1
|
Zhang M, Adroub S, Ummels R, Asaad M, Song L, Pain A, Bitter W, Guan Q, Abdallah AM. Comprehensive pan-genome analysis of Mycobacterium marinum: insights into genomic diversity, evolution, and pathogenicity. Sci Rep 2024; 14:27723. [PMID: 39532890 PMCID: PMC11557581 DOI: 10.1038/s41598-024-75228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Mycobacteria is a diverse genus that includes both innocuous environmental species and serious pathogens like Mycobacterium tuberculosis, Mycobacterium leprae, and Mycobacterium ulcerans, the causative agents of tuberculosis, leprosy, and Buruli ulcer, respectively. This study focuses on Mycobacterium marinum, a closely related species known for its larger genome and ability to infect ectothermic species and cooler human extremities. Utilizing whole-genome sequencing, we conducted a comprehensive pan-genome analysis of 100 M. marinum strains, exploring genetic diversity and its impact on pathogenesis and host specificity. Our findings highlight significant genomic diversity, with clear distinctions in core, dispensable, and unique genes among the isolates. Phylogenetic analysis revealed a broad distribution of genetic lineages, challenging previous classifications into distinct clusters. Additionally, we examined the synteny and diversity of the virulence factor CpnT, noting a wide range of C-terminal domain variations across strains, which points to potential adaptations in pathogenic mechanisms. This study enhances our understanding of M. marinum's genomic architecture and its evolutionary relationship with other mycobacterial pathogens, providing insights that could inform disease control strategies for M. tuberculosis and other mycobacteria.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Sabir Adroub
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Section Molecular Microbiology, Amsterdam, The Netherlands
| | - Mohammed Asaad
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center, Section Molecular Microbiology, Amsterdam, The Netherlands
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China.
| | - Abdallah M Abdallah
- College of Medicine, Qatar University (QU) Health, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Sasikumar R, Saranya S, Lourdu Lincy L, Thamanna L, Chellapandi P. Genomic insights into fish pathogenic bacteria: A systems biology perspective for sustainable aquaculture. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109978. [PMID: 39442738 DOI: 10.1016/j.fsi.2024.109978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Fish diseases significantly challenge global aquaculture, causing substantial financial losses and impacting sustainability, trade, and socioeconomic conditions. Understanding microbial pathogenesis and virulence at the molecular level is crucial for disease prevention in commercial fish. This review provides genomic insights into fish pathogenic bacteria from a systems biology perspective, aiming to promote sustainable aquaculture. It covers the genomic characteristics of various fish pathogens and their industry impact. The review also explores the systems biology of zebrafish, fish bacterial pathogens, and probiotic bacteria, offering insights into fish production, potential vaccines, and therapeutic drugs. Genome-scale metabolic models aid in studying pathogenic bacteria, contributing to disease management and antimicrobial development. Researchers have also investigated probiotic strains to improve aquaculture health. Additionally, the review highlights bioinformatics resources for fish and fish pathogens, which are essential for researchers. Systems biology approaches enhance understanding of bacterial fish pathogens by revealing virulence factors and host interactions. Despite challenges from the adaptability and pathogenicity of bacterial infections, sustainable alternatives are necessary to meet seafood demand. This review underscores the potential of systems biology in understanding fish pathogen biology, improving production, and promoting sustainable aquaculture.
Collapse
Affiliation(s)
- R Sasikumar
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - S Saranya
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Lourdu Lincy
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - L Thamanna
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Chellapandi
- Industrial Systems Biology Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhang H, Tang M, Li D, Xu M, Ao Y, Lin L. Applications and advances in molecular diagnostics: revolutionizing non-tuberculous mycobacteria species and subspecies identification. Front Public Health 2024; 12:1410672. [PMID: 38962772 PMCID: PMC11220129 DOI: 10.3389/fpubh.2024.1410672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Non-tuberculous mycobacteria (NTM) infections pose a significant public health challenge worldwide, affecting individuals across a wide spectrum of immune statuses. Recent epidemiological studies indicate rising incidence rates in both immunocompromised and immunocompetent populations, underscoring the need for enhanced diagnostic and therapeutic approaches. NTM infections often present with symptoms similar to those of tuberculosis, yet with less specificity, increasing the risk of misdiagnosis and potentially adverse outcomes for patients. Consequently, rapid and accurate identification of the pathogen is crucial for precise diagnosis and treatment. Traditional detection methods, notably microbiological culture, are hampered by lengthy incubation periods and a limited capacity to differentiate closely related NTM subtypes, thereby delaying diagnosis and the initiation of targeted therapies. Emerging diagnostic technologies offer new possibilities for the swift detection and accurate identification of NTM infections, playing a critical role in early diagnosis and providing more accurate and comprehensive information. This review delineates the current molecular methodologies for NTM species and subspecies identification. We critically assess the limitations and challenges inherent in these technologies for diagnosing NTM and explore potential future directions for their advancement. It aims to provide valuable insights into advancing the application of molecular diagnostic techniques in NTM infection identification.
