, 35131, Padua, Italy.
| |
Collapse
|
2
|
Capizzi M, Visalli A, Wiener M, Mioni G. The contribution of the supplementary motor area to explicit and implicit timing: A high-definition transcranial Random Noise Stimulation (HD-tRNS) study. Behav Brain Res 2023; 445:114383. [PMID: 36878287 DOI: 10.1016/j.bbr.2023.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
It is becoming increasingly accepted that timing tasks, and underlying temporal processes, can be partitioned on the basis of whether they require an explicit or implicit temporal judgement. Most neuroimaging studies of timing associated explicit timing tasks with activation of the supplementary motor area (SMA). However, transcranial magnetic stimulation (TMS) studies perturbing SMA functioning across explicit timing tasks have generally reported null effects, thus failing to causally link SMA to explicit timing. The present study probed the involvement of SMA in both explicit and implicit timing tasks within a single experiment and using High-Definition transcranial Random Noise Stimulation (HD-tRNS), a previously less used technique in studies of the SMA. Participants performed two tasks that comprised the same stimulus presentation but differed in the received task instructions, which might or might not require explicit temporal judgments. Results showed a significant HD-tRNS-induced shift of perceived durations (i.e., overestimation) in the explicit timing task, whereas there was no modulation of implicit timing by HD-tRNS. Overall, these results provide initial non-invasive brain stimulation evidence on the contribution of the SMA to explicit and implicit timing tasks.
Collapse
Affiliation(s)
- M Capizzi
- Department of Experimental Psychology, University of Granada, Spain; Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Spain.
| | - A Visalli
- IRCCS San Camillo Hospital, Venice Lido, Italy
| | - M Wiener
- George Mason University, Fairfax, VA, USA
| | - G Mioni
- Department of General Psychology, University of Padova, Italy.
| |
Collapse
|
3
|
Zhu HQ, Luo J, Wang XQ, Zhang XA. Non-invasive brain stimulation for osteoarthritis. Front Aging Neurosci 2022; 14:987732. [PMID: 36247995 PMCID: PMC9557732 DOI: 10.3389/fnagi.2022.987732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, the prevalence of OA is increasing, and the elderly are the most common in patients with OA. OA has a severe impact on the daily life of patients, this increases the demand for treatment of OA. In recent years, the application of non-invasive brain stimulation (NIBS) has attracted extensive attention. It has been confirmed that NIBS plays an important role in regulating cortical excitability and oscillatory rhythm in specific brain regions. In this review, we summarized the therapeutic effects and mechanisms of different NIBS techniques in OA, clarified the potential of NIBS as a treatment choice for OA, and provided prospects for further research in the future.
Collapse
Affiliation(s)
- Hui-Qi Zhu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an University of Sport, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang,
| |
Collapse
|
4
|
Prete G, Lucafò C, Malatesta G, Tommasi L. The causal involvement of the right supramarginal gyrus in the subjective experience of time: A hf-tRNS study. Behav Brain Res 2021; 404:113157. [PMID: 33592200 DOI: 10.1016/j.bbr.2021.113157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 11/24/2022]
Abstract
Neural populations in the supramarginal gyrus (SMG) of the right hemisphere have been shown to be involved in processing the subjective experience of time, particularly because of their selectivity to specific temporal durations. To directly investigate this relationship, we applied high-frequency transcranial Random Noise Stimulation (hf-tRNS) on the right SMG during a duration judgment task: 24 participants were required to judge the duration of a test visual stimulus (350, 450, 550, 650 ms) as shorter or longer than the duration of a reference auditory stimulus (500 ms). In half of the trials this procedure was preceded by a visual adaptation paradigm, used as a tool to manipulate the subjective experience of time: for 12 participants the adaptor was shorter than the test (250 ms), and for 12 participants it was longer than the test (750 ms). All participants performed an online hf-tRNS session and a sham control session. For each participant and for each condition, the Point of Subjective Equality (PSE) was calculated and results revealed an expected negative aftereffect in the group exposed to a longer adaptor. Moreover, hf-tRNS modulated participants' performance with respect to sham, confirming the involvement of the right SMG in temporal experience. Importantly, only in the group exposed to the longer adaptor, PSE values were higher during stimulation than during sham, only after the adaptation procedure (no difference emerged in trials without adaptation). This pattern of results confirms recent neuroimaging findings, and adds a direct evidence of the causal role of this area in subjective time experience.
