1
|
Yamaga K, Nakao S, Mikoda N, Sztein JM, Nakagata N, Takeo T. High-concentration bovine serum albumin enhances fertilization ability of cold-stored rat sperm. J Reprod Dev 2024; 70:131-137. [PMID: 38432992 PMCID: PMC11017099 DOI: 10.1262/jrd.2023-085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
Cold transport of the cauda epididymides is a useful technique for shipping laboratory rat sperm. Cold transport of rat sperm avoids potential risks of microbiological infection, animal escape or death, and animal welfare issues. Previously, we reported that a cold-storage solution containing dimethyl sulfoxide and quercetin maintained the fertility of cold-stored rat sperm. However, cold-stored rat sperm exhibited a decreased fertilization rate after 24-h storage. To recover the fertility of cold-stored sperm, we focused on the effects of bovine serum albumin (BSA), a cholesterol acceptor that induces sperm capacitation. We sought to determine the optimal concentration of BSA in fertilization medium based on the fertility of cold-stored rat sperm. High concentrations of BSA (40 mg/ml) enhanced the fertilization rate of cold-stored rat sperm and maintained sperm fertility for 144 h. Embryos derived from cold-stored and BSA-treated sperm normally developed into pups after embryo transfer. In summary, high BSA concentrations enhanced the fertility of cold-stored rat sperm and prolonged the storage period to 144 h, thereby expanding the transportable region for genetically engineered rats.
Collapse
Affiliation(s)
- Katsuma Yamaga
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuyuki Mikoda
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
- Kyudo Co., Ltd., Saga 841-0075, Japan
| | - Jorge Mario Sztein
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
2
|
Palazzese L, Turri F, Anzalone DA, Saragusty J, Bonnet J, Colotte M, Tuffet S, Pizzi F, Luciani A, Matsukawa K, Czernik M, Loi P. Reviving vacuum-dried encapsulated ram spermatozoa via ICSI after 2 years of storage. Front Vet Sci 2023; 10:1270266. [PMID: 38098985 PMCID: PMC10720722 DOI: 10.3389/fvets.2023.1270266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Freeze-drying techniques give alternative preservation mammalian spermatozoa without liquid nitrogen. However, most of the work has been conducted in the laboratory mouse, while little information has been gathered on large animals that could also benefit from this kind of storage. Methods This work adapted a technique known as vacuum-drying encapsulation (VDE), originally developed for nucleic acid conservation in anhydrous state, to ram spermatozoa, and compared it to canonical lyophilization (FD), testing long-term storage at room temperature (RT) and 4°C. Results and discussion The results demonstrated better structural stability, namely lipid composition and DNA integrity, in VDE spermatozoa than FD ones, with outcomes at RT storage comparable to 4°C. Likewise, in VDE the embryonic development was higher than in FD samples (12.8% vs. 8.7%, p < 0.001, respectively). Our findings indicated that in large mammals, it is important to consider dehydration-related changes in sperm polyunsaturated fatty acids coupled with DNA alterations, given their crucial role in embryonic development.