Collapse
Affiliation(s)
- Haiyang Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Maoting Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Deyuan Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Min Xu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Yusen Ao
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Liangkang Lin
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
4
|
Savijoki K, Deptula P, Roberts RJ, Hammarén M, Yli-Kauhaluoma J, Varmanen P, Parikka M. Revised whole genome and DNA methylome of Mycobacterium marinum type strain ATCC 927 T. Microbiol Resour Announc 2024; 13:e0101623. [PMID: 38415640 PMCID: PMC11008211 DOI: 10.1128/mra.01016-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Mycobacterium marinum, a slow-growing Actinobacterium, typically induces tuberculosis-like disease in fish. Here, we report a new reference sequence for M. marinum ATCC 927T, along with its DNA methylome. This aims to maximize the research potential of this type strain and facilitates investigations into the pathomechanisms of human tuberculosis.
Collapse
Affiliation(s)
- Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Paulina Deptula
- Department of Food Science (FOOD), University of Copenhagen, Frederiksberg, Denmark
| | | | - Milka Hammarén
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Pekka Varmanen
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
5
|
Lefrançois LH, Nitschke J, Wu H, Panis G, Prados J, Butler RE, Mendum TA, Hanna N, Stewart GR, Soldati T. Temporal genome-wide fitness analysis of Mycobacterium marinum during infection reveals the genetic requirement for virulence and survival in amoebae and microglial cells. mSystems 2024; 9:e0132623. [PMID: 38270456 PMCID: PMC10878075 DOI: 10.1128/msystems.01326-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Tuberculosis remains the most pervasive infectious disease and the recent emergence of drug-resistant strains emphasizes the need for more efficient drug treatments. A key feature of pathogenesis, conserved between the human pathogen Mycobacterium tuberculosis and the model pathogen Mycobacterium marinum, is the metabolic switch to lipid catabolism and altered expression of virulence genes at different stages of infection. This study aims to identify genes involved in sustaining viable intracellular infection. We applied transposon sequencing (Tn-Seq) to M. marinum, an unbiased genome-wide strategy combining saturation insertional mutagenesis and high-throughput sequencing. This approach allowed us to identify the localization and relative abundance of insertions in pools of transposon mutants. Gene essentiality and fitness cost of mutations were quantitatively compared between in vitro growth and different stages of infection in two evolutionary distinct phagocytes, the amoeba Dictyostelium discoideum and the murine BV2 microglial cells. In the M. marinum genome, 57% of TA sites were disrupted and 568 genes (10.2%) were essential, which is comparable to previous Tn-Seq studies on M. tuberculosis and M. bovis. Major pathways involved in the survival of M. marinum during infection of D. discoideum are related to DNA damage repair, lipid and vitamin metabolism, the type VII secretion system (T7SS) ESX-1, and the Mce1 lipid transport system. These pathways, except Mce1 and some glycolytic enzymes, were similarly affected in BV2 cells. These differences suggest subtly distinct nutrient availability or requirement in different host cells despite the known predominant use of lipids in both amoeba and microglial cells.IMPORTANCEThe emergence of biochemically and genetically tractable host model organisms for infection studies holds the promise to accelerate the pace of discoveries related to the evolution of innate immunity and the dissection of conserved mechanisms of cell-autonomous defenses. Here, we have used the genetically and biochemically tractable infection model system Dictyostelium discoideum/Mycobacterium marinum to apply a genome-wide transposon-sequencing experimental strategy to reveal comprehensively which mutations confer a fitness advantage or disadvantage during infection and compare these to a similar experiment performed using the murine microglial BV2 cells as host for M. marinum to identify conservation of virulence pathways between hosts.