Collapse
Affiliation(s)
- Giulia Prete
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.
| | - Chiara Lucafò
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Mioni G, Shelp A, Stanfield-Wiswell CT, Gladhill KA, Bader F, Wiener M. Modulation of Individual Alpha Frequency with tACS shifts Time Perception. Cereb Cortex Commun 2020; 1:tgaa064. [PMID: 34296127 PMCID: PMC8152954 DOI: 10.1093/texcom/tgaa064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
Previous studies have linked brain oscillation and timing, with evidence suggesting that alpha oscillations (10 Hz) may serve as a "sample rate" for the visual system. However, direct manipulation of alpha oscillations and time perception has not yet been demonstrated. To test this, we had 18 human subjects perform a time generalization task with visual stimuli. Additionally, we had previously recorded resting-state EEG from each subject and calculated their individual alpha frequency (IAF), estimated as the peak frequency from the mean spectrum over posterior electrodes between 8 and 13 Hz. Participants first learned a standard interval (600 ms) and were then required to judge if a new set of temporal intervals were equal or different compared with that standard. After learning the standard, participants performed this task while receiving occipital transcranial Alternating Current Stimulation (tACS). Crucially, for each subject, tACS was administered at their IAF or at off-peak alpha frequencies (IAF ± 2 Hz). Results demonstrated a linear shift in the psychometric function indicating a modification of perceived duration, such that progressively "faster" alpha stimulation led to longer perceived intervals. These results provide the first evidence that direct manipulations of alpha oscillations can shift perceived time in a manner consistent with a clock speed effect.
Collapse
Affiliation(s)
- Giovanna Mioni
- Department of General Psychology, University of Padova, 35121 Padova, Italy
| | - Adam Shelp
- Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| | | | - Keri A Gladhill
- Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| | - Farah Bader
- Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| | - Martin Wiener
- Department of Psychology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
6
|
Abstract
In this 3-experiment study, the Weber fractions in the 300-ms and 900-ms duration ranges are obtained with 9 types of empty intervals resulting from the combinations of three types of signals for marking the beginning and end of the signals: auditory (A), visual (V), or tactile (T). There were three types of intramodal intervals (AA, TT, and VV) and 6 types of intermodal intervals (AT, AV, VA, VT, TA, and TV). The second marker is always the same during Experiments 1 (A), 2 (V), and 3 (T). With an uncertainty strategy where the first marker is 1 of 2 sensory signals being presented randomly from trial to trial, the study provides direct comparisons of the perceived length of the different marker-type intervals. The results reveal that the Weber fraction is nearly constant in the three types of intramodal intervals, but is clearly lower at 900 ms than at 300 ms in intermodal conditions. In several cases, the intramodal intervals are perceived as shorter than intermodal intervals, which is interpreted as an effect of the efficiency in detecting the second marker of an intramodal interval. There were no significant differences between the TA and VA intervals (Experiment 1) and between the AV and TV intervals (Experiment 2), but in Experiment 3, the AT intervals were perceived as longer than the VT intervals. The results are interpreted in terms of the generalized form of Weber's law, using the properties of the signals for explaining the additional nontemporal noise observed in the intermodal conditions.