Collapse
Affiliation(s)
- Luca Palazzese
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
| | - Federica Turri
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | | | - Joseph Saragusty
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Jacques Bonnet
- Laboratoire de Recherche et Développement, Imagene Company, Pessac, France
- Institut Bergonié, INSERM, Université de Bordeaux, Bordeaux, France
| | - Marthe Colotte
- Plateforme de Production, Imagene, Genopole, Evry, France
| | - Sophie Tuffet
- Plateforme de Production, Imagene, Genopole, Evry, France
| | - Flavia Pizzi
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council (CNR), Lodi, Italy
| | - Alessia Luciani
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Marta Czernik
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Warsaw, Poland
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Pasqualino Loi
- Department of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
3
|
Wakayama S, Kikuchi Y, Soejima M, Hayashi E, Ushigome N, Yamazaki C, Suzuki T, Shimazu T, Yamamori T, Osada I, Sano H, Umehara M, Hasegawa A, Mochida K, Yang LL, Emura R, Kazama K, Imase K, Kurokawa Y, Sato Y, Higashibata A, Matsunari H, Nagashima H, Ogura A, Kohda T, Wakayama T. Effect of microgravity on mammalian embryo development evaluated at the International Space Station. iScience 2023; 26:108177. [PMID: 38107876 PMCID: PMC10725056 DOI: 10.1016/j.isci.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 12/19/2023] Open
Abstract
Mammalian embryos differentiate into the inner cell mass (ICM) and trophectoderm at the 8-16 cell stage. The ICM forms a single cluster that develops into a single fetus. However, the factors that determine differentiation and single cluster formation are unknown. Here we investigated whether embryos could develop normally without gravity. As the embryos cannot be handled by an untrained astronaut, a new device was developed for this purpose. Using this device, two-cell frozen mouse embryos launched to the International Space Station were thawed and cultured by the astronauts under microgravity for 4 days. The embryos cultured under microgravity conditions developed into blastocysts with normal cell numbers, ICM, trophectoderm, and gene expression profiles similar to those cultured under artificial-1 g control on the International Space Station and ground-1 g control, which clearly demonstrated that gravity had no significant effect on the blastocyst formation and initial differentiation of mammalian embryos.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Mariko Soejima
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Natsuki Ushigome
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | | | - Tomomi Suzuki
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Toru Shimazu
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tohru Yamamori
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Hiromi Sano
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Masumi Umehara
- Advanced Engineering Services Co., Ltd, Tsukuba, Ibaraki 305-0032, Japan
| | - Ayumi Hasegawa
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Keiji Mochida
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Li Ly Yang
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rina Emura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kenta Imase
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yuna Kurokawa
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yoshimasa Sato
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | | | - Hitomi Matsunari
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
4
|
Yang LL, Ito D, Ushigome N, Wakayama S, Ooga M, Wakayama T. A novel, simplified method to prepare and preserve freeze-dried mouse sperm in plastic microtubes. J Reprod Dev 2023; 69:198-205. [PMID: 37357399 PMCID: PMC10435530 DOI: 10.1262/jrd.2023-034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/27/2023] Open
Abstract
Although freeze-drying sperm can save space, reduce maintenance costs, and facilitate the transportation of genetic samples, the current method requires breakable, custom-made, and expensive glass ampoules. In the present study, we developed a simple and economical method for collecting freeze-dried (FD) sperm using commercially available plastic microtubes. Mouse epididymal sperm suspensions were placed in 1.5 ml polypropylene tubes, frozen in liquid nitrogen, and dried in an acrylic freeze-drying chamber, after which they were closed under a vacuum. The drying duration did not differ between the microtube and glass ampoule methods (control); however, the sperm recovery rate was higher using the microtube method, and the physical damage to the sperm after rehydration was also reduced. Intracytoplasmic sperm injection (ICSI) using FD sperm stored in microtubes at -30°C yielded healthy offspring without reducing the success rate, even after 9 months of storage. Air infiltration into all microtubes stored at room temperature (RT) within 2 weeks of storage caused a drastic decrease in the fertilization rate of FD sperm; underwater storage did not prevent air infiltration. RT storage of FD sperm in microtubes for 1 week resulted in healthy offspring after ICSI (5-18%), but the addition of silica gel or CaCl2 did not improve the success rate. Our novel microtube method is currently the simplest and most effective method for treating FD sperm, contributing to the development of alternative low-cost approaches for preserving and transporting genetic resources.