Collapse
Affiliation(s)
- Louise H. Lefrançois
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Huihai Wu
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
| | - Julien Prados
- Department of Microbiology and Molecular Medicine, Faculty of Medicine/CMU, University of Geneva, Institute of Genetics and Genomics in Geneva (iGE3), Genève, Switzerland
- Bioinformatics Support Platform for data analysis, Geneva University, Medicine Faculty, Geneva, Switzerland
| | - Rachel E. Butler
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Tom A. Mendum
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| | - Graham R. Stewart
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Science II, Geneva, Switzerland
| |
Collapse
|
6
|
Zhao A, Li Y, Wu L, Wang Z, Lv Y, Xiong W, Alam MA, Liu G, Xu J. Immobilization of rough morphotype Mycolicibacterium neoaurum R for androstadienedione production. Biotechnol Lett 2024; 46:55-68. [PMID: 38064040 DOI: 10.1007/s10529-023-03448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/20/2023] [Accepted: 11/04/2023] [Indexed: 01/14/2024]
Abstract
OBJECTIVES Enhance the androstadienedione (Androst-1,4-diene-3,17-dione, ADD) production of rough morphotype Mycolicibacterium neoaurum R by repeated-batch fermentation of immobilized cells. RESULTS M. neoaurum R was a rough colony morphotype variant, obtained from the routine plating of smooth M. neoaurum strain CICC 21097. M. neoaurum R showed rougher cell surface and aggregated in broth. The ADD production of M. neoaurum R was notably lower than that of M. neoaurum CICC 21097 during the free cell fermentation, but the yield gap could be erased after proper cell immobilization. Subsequently, repeated-batch fermentation of immobilized M. neoaurum R was performed to shorten the production cycle and enhance the bio-production efficiency of ADD. Through the optimization of the immobilization carriers and the co-solvents for phytosterols, the ADD productivity of M. neoaurum R immobilized by semi-expanded perlite reached 0.075 g/L/h during the repeated-batch fermentation for 40 days. CONCLUSIONS The ADD production of the rough-type M. neoaurum R was notably enhanced by the immobilization onto semi-expanded perlite. Moreover, the ADD batch yields of M. neoaurum R immobilized by semi-expanded perlite were maintained at high levels during the repeated-batch fermentation.
Collapse
Affiliation(s)
- Anqi Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yamei Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lixia Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhi Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongkun Lv
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wenlong Xiong
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Mohammad Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Guohua Liu
- Key Laboratory of Feed Biotechnology, The Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing, 100081, China
| | - Jingliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
7
|
Wada T, Yoshida S, Yamamoto T, Nonaka L, Fukushima Y, Nakajima C, Suzuki Y, Imajoh M. Application of Genomic Epidemiology of Pathogens to Farmed Yellowtail Fish Mycobacteriosis in Kyushu, Japan. Microbes Environ 2024; 39:ME24011. [PMID: 38897967 PMCID: PMC11220446 DOI: 10.1264/jsme2.me24011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
To investigate mycobacterial cases of farmed yellowtail fish in coastal areas of western Japan (Kagoshima, Kyushu), where aquaculture fisheries are active, Mycobacterium pseudoshottsii, the causative agent, was isolated from six neighboring fishing ports in 2012 and 2013. A phylogenetic ana-lysis revealed that the strains isolated from one fishing port were closely related to those isolated from other regions of Japan, suggesting the nationwide spread of a single strain. However, strains from Japan were phylogenetically distinct from those from the Mediterranean and the United States; therefore, worldwide transmission was not observed based on the limited data obtained on the strains exami-ned in this study. The present results demonstrate that a bacterial genomic ana-lysis of infected cases, a mole-cular epidemiology strategy for public health, provides useful data for estimating the prevalence and transmission pathways of M. pseudoshottsii in farmed fish. A bacterial genome ana-lysis of strains, such as that performed herein, may play an important role in monitoring the prevalence of this pathogen in fish farms and possible epidemics in the future as a result of international traffic, logistics, and trade in fisheries.
Collapse
Affiliation(s)
- Takayuki Wada
- Department of Microbiology, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka, Japan
- Osaka International Research Center for Infectious Diseases, Osaka Metropolitan University, Osaka, Japan
| | - Shiomi Yoshida
- Clinical Research Center, National Hospital Organization Kinki-chuo Chest Medical Center, Sakai, Osaka, Japan
| | - Takeshi Yamamoto
- Azuma-cho Fisheries Cooperative Association, Izumi, Kagoshima, Japan
| | - Lisa Nonaka
- Faculty of Human Life Sciences, Shokei University, Kumamoto, Kumamoto, Japan
| | - Yukari Fukushima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Chie Nakajima
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Division of Research Support, Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
- Division of Research Support, Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masayuki Imajoh
- Laboratory of Fish Disease, Aquaculture Course, Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
8
|
Zhao F, Feng Y, Wang C, Xie Y, Zhou D, Xiao Y, Zong Z. Complete Genome Sequence of Mycobacterium marinum Strain 050012 Isolated from Infected Skin Tissue. Microbiol Resour Announc 2023:e0017423. [PMID: 37125927 DOI: 10.1128/mra.00174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
We report the complete genome sequence of a Mycobacterium marinum strain, which was isolated from skin tissue of a wound infection. This strain was subjected to short- and long-read sequencing. Its complete genome contains a single 6,393,703-bp circular chromosome. Phylogenomic analysis of all M. marinum genomes assigned this strain to cluster I.