Collapse
|
7
|
Morya E, Monte-Silva K, Bikson M, Esmaeilpour Z, Biazoli CE, Fonseca A, Bocci T, Farzan F, Chatterjee R, Hausdorff JM, da Silva Machado DG, Brunoni AR, Mezger E, Moscaleski LA, Pegado R, Sato JR, Caetano MS, Sá KN, Tanaka C, Li LM, Baptista AF, Okano AH. Beyond the target area: an integrative view of tDCS-induced motor cortex modulation in patients and athletes. J Neuroeng Rehabil 2019; 16:141. [PMID: 31730494 PMCID: PMC6858746 DOI: 10.1186/s12984-019-0581-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) is a non-invasive technique used to modulate neural tissue. Neuromodulation apparently improves cognitive functions in several neurologic diseases treatment and sports performance. In this study, we present a comprehensive, integrative review of tDCS for motor rehabilitation and motor learning in healthy individuals, athletes and multiple neurologic and neuropsychiatric conditions. We also report on neuromodulation mechanisms, main applications, current knowledge including areas such as language, embodied cognition, functional and social aspects, and future directions. We present the use and perspectives of new developments in tDCS technology, namely high-definition tDCS (HD-tDCS) which promises to overcome one of the main tDCS limitation (i.e., low focality) and its application for neurological disease, pain relief, and motor learning/rehabilitation. Finally, we provided information regarding the Transcutaneous Spinal Direct Current Stimulation (tsDCS) in clinical applications, Cerebellar tDCS (ctDCS) and its influence on motor learning, and TMS combined with electroencephalography (EEG) as a tool to evaluate tDCS effects on brain function.
Collapse
Affiliation(s)
- Edgard Morya
- Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, Rio Grande do Norte Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Kátia Monte-Silva
- Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY USA
| | - Claudinei Eduardo Biazoli
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Andre Fonseca
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Tommaso Bocci
- Aldo Ravelli Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, International Medical School, University of Milan, Milan, Italy
| | - Faranak Farzan
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Raaj Chatterjee
- School of Mechatronic Systems Engineering, Simon Fraser University, Surrey, British Columbia Canada
| | - Jeffrey M. Hausdorff
- Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | | | - Eva Mezger
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Luciane Aparecida Moscaleski
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Rodrigo Pegado
- Graduate Program in Rehabilitation Science, Universidade Federal do Rio Grande do Norte, Santa Cruz, Rio Grande do Norte Brazil
| | - João Ricardo Sato
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Marcelo Salvador Caetano
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
| | - Kátia Nunes Sá
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Clarice Tanaka
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Li Min Li
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
| | - Abrahão Fontes Baptista
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Laboratório de Investigações Médicas-54, Universidade de São Paulo, São Paulo, São Paulo Brazil
| | - Alexandre Hideki Okano
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN/CEPID-FAPESP), University of Campinas, Campinas, São Paulo, Brazil
- Núcleo de Assistência e Pesquisa em Neuromodulação (NAPeN), Universidade Federal do ABC (UFABC)/Universidade de São Paulo (USP)/Universidade Cidade de São Paulo (UNICID)/Universidade Federal de Pernambuco (UFPE), Escola Bahiana de Medicina e Saúde Pública (EBMSP), Santo André, Brazil
- Center of Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), Alameda da Universidade, 3 - Anchieta, Bloco Delta – Sala 257, São Bernardo do Campo, SP CEP 09606-070 Brazil
- Graduate Program in Physical Education. State University of Londrina, Londrina, Paraná, Brazil
| |
Collapse
|
8
|
Shapiro Z, Huang-Pollock C. A diffusion-model analysis of timing deficits among children with ADHD. Neuropsychology 2019; 33:883-892. [PMID: 31094550 DOI: 10.1037/neu0000562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Deficits in the ability to perceive time have been proposed as an etiologic mechanism in the development of the cognitive and behavioral characteristics associated with ADHD. However, previous studies testing the presence of timing deficits have produced idiosyncratic results. This is in large part due to the underutilization of insights from basic timing research, and from the inherent difficulty that arises when a single index of performance (i.e., reaction time [RT] or accuracy) is used to index the health of what is essentially a multiple-component process. The current article utilizes a diffusion model approach to isolate the component processes involved in timing (i.e., internal clock speed, decision-making speed, speed/accuracy trade-off strategies, and nondecision time) using a well-validated timing task. METHOD Fifty children with ADHD and 32 non-ADHD controls aged 8-12 completed a temporal bisection procedure. RESULTS Diffusion model parameters indicated that both the internal clock and decision-making speeds were slower among children with ADHD. However, the strength of evidence for slowed decision making far outweighed evidence for a slower internal clock. CONCLUSIONS Slower evidence accumulation during decision making is domain-general deficit in ADHD. Such slowing is consistent with adaptive-gain theories, which posit that a suboptimal ratio of neural signal-to-noise is characteristic of children with ADHD. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
|