Collapse
Affiliation(s)
- Li Ly Yang
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Natsuki Ushigome
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masatoshi Ooga
- Graduate School of Veterinary Science, Azabu University, Kanagawa 252-5201, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi 400-8510, Japan
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
5
|
Comizzoli P, Amelkina O, Lee PC. Damages and stress responses in sperm cells and other germplasms during dehydration and storage at nonfreezing temperatures for fertility preservation. Mol Reprod Dev 2022; 89:565-578. [PMID: 36370428 DOI: 10.1002/mrd.23651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Long-term preservation of sperm, oocytes, and gonadal tissues at ambient temperatures has the potential to lower the costs and simplify biobanking in human reproductive medicine, as well as for the management of animal populations. Over the past decades, different dehydration protocols and long-term storage solutions at nonfreezing temperatures have been explored, mainly for mammalian sperm cells. Oocytes and gonadal tissues are more challenging to dehydrate so little to no progress have been made. Currently, the detrimental effects of the drying process itself are better characterized than the impact of long-term storage at nonfreezing temperatures. While structural and functional properties of germ cells can be preserved after dehydration, a long list of damages and stresses in nuclei, organelles, and cytoplasmic membranes have been reported and sometimes mitigated. Characterizing those damages and better understanding the response of germ cells and tissues to the stress of dehydration is fundamental. It will contribute to the development of optimal protocols while proving the safety of alternative storage options for fertility preservation. The objective of this review is to (1) document the types of damages and stress responses, as well as their mitigation in cells dried with different techniques, and (2) propose new research directions.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Olga Amelkina
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| | - Pei-Chih Lee
- Smithsonian's National Zoo and Conservation Biology Institute, Veterinary Hospital, Washington, District of Columbia, USA
| |
Collapse
|
6
|
Production of mouse offspring from zygotes fertilized with freeze-dried spermatids. Sci Rep 2022; 12:18430. [PMID: 36319672 PMCID: PMC9626645 DOI: 10.1038/s41598-022-22850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Mouse cloning by nuclear transfer using freeze-drying (FD) somatic cells is now possible, but the success rate is significantly lower than that of FD spermatozoa. Because spermatozoa, unlike somatic cells, are haploid cells with hardened nuclei due to protamine, the factors responsible for their tolerance to FD treatment remain unclear. In this study, we attempt to produce offspring from FD spermatid, a haploid sperm progenitor cell whose nuclei, like somatic cells, have not yet been replaced by protamine. We developed a method for collecting FD spermatids from testicular suspension. Despite the significantly lower success rate than that of FD spermatozoa, healthy offspring were obtained when FD spermatids were injected into oocytes. Offspring were also obtained from FD spermatids derived from immature male mice that had not yet produced spermatozoa. These results suggest that nuclear protaminization, rather than haploid nuclei, is one of the key processes responsible for tolerance to FD treatment.
Collapse
|
7
|
Wakayama S, Ito D, Hayashi E, Ishiuchi T, Wakayama T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat Commun 2022; 13:3666. [PMID: 35790715 PMCID: PMC9256722 DOI: 10.1038/s41467-022-31216-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Maintaining biodiversity is an essential task, but storing germ cells as genetic resources using liquid nitrogen is difficult, expensive, and easily disrupted during disasters. Our aim is to generate cloned mice from freeze-dried somatic cell nuclei, preserved at -30 °C for up to 9 months after freeze drying treatment. All somatic cells died after freeze drying, and nucleic DNA damage significantly increased. However, after nuclear transfer, we produced cloned blastocysts from freeze-dried somatic cells, and established nuclear transfer embryonic stem cell lines. Using these cells as nuclear donors for re-cloning, we obtained healthy cloned female and male mice with a success rate of 0.2-5.4%. Here, we show that freeze-dried somatic cells can produce healthy, fertile clones, suggesting that this technique may be important for the establishment of alternative, cheaper, and safer liquid nitrogen-free bio-banking solutions.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| |
Collapse
|
8
|
Comizzoli P, He X, Lee PC. Long-term preservation of germ cells and gonadal tissues at ambient temperatures. REPRODUCTION AND FERTILITY 2022; 3:R42-R50. [PMID: 35514540 PMCID: PMC9066944 DOI: 10.1530/raf-22-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022] Open
Abstract
Objective To present an overview of different approaches and recent advances for long-term preservation of germ cells and gonadal tissues at ambient temperatures. Methods Review of the existing literature. Results Preserving viable spermatozoa, eggs, embryos, and gonadal tissues for the long term is critical in human fertility treatment and for the management of animal populations (livestock, biomedical models, and wild species). The need and number of banked germplasms are growing very fast in all disciplines, but current storage options at freezing temperatures are often constraining and not always sustainable. Recent research indicates that structures and functions of gametes or gonadal tissues can be preserved for the long term using different strategies based on dehydration and storage at supra-zero temperatures. However, more studies are needed in rehydration and reanimation of germplasms (including proper molecular and cellular evaluations). Conclusions While a lot of research is still warranted to optimize drying and rehydration conditions for each sample type and each species, alternative preservation methods will change the paradigm in fertility preservation and biobanking. It will transform the way we maintain and manage precious biomaterials for the long term. Lay summary Living sperm cells, eggs, embryos, and reproductive tissues can be preserved at freezing temperatures for human fertility treatments and used to manage breeding in livestock, laboratory animals, and wild species through assisted reproduction. These cells can be stored in cell banks and demand for them is growing fast. However, current long-term storage options at freezing temperatures are expensive. Instead of using low temperatures, recent research indicates that these cells can be dried and stored above freezing temperatures for an extended amount of time. While a lot of research is still needed to optimize how different samples are dried and rehydrated, alternative methods of preserving cells will make fertility preservation and cell banking easier. It will also transform the way we keep and manage samples for the long term.