Collapse
Affiliation(s)
- Feifei Zhao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Chengcheng Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Xiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
| |
Collapse
|
9
|
Schildkraut JA, Coolen JPM, Severin H, Koenraad E, Aalders N, Melchers WJG, Hoefsloot W, Wertheim HFL, van Ingen J. MGIT Enriched Shotgun Metagenomics for Routine Identification of Nontuberculous Mycobacteria: a Route to Personalized Health Care. J Clin Microbiol 2023; 61:e0131822. [PMID: 36840602 PMCID: PMC10035320 DOI: 10.1128/jcm.01318-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Currently, nontuberculous mycobacteria (NTM) are identified using small genomic regions, and species-level identification is often not possible. We introduce a next-generation sequencing (NGS) workflow that identifies mycobacteria to (sub)species level on the basis of the whole genome extracted from enriched shotgun metagenomic data. This technique is used to study the association between genotypes and clinical manifestations to pave the way to more personalized health care. Two sets of clinical isolates (explorative set [n = 212] and validation set [n = 235]) were included. All data were analyzed using a custom pipeline called MyCodentifier. Sequences were matched against a custom hsp65 database (NGS-hsp65) and whole-genome database (NGS-WG) created based on the phylogeny presented by Tortoli et al. (E. Tortoli, T. Fedrizzi, C. J. Meehan, A. Trovato, et al., Infect Genet Evol 56:19-25, 2017, https://doi.org/10.1016/j.meegid.2017.10.013). Lastly, phylogenetic analysis was performed and correlated with clinical manifestation. In the explorative set, we observed 98.6% agreement between the line probe assay and the NGS-hsp65 database. In the validation set, 99.1% agreement between the NGS-WG and NGS-hsp65 databases was seen on the complex level. We identified a cluster of Mycobacterium marinum isolates not represented by the Tortoli et al. phylogeny. Phylogenetic analysis of M. avium complex isolates confirmed misclassification of M. timonense and M. bouchedurhonense and identified subclusters within M. avium although no correlation with clinical manifestation was observed. We performed routine NGS to identify NTM from MGIT enriched shotgun metagenomic data. Phylogenetic analyses identified subtypes of M. avium, but in our set of isolates no correlation with clinical manifestation was found. However, this NGS workflow paves a way for more personalized health care in the future.
Collapse
Affiliation(s)
- Jodie A Schildkraut
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jordy P M Coolen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heleen Severin
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ellen Koenraad
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicole Aalders
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Willem J G Melchers
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wouter Hoefsloot
- Radboudumc Center for Infectious Diseases, Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heiman F L Wertheim
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jakko van Ingen
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
10
|
The ESX-1 Substrate PPE68 Has a Key Function in ESX-1-Mediated Secretion in Mycobacterium marinum. mBio 2022; 13:e0281922. [PMID: 36409073 PMCID: PMC9765416 DOI: 10.1128/mbio.02819-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria use specialized type VII secretion systems (T7SSs) to secrete proteins across their diderm cell envelope. One of the T7SS subtypes, named ESX-1, is a major virulence determinant in pathogenic species such as Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. ESX-1 secretes a variety of substrates, called Esx, PE, PPE, and Esp proteins, at least some of which are folded heterodimers. Investigation into the functions of these substrates is problematic, because of the intricate network of codependent secretion between several ESX-1 substrates. Here, we describe the ESX-1 substrate PPE68 as essential for secretion of the highly immunogenic substrates EsxA and EspE via the ESX-1 system in M. marinum. While secreted PPE68 is processed on the cell surface, the majority of cell-associated PPE68 of M. marinum and M. tuberculosis is present in a cytosolic complex with its PE partner and the EspG1 chaperone. Interfering with the binding of EspG1 to PPE68 blocked its export and the secretion of EsxA and EspE. In contrast, esxA was not required for the secretion of PPE68, revealing a hierarchy in codependent secretion. Remarkably, the final 10 residues of PPE68, a negatively charged domain, seem essential for EspE secretion, but not for the secretion of EsxA and of PPE68 itself. This indicates that distinctive domains of PPE68 are involved in secretion of the different ESX-1 substrates. Based on these findings, we propose a mechanistic model for the central role of PPE68 in ESX-1-mediated secretion and substrate codependence. IMPORTANCE Pathogenic mycobacteria, such Mycobacterium tuberculosis and Mycobacterium marinum, use a type VII secretion system (T7SS) subtype, called ESX-1, to mediate intracellular survival via phagosomal rupture and subsequent translocation of the mycobacterium to the host cytosol. Identifying the ESX-1 substrate that is responsible for this process is problematic because of the intricate network of codependent secretion between ESX-1 substrates. Here, we show the central role of the ESX-1 substrate PPE68 for the secretion of ESX-1 substrates in Mycobacterium marinum. Unravelling the mechanism of codependent secretion will aid the functional understanding of T7SSs and will allow the analysis of the individual roles of ESX-1 substrates in the virulence caused by the significant human pathogen Mycobacterium tuberculosis.