Collapse
Affiliation(s)
- Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Pei-Chih Lee
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Rizkallah N, Chambers CG, de Graaf SP, Rickard JP. Factors Affecting the Survival of Ram Spermatozoa during Liquid Storage and Options for Improvement. Animals (Basel) 2022; 12:244. [PMID: 35158568 PMCID: PMC8833663 DOI: 10.3390/ani12030244] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/02/2023] Open
Abstract
Semen preservation is an essential component of reproductive technologies, as it promotes genetic gain and long-distance semen transport and multiplies the number of ewes able to be inseminated per single ejaculate. However, the reduced temperature during cold storage at 5 or 15 °C inflicts sub-lethal damage to spermatozoa, compromising sperm quality and the success of artificial breeding. New and emerging research in various species has reported the advantages of storing spermatozoa at higher temperatures, such as 23 °C; however, this topic has not been thoroughly investigated for ram spermatozoa. Despite the success of storing spermatozoa at 23 °C, sperm quality can be compromised by the damaging effects of lipid peroxidation, more commonly when metabolism is left unaltered during 23 °C storage. Additionally, given the biosafety concern surrounding the international transport of egg-yolk-containing extenders, further investigation is critical to assess the preservation ability of synthetic extenders and whether pro-survival factors could be supplemented to maximise sperm survival during storage at 23 °C.
Collapse
Affiliation(s)
- Natalie Rizkallah
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia; (C.G.C.); (S.P.d.G.); (J.P.R.)
| | | | | | | |
Collapse
|
10
|
USHIGOME N, WAKAYAMA S, YAMAJI K, ITO D, OOGA M, WAKAYAMA T. Production of offspring from vacuum-dried mouse spermatozoa and assessing the effect of drying conditions on sperm DNA and embryo development. J Reprod Dev 2022; 68:262-270. [PMID: 35676029 PMCID: PMC9334318 DOI: 10.1262/jrd.2022-048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Freeze-dried sperm (FD sperm) are of great value because they can be stored at room temperature for long periods of time, However, the birth rate of offspring derived from FD sperm is low
and the step in the freeze-drying process particularly responsible for low offspring production remains unknown. In this study, we determined whether the drying process was responsible for
the low success rate of offspring by producing vacuum-dried sperm (VD sperm), using mouse spermatozoa dried in a vacuum without being frozen. Transfer of embryos fertilized with VD sperm to
recipients resulted in the production of several successful offspring. However, the success rate was slightly lower than that of FD sperm. The volume, temperature, and viscosity of the
medium were optimized to improve the birth rate. The results obtained from a comet assay indicated that decreasing the drying rate reduced the extent of DNA damage in VD sperm. Furthermore,
even though the rate of blastocyst formation increased upon fertilization with VD sperm, full-term development was not improved. Analysis of chromosomal damage at the two-cell stage through
an abnormal chromosome segregation (ACS) assay revealed that reduction in the drying rate failed to prevent chromosomal damage. These results indicate that the lower birth rate of offspring
from FD sperm may result from the drying process rather than the freezing process.
Collapse
Affiliation(s)
- Natsuki USHIGOME
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Sayaka WAKAYAMA
- Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| | - Kango YAMAJI
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Daiyu ITO
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Masatoshi OOGA
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Teruhiko WAKAYAMA
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| |
Collapse
|
11
|
Desiccated cat spermatozoa retain DNA integrity and developmental potential after prolonged storage and shipping at non-cryogenic temperatures. J Assist Reprod Genet 2022; 39:141-151. [PMID: 34609666 PMCID: PMC8866589 DOI: 10.1007/s10815-021-02337-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023] Open
Abstract
PURPOSE To evaluate the DNA integrity and developmental potential of microwave-dehydrated cat spermatozoa after storage at - 20 °C for different time periods and/or overnight shipping on dry ice. METHODS Epididymal spermatozoa from domestic cats were microwave-dehydrated on coverslips after trehalose exposure. Dried samples were either assessed immediately, stored for various duration at - 20 °C, or shipped internationally on dry ice before continued storage. Dry-stored spermatozoa were rehydrated before assessing DNA integrity (TUNEL assays) or developmental potential (injection into in vitro matured oocytes followed by in vitro embryo culture for up to 7 days). RESULTS Percentages of dried-rehydrated spermatozoa with intact DNA was not significantly affected (P > 0.05) by desiccation and short-term storage (range, 78.9 to 80.0%) but decreased (P < 0.05) with storage over 5 months (range, 71.0 to 75.2%) compared to fresh controls (92.6 ± 2.2%). After oocyte injection with fresh or dried-rehydrated spermatozoa (regardless of storage time), percentages of activation, pronuclear formation, and embryo development were similar (P > 0.05). Importantly, spermatozoa shipped internationally also retained the ability to support embryo development up to the morula stage. CONCLUSION Results demonstrated the possibility to sustain DNA integrity and developmental potential of spermatozoa by dry-preservation, even after long-term storage and long-distance shipment at non-cryogenic temperatures. While further studies are warranted, present results demonstrate that dry preservation can be a reliable approach for simple and cost-effective sperm biobanking or shipment.
Collapse
|
12
|
Protocol to preserve mouse freeze-dried spermatozoa in the thin plastic sheets. STAR Protoc 2021; 2:100933. [PMID: 34806046 PMCID: PMC8581645 DOI: 10.1016/j.xpro.2021.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The preservation of mammalian freeze-dried (FD) spermatozoa is commonly performed using small glass ampules; however, they are bulky and breakable. In this study, we present a protocol to prepare and preserve mouse FD sperm using thin plastic sheets. This approach allows storing thousands of mouse strains in a card folder. We can also send the FD sperm domestically using a postcard without any extra equipment. For complete details on the use and execution of this protocol, please refer to Ito et al. (2021). Protocol to preserve mouse FD sperm in plastic sheets instead of glass ampules FD sperm can be preserved for at least three months at −30°C Viable mouse sperm can be transported via postcards without any extra protection Several mouse strains can be preserved in a single card folder
Collapse
|
13
|
Freeze Drying as a Method of Long-Term Conservation of Mammalian Semen – A Review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
With the development of biotechnological methods that allow the manipulation and free exchange of genetic material, the methods for collecting and storing such material need to be improved. To date, freezing in liquid nitrogen has allowed the storage of cells and entire plant and animal tissues for practically unlimited times. However, alternatives are still being sought to eliminate the constant need to maintain samples at a low temperature. Lyophilization or freeze drying is an alternative to standard freezing procedures. The storage of samples (lyophilisates) does not require specialised equipment but only refines the preservation method itself. In the case of cells capable of movement e.g., sperm, they lose the ability to reach the oocyte in vivo and for in vitro fertilization (IVF) because of the lyophilization process. However, freeze-dried sperm may be used for in vitro fertilization by intracytoplasmic sperm injection (ICSI), based on the results obtained in cleavage, embryo development and the production of live born offspring after embryo transfer. Studies on the lyophilization of sperm have been performed on many animal species, both in the laboratory and in livestock. This conservation method is considered to create biobanks for genetically valuable and endangered species with the simultaneous application of ICSI. This review article aimed to present the issues of the freeze-drying process of mammalian semen and help find solutions that will improve this technique of the long-term preservation of biological material.