Collapse
|
11
|
Zhao Q, Bao F, Mi Z, Wang Z, Huai P, Pan Q, Pang Z, Li Y, Cao N, Xue X, Li B, Chen X, Wang J, Cui Y, Chang W, Zhang Y, Yue Z, Liu Y, Wang Z, Yan W, Li J, Tian H, Lu X, Zhou G, Liu J, Liu H, Zhang F. An outbreak of Mycobacterium marinum infection associated with handling seabass in China. Chin Med J (Engl) 2022; 135:2617-2619. [PMID: 36228158 PMCID: PMC9945288 DOI: 10.1097/cm9.0000000000002078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 01/26/2023] Open
Affiliation(s)
- Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Pengcheng Huai
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Qing Pan
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Zheng Pang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Yaoming Li
- Shangkou Hospital, Shouguang, Shandong 262732, China
| | - Nan Cao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Buyan Li
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Xuechao Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Jinliang Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Yanxia Cui
- Shouguang People's Hospital, Shouguang, Shandong 261000, China
| | - Wenqian Chang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Zhenhua Yue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Yongxia Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Zhenhua Wang
- Weifang People's Hospital, Weifang, Shandong 261000, China
| | - Weiguo Yan
- Shouguang Hospital for Skin Diseases, Shouguang, Shandong 261000, China
| | - Jinyong Li
- Weifang Hospital for Skin Diseases, Weifang, Shandong 261000, China
| | - Hongqing Tian
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Xianmei Lu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Guizhi Zhou
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Jianjun Liu
- Human Genetics, Genome Institute of Singapore, A∗STAR, Republic of Singapore
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250022, China
| |
Collapse
|
12
|
Behra PRK, Pettersson BMF, Ramesh M, Das S, Dasgupta S, Kirsebom LA. Comparative genome analysis of mycobacteria focusing on tRNA and non-coding RNA. BMC Genomics 2022; 23:704. [PMID: 36243697 PMCID: PMC9569102 DOI: 10.1186/s12864-022-08927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Mycobacterium genus encompasses at least 192 named species, many of which cause severe diseases such as tuberculosis. Non-tuberculosis mycobacteria (NTM) can also infect humans and animals. Some are of emerging concern because they show high resistance to commonly used antibiotics while others are used and evaluated in bioremediation or included in anticancer vaccines. RESULTS We provide the genome sequences for 114 mycobacterial type strains and together with 130 available mycobacterial genomes we generated a phylogenetic tree based on 387 core genes and supported by average nucleotide identity (ANI) data. The 244 genome sequences cover most of the species constituting the Mycobacterium genus. The genome sizes ranged from 3.2 to 8.1 Mb with an average of 5.7 Mb, and we identified 14 new plasmids. Moreover, mycobacterial genomes consisted of phage-like sequences ranging between 0 and 4.64% dependent on mycobacteria while the number of IS elements varied between 1 and 290. Our data also revealed that, depending on the mycobacteria, the number of tRNA and non-coding (nc) RNA genes differ and that their positions on the chromosome varied. We identified a conserved core set of 12 ncRNAs, 43 tRNAs and 18 aminoacyl-tRNA synthetases among mycobacteria. CONCLUSIONS Phages, IS elements, tRNA and ncRNAs appear to have contributed to the evolution of the Mycobacterium genus where several tRNA and ncRNA genes have been horizontally transferred. On the basis of our phylogenetic analysis, we identified several isolates of unnamed species as new mycobacterial species or strains of known mycobacteria. The predicted number of coding sequences correlates with genome size while the number of tRNA, rRNA and ncRNA genes does not. Together these findings expand our insight into the evolution of the Mycobacterium genus and as such they establish a platform to understand mycobacterial pathogenicity, their evolution, antibiotic resistance/tolerance as well as the function and evolution of ncRNA among mycobacteria.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - B. M. Fredrik Pettersson
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| | - Leif A. Kirsebom
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
13
|
Shu Q, Rajagopal M, Fan J, Zhan L, Kong X, He Y, Rotcheewaphan S, Lyon CJ, Sha W, Zelazny AM, Hu T. Peptidomic analysis of mycobacterial secreted proteins enables species identification. VIEW 2022. [DOI: 10.1002/viw.20210019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Qingbo Shu
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Meena Rajagopal
- Department of Laboratory Medicine, Clinical Center National Institutes of Health Bethesda Maryland USA
| | - Jia Fan
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Lingpeng Zhan
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Xiangxing Kong
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Yifan He
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai People's Republic of China
| | - Suwatchareeporn Rotcheewaphan
- Department of Laboratory Medicine, Clinical Center National Institutes of Health Bethesda Maryland USA
- Department of Microbiology, Faculty of Medicine Chulalongkorn University Bangkok Thailand
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| | - Wei Sha
- Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital Tongji University School of Medicine Shanghai People's Republic of China
| | - Adrian M. Zelazny
- Department of Laboratory Medicine, Clinical Center National Institutes of Health Bethesda Maryland USA
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics Department of Biochemistry and Molecular Biology School of Medicine Tulane University New Orleans Louisiana USA
| |
Collapse
|
14
|
Gauthier DT, Doss JH, LaGatta M, Gupta T, Karls RK, Quinn FD. Genomic Degeneration and Reduction in the Fish Pathogen Mycobacterium shottsii. Microbiol Spectr 2022; 10:e0115821. [PMID: 35579461 PMCID: PMC9241763 DOI: 10.1128/spectrum.01158-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/26/2022] [Indexed: 01/17/2023] Open
Abstract
Mycobacterium shottsii is a dysgonic, nonpigmented mycobacterium originally isolated from diseased striped bass (Morone saxatilis) in the Chesapeake Bay, USA. Genomic analysis reveals that M. shottsii is a Mycobacterium ulcerans/Mycobacterium marinum clade (MuMC) member, but unlike the superficially similar M. pseudoshottsii, also isolated from striped bass, it is not an M. ulcerans ecovar, instead belonging to a transitional group of strains basal to proposed "Aronson" and "M" lineages. Although phylogenetically distinct from the human pathogen M. ulcerans, the M. shottsii genome shows parallel but nonhomologous genomic degeneration, including massive accumulation of pseudogenes accompanied by proliferation of unique insertion sequences (ISMysh01, ISMysh03), large-scale deletions, and genomic reorganization relative to typical M. marinum strains. Coupled with its observed ecological characteristics and loss of chromogenicity, the genomic structure of M. shottsii is suggestive of evolution toward a state of obligate pathogenicity, as observed for other Mycobacterium spp., including M. ulcerans, M. tuberculosis, and M. leprae. IMPORTANCE Morone saxatilis (striped bass) is an ecologically and economically important finfish species on the United States east coast. Mycobacterium shottsii and Mycobacterium pseudoshottsii were originally described in the early 2000s as novel species from outbreaks of visceral and dermal mycobacteriosis in this species. Biochemical and genetic characterization place these species within the Mycobacterium ulcerans/M. marinum clade (MuMC), and M. pseudoshottsii has been proposed as an ecovar of M. ulcerans. Here, we describe the complete genome of M. shottsii, demonstrating that it is clearly not an M. ulcerans ecovar; however, it has undergone parallel genomic modification suggestive of a transition to obligate pathogenicity. As in M. ulcerans, the M. shottsii genome demonstrates widespread pseudogene formation driven by proliferation of insertion sequences, as well as genomic reorganization. This work clarifies the phylogenetic position of M. shottsii relative to other MuMC members and provides insight into processes shaping its genomic structure.
Collapse
Affiliation(s)
- D. T. Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - J. H. Doss
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, USA
| | - M. LaGatta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - T. Gupta
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
| | - R. K. Karls
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| | - F. D. Quinn
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, USA
- Pathens Incorporated, Athens, Georgia, USA
| |
Collapse
|
15
|
Giorgio Tiscar P, Rubino F, Paoletti B, Di Francesco CE, Mosca F, Della Salda L, Hattab J, Smoglica C, Morelli S, Fanelli G. New insights about Haplosporidium pinnae and the pen shell Pinna nobilis mass mortality events. J Invertebr Pathol 2022; 190:107735. [PMID: 35247465 DOI: 10.1016/j.jip.2022.107735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/29/2021] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Since early autumn 2016, Mass Mortality Events (MME) have drastically impacted the population of the fan mussel Pinna nobilis in the Mediterranean Sea. Haplosporidium pinnae, a newly described Haplosporidian species, has been considered the causative agent of the mortality outbreaks in association to opportunistic bacterial pathogens. In the present study, we first reported a cytological description of H. pinnae in moribund specimens of P. nobilis which were collected in the Gulf of Taranto (Ionian Sea, Italy) during summer 2018. Different life-cycle stages of the parasite, including uni- and binucleate cells, small plasmodia, big multinucleate plasmodia and sporocysts with spores, were detected in all the examined animals and most of the parasite cells were present in gills, mantle and digestive gland, while the spores were found only in the latter organ. Histology and molecular biology were also performed, confirming the nature of the infectious agent, as already reported in the area. Additionally, molecular study revealed the presence of the Mycobacterium ulcerans - M. marinum complex but no evident macroscopical or microscopical lesions, just as no bacteria referred to Mycobacterium were observed. In conclusion, the present study aimed to provide further contributions to the understanding of the mortality of P. nobilis, pointing on the role of the cytological method of investigation both for diagnostic and epidemiological purposes, and discussing about the current epidemic situation in the Adriatic sea.