Collapse
|
14
|
Ito D, Wakayama S, Emura R, Ooga M, Wakayama T. Mailing viable mouse freeze-dried spermatozoa on postcards. iScience 2021; 24:102815. [PMID: 34471856 PMCID: PMC8390851 DOI: 10.1016/j.isci.2021.102815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Freeze-drying techniques allow the preservation of mammalian spermatozoa without using liquid nitrogen. However, the current method requires the use of glass ampoules, which are breakable, expensive, and bulky to store or transport. In this study, we evaluated whether mouse freeze-dried (FD) spermatozoa can be preserved and transported on thin materials. In this study, we demonstrated that FD sperm can be preserved in thin plastic sheets. Its DNA integrity was comparable to that of glass ampoule spermatozoa, and healthy offspring were obtained after preservation at -30°C for more than 3 months. We attached preserved FD sperm to postcards, and transported these to other laboratory inexpensively at room temperatures without any protection. This method will facilitate the preservation of thousands of mouse strains in a single card holder, promote collaboration between laboratories, conservation of genetic resources, and assisted reproductive technology.
Collapse
Affiliation(s)
- Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| | - Rina Emura
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| |
Collapse
|
15
|
Wakayama S, Ito D, Kamada Y, Shimazu T, Suzuki T, Nagamatsu A, Araki R, Ishikawa T, Kamimura S, Hirose N, Kazama K, Yang L, Inoue R, Kikuchi Y, Hayashi E, Emura R, Watanabe R, Nagatomo H, Suzuki H, Yamamori T, Tada MN, Osada I, Umehara M, Sano H, Kasahara H, Higashibata A, Yano S, Abe M, Kishigami S, Kohda T, Ooga M, Wakayama T. Evaluating the long-term effect of space radiation on the reproductive normality of mammalian sperm preserved on the International Space Station. SCIENCE ADVANCES 2021; 7:7/24/eabg5554. [PMID: 34117068 PMCID: PMC8195474 DOI: 10.1126/sciadv.abg5554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Space radiation may cause DNA damage to cells and concern for the inheritance of mutations in offspring after deep space exploration. However, there is no way to study the long-term effects of space radiation using biological materials. Here, we developed a method to evaluate the biological effect of space radiation and examined the reproductive potential of mouse freeze-dried spermatozoa stored on the International Space Station (ISS) for the longest period in biological research. The space radiation did not affect sperm DNA or fertility after preservation on ISS, and many genetically normal offspring were obtained without reducing the success rate compared to the ground-preserved control. The results of ground x-ray experiments showed that sperm can be stored for more than 200 years in space. These results suggest that the effect of deep space radiation on mammalian reproduction can be evaluated using spermatozoa, even without being monitored by astronauts in Gateway.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yuko Kamada
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Toru Shimazu
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tomomi Suzuki
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Ryoko Araki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Takahiro Ishikawa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Satoshi Kamimura
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Naoki Hirose
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kousuke Kazama
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Li Yang
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rei Inoue
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Yasuyuki Kikuchi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Rina Emura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Ren Watanabe
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiroaki Nagatomo
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Hiromi Suzuki
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Tohru Yamamori
- Space Utilization Promotion Department, Japan Space Forum, Tokyo 101-0062, Japan
| | - Motoki N Tada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Ikuko Osada
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Masumi Umehara
- Advanced Engineering Services Co. Ltd, Tsukuba, Ibaraki 305-0032, Japan
| | - Hiromi Sano
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | - Haruo Kasahara
- Japan Manned Space Systems Corporation, Tokyo 100-0004, Japan
| | | | - Sachiko Yano
- Japan Aerospace Exploration Agency, Tsukuba 305-8505, Japan
| | - Masumi Abe
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Satoshi Kishigami
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Teruhiko Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Yamanashi 400-8510, Japan.