Collapse
Affiliation(s)
| | | | - Barbara Paoletti
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | | - Francesco Mosca
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Leonardo Della Salda
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Jasmine Hattab
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Camilla Smoglica
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | - Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, Piano D'Accio, Teramo, Italy
| | | |
Collapse
|
16
|
Chénier S, Tremblay M, Lloyd D, Duceppe MO, Andrievskaia O. High female mortality caused by an atypical Mycobacterium species closely related to the Mycobacterium ulcerans-marinum complex in a colony of bearded dragons (Pogona vitticeps). THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2022; 63:133-138. [PMID: 35110768 PMCID: PMC8759342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A commercial breeding colony of bearded dragons (Pogona vitticeps) experienced an increase in mortality that affected females only. Before death, the animals had lost appetite and weight, were dehydrated, and some had labored breathing. Necropsy revealed granulomas in many organs (ovaries, lungs, liver, kidneys, heart, bone marrow) in which numerous acid-fast bacteria were identified. Bacterial isolation confirmed Mycobacterium spp., which was identified by whole genome sequencing as closely related to the Mycobacterium ulcerans-marinum complex. Due to the zoonotic potential of this bacterium and the poor prognosis for the remaining sick animals, the entire colony was culled and 7 animals were evaluated. The possible routes for introduction of this bacterium, the female predisposition to the disease, as well as the zoonotic potential of this microorganism are discussed. Key clinical message: An atypical Mycobacterium species closely related to Mycobacterium ulcerans-marinum complex can cause high female morality in captive bearded dragons.
Collapse
Affiliation(s)
- Sonia Chénier
- Laboratoire de santé animale de Saint-Hyacinthe, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 3220 Sicotte, St-Hyacinthe, Québec J2S 7X9 (Chénier); Service vétérinaire à domicile pour oiseaux et animaux exotiques, 4145, rue Jean Renou, Lachine, Québec H8T 1N4 (Tremblay); Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 (Lloyd, Duceppe, Andrievskaia)
| | - Manon Tremblay
- Laboratoire de santé animale de Saint-Hyacinthe, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 3220 Sicotte, St-Hyacinthe, Québec J2S 7X9 (Chénier); Service vétérinaire à domicile pour oiseaux et animaux exotiques, 4145, rue Jean Renou, Lachine, Québec H8T 1N4 (Tremblay); Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 (Lloyd, Duceppe, Andrievskaia)
| | - Dara Lloyd
- Laboratoire de santé animale de Saint-Hyacinthe, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 3220 Sicotte, St-Hyacinthe, Québec J2S 7X9 (Chénier); Service vétérinaire à domicile pour oiseaux et animaux exotiques, 4145, rue Jean Renou, Lachine, Québec H8T 1N4 (Tremblay); Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 (Lloyd, Duceppe, Andrievskaia)
| | - Marc Olivier Duceppe
- Laboratoire de santé animale de Saint-Hyacinthe, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 3220 Sicotte, St-Hyacinthe, Québec J2S 7X9 (Chénier); Service vétérinaire à domicile pour oiseaux et animaux exotiques, 4145, rue Jean Renou, Lachine, Québec H8T 1N4 (Tremblay); Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 (Lloyd, Duceppe, Andrievskaia)
| | - Olga Andrievskaia
- Laboratoire de santé animale de Saint-Hyacinthe, Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec (MAPAQ), 3220 Sicotte, St-Hyacinthe, Québec J2S 7X9 (Chénier); Service vétérinaire à domicile pour oiseaux et animaux exotiques, 4145, rue Jean Renou, Lachine, Québec H8T 1N4 (Tremblay); Ottawa Laboratory (Fallowfield), Canadian Food Inspection Agency, 3851 Fallowfield Road, Ottawa, Ontario K2H 8P9 (Lloyd, Duceppe, Andrievskaia)
| |
Collapse
|
17
|
Whole-Genome sequencing and comparative genomics of Mycobacterium spp. from farmed Atlantic and coho salmon in Chile. Antonie van Leeuwenhoek 2021; 114:1323-1336. [PMID: 34052985 PMCID: PMC8379129 DOI: 10.1007/s10482-021-01592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/08/2021] [Indexed: 12/02/2022]
Abstract