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi 400-8510, Japan
| |
Collapse
|
16
|
Abstract
Long-term preservation of mammalian sperm at suprazero temperatures is desired to save storage and space costs, as well as to facilitate transport of preserved samples. This can be accomplished by the freeze-drying of sperm samples. Although freeze-drying results in immotile and membrane-compromised sperm, intracytoplasmic sperm injection (ICSI) can be used to introduce such an immotile sperm into an oocyte and thus start the fertilization process. So far, it has been shown that improved freeze-drying protocols preserve chromosomal integrity and oocyte-activating factor(s) in rodent and mammalian species at 4 °C for several years and at ambient temperature for up to 1 year depending on species, which permits shipping freeze-dried samples at ambient temperature. This chapter concisely reviews freeze-drying of mammalian sperm first and then presents a simple freeze-drying protocol.
Collapse
|
17
|
Golshan Iranpour F, Nateghian Z, Henkel R, Dashti GR. Effects of temperature and storage time on the motility, viability, DNA integrity and apoptosis of processed human spermatozoa. Andrologia 2019; 52:e13485. [PMID: 31815326 DOI: 10.1111/and.13485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/21/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to evaluate motility, viability, DNA integrity and apoptosis of spermatozoa when washed semen samples were kept for up to 12 days at 4-6°C and 25°C. In this experimental study, 26 normozoospermic semen samples were washed twice in Modified Ham's F10 and resuspended in IVF fertilisation medium. Half of the specimens were stored at 4-6°C, and the other half was kept at 25°C for 12 days. The proportions of viable, motile, spermatozoa with double-stranded DNA and apoptotic spermatozoa were examined during storage time. Apoptosis was measured using annexin V-PI staining followed by flow cytometry. Results showed that sperm motility and viability decreased during 12 days of sample storage (p < .001). There was no significant difference between the two temperatures in terms of motility and viability for up to 2 days (p < .05). The percentage of spermatozoa with double-stranded DNA remained unchanged during the 12 days of storage at both temperatures (p > .05). Although there was no difference between the two temperatures in terms of motility, viability and apoptosis during the first two days of storage, storage of spermatozoa at 4-6°C is better than storage for a longer period than storage at 25°C. Sperm DNA resisted against denaturation during storage.
Collapse
Affiliation(s)
- Farhad Golshan Iranpour
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Saint Maryam Infertility Center, Shahid Beheshti Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Nateghian
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ralf Henkel
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Gholam Reza Dashti
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.,Saint Maryam Infertility Center, Shahid Beheshti Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Ito D, Wakayama S, Kamada Y, Shibasaki I, Kamimura S, Ooga M, Wakayama T. Effect of trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J Reprod Dev 2019; 65:353-359. [PMID: 31118350 PMCID: PMC6708850 DOI: 10.1262/jrd.2019-058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Freeze-drying of spermatozoa is a convenient and safe method to preserve mammalian genetic material without the use of liquid nitrogen or a deep freezer. However, freeze-dried spermatozoa
(FD sperm) are not frequently used because of the low success rate of offspring after intracytoplasmic spermatozoa injection (ICSI). In this study, we determined the optimal concentration
and a point of action of trehalose as a protectant for the preservation of FD sperm from different mouse strains at room temperature (RT). Although trehalose demonstrated no potential to
protect the FD sperm of ICR mice against the freeze-drying procedure itself, the blastocyst rate was significantly improved when FD sperm was preserved for more than 1 month at RT (56–63%
vs. 29% without trehalose). The optimal concentration of trehalose was 0.5 M. Importantly, remarkable results were obtained when spermatozoa of inbred mouse strains
(C57BL/6N, C3H/He, and 129/Sv) were used, and many offspring were obtained when FD sperm that was preserved for 3 months at RT (26–28% vs. 6–11% of without trehalose) was
used. However, when DNA damage in FD sperm was examined by gamma-H2Ax assays, it was found that trehalose failed to protect the FD sperm from DNA damage. These results suggest that trehalose
has the potential to protect other sperm factors rather than sperm DNA during preservation at RT for longer periods and trehalose is more effective for inbred mouse strains.
Collapse
Affiliation(s)
- Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| | - Yuko Kamada
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: Kameda Medical Center, Chiba 296-8602, Japan
| | - Ikue Shibasaki
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: RIKEN Center for Brain Science (CBS), Wako 351-0198, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| |
Collapse
|
19
|
Tolerance of the freeze-dried mouse sperm nucleus to temperatures ranging from -196 °C to 150 °C. Sci Rep 2019; 9:5719. [PMID: 30952922 PMCID: PMC6450870 DOI: 10.1038/s41598-019-42062-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
It has long been believed that tolerance against extreme environments is possible only for ‘lower’ groups, such as archaea, bacteria or tardigrades, and not for more ‘advanced’ species. Here, we demonstrated that the mammalian sperm nucleus also exhibited strong tolerance to cold and hot temperatures. When mouse spermatozoa were freeze-dried (FD), similar to the anhydrobiosis of Tardigrades, all spermatozoa were ostensibly dead after rehydration. However, offspring were obtained from recovered FD sperm nuclei, even after repeated treatment with conditions from liquid nitrogen to room temperature. Conversely, when FD spermatozoa were heated at 95 °C, although the birth rate was decreased with increasing duration of the treatment, offspring were obtained even for FD spermatozoa that had been heat-treated for 2 h. This period was improved up to 6 h when glucose was replaced with trehalose in the freeze-drying medium, and the resistance temperature was extended up to 150 °C for short periods of treatment. Randomly selected offspring grew into healthy adults. Our results suggest that, when considering the sperm nucleus/DNA as the material that is used as a blueprint of life, rather than cell viability, a significant tolerance to extreme temperatures is present even in ‘higher’ species, such as mammals.
Collapse
|
20
|
Exploring dry storage as an alternative biobanking strategy inspired by Nature. Theriogenology 2019; 126:17-27. [DOI: 10.1016/j.theriogenology.2018.11.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/13/2022]
|
21
|
Kusakabe H. Production of mouse fetuses using spermatozoa exposed temporarily to high temperature or continuously to room temperature after freeze-drying in Na +-free/K +-rich EGTA buffer. Cryobiology 2019; 87:105-109. [PMID: 30682339 DOI: 10.1016/j.cryobiol.2019.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022]
Abstract
Present study aimed to determine to what extent freeze-dried spermatozoa were able to withstand high-temperature conditions: transient increase in storage temperature and long-term exposure to room temperature. Mouse spermatozoa were freeze-dried in EGTA/Tris-HCl buffered solution alkalinized using KOH (K-ETBS, pH 7.7), and then stored for up to 7 months at 4 °C or 25 °C. After 2 months' storage, some of the 4°C-stored spermatozoa were exposed to 40 °C for 1 week or 1 month, then again stored at 4 °C for the remaining storage period. Following storage, rehydrated spermatozoa were injected into mouse oocytes. The resulting zygotes were assessed for chromosome damage, in vitro development up to the blastocyst stage, and post-implantation development to normal fetuses on day 18 of gestation. In storage at 4 °C, one-week exposure to 40 °C had no adverse effect on the chromosome integrity and developmental competence compared to non-exposure to 40 °C (continuous storage at 4 °C). In contrast, one-month exposure to 40 °C caused an increasing level of chromosome damage (36%, P < 0.05) and reduced frequencies of blastocysts (54%, P < 0.05) and normal fetuses (36%, P < 0.05) compared to the frequencies obtained by continuous storage at 4 °C (15%, 82% and 52%, respectively). Storage at 25 °C resulted in accumulation of chromosome damage (27%, P < 0.05), leading to decreased blastocyst formation (63%, P < 0.05). But, the frequency of normal fetus (44%) was not significantly different from that obtained by continuous storage at 4 °C. Consequently, mouse spermatozoa freeze-dried in K-ETBS withstood temporary exposure to 40 °C for 1 week. Chromosome damage accumulated in spermatozoa during storage at 25 °C.
Collapse
Affiliation(s)
- Hirokazu Kusakabe
- Department of Biological Sciences, Asahikawa Medical University, 2-1-1-1 Midorigaoka-higashi, Asahikawa, 078-8510, Japan.
| |
Collapse
|