Several members of the Mycobacterium genus cause invasive infections in humans and animals. According to a recent phylogenetic analysis, some strains of Mycobacterium salmoniphilum (Msal), which are the main culprit in bacterial outbreaks in freshwater fish aquaculture, have been assigned to a separate branch containing Mycobacterium franklinii (Mfra), another species that causes infections in humans. However, this genus is little studied in an aquaculture context. Here, we isolated four Mycobacterium spp. strains from freshwater cultures of Atlantic and coho salmon in Chile and performed whole-genome sequencing for deep genomic characterization. In addition, we described the gross pathology and histopathology of the outbreaks. Several bioinformatic analyses were performed using the genomes of these four Mycobacterium isolates in conjunction with those of Msal strains, four Msal-like strains, and one Mfra strains, plus 17 other publicly available Mycobacterium genomes. We found that three isolates are clustered into the Msal branch, whereas one isolate clustered with the Mfra/Msal-like strains. We further evaluated the presence of virulence and antimicrobial resistance genes and observed that the four isolates were closely related to the Msal and Msal-like taxa and carried several antimicrobial resistance and virulence genes that are similar to those of other pathogenic members of the Mycobacterium clade. Altogether, our characterization Msal and Msal-like presented here shed new light on the basis of mycobacteriosis provides quantitative evidence that Mycobacterium strains are a potential risk for aquaculture asetiological agents of emerging diseases, and highlight their biological scopes in the aquaculture industry.
Collapse
|
18
|
Intracellular localization of the mycobacterial stressosome complex. Sci Rep 2021; 11:10060. [PMID: 33980893 PMCID: PMC8115616 DOI: 10.1038/s41598-021-89069-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Microorganisms survive stresses by alternating the expression of genes suitable for surviving the immediate and present danger and eventually adapt to new conditions. Many bacteria have evolved a multiprotein "molecular machinery" designated the "Stressosome" that integrates different stress signals and activates alternative sigma factors for appropriate downstream responses. We and others have identified orthologs of some of the Bacillus subtilis stressosome components, RsbR, RsbS, RsbT and RsbUVW in several mycobacteria and we have previously reported mutual interactions among the stressosome components RsbR, RsbS, RsbT and RsbUVW from Mycobacterium marinum. Here we provide evidence that "STAS" domains of both RsbR and RsbS are important for establishing the interaction and thus critical for stressosome assembly. Fluorescence microscopy further suggested co-localization of RsbR and RsbS in multiprotein complexes visible as co-localized fluorescent foci distributed at scattered locations in the M. marinum cytoplasm; the number, intensity and distribution of such foci changed in cells under stressed conditions. Finally, we provide bioinformatics data that 17 (of 244) mycobacteria, which lack the RsbRST genes, carry homologs of Bacillus cereus genes rsbK and rsbM indicating the existence of alternative σF activation pathways among mycobacteria.
Collapse
|
19
|
Pang Z, Dong F, Liu Q, Lin W, Hu C, Yuan Z. Soil Metagenomics Reveals Effects of Continuous Sugarcane Cropping on the Structure and Functional Pathway of Rhizospheric Microbial Community. Front Microbiol 2021; 12:627569. [PMID: 33746921 PMCID: PMC7973049 DOI: 10.3389/fmicb.2021.627569] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/08/2021] [Indexed: 12/25/2022] Open
Abstract
The continuous cropping of plants can result in the disruption of the soil microbial community and caused significant declines in yields. However, there are few reports on the effects of continuous cropping of sugarcane on the microbial community structure and functional pathway. In the current study, we analyzed the structural and functional changes of microbial community structure in the rhizospheric soil of sugarcane in different continuous cropping years using Illumina Miseq high-throughput sequencing and metagenomics analysis. We collected rhizosphere soils from fields of no continuous cropping history (NCC), 10 years of continuous cropping (CC10), and 30 years of continuous cropping (CC30) periods in the Fujian province. The results demonstrated that continuous sugarcane cropping resulted in significant changes in the physicochemical properties of soil and the composition of soil bacterial and fungal communities. With the continuous cropping, the crop yield dramatically declined from NCC to CC30. Besides, the redundancy analysis (RDA) of the dominant bacterial and fungal phyla and soil physicochemical properties revealed that the structures of the bacterial and fungal communities were mainly driven by pH and TS. Analysis of potential functional pathways during the continuous cropping suggests that different KEGG pathways were enriched in different continuous cropping periods. The significant reduction of bacteria associated with rhizospheric soil nitrogen and sulfur cycling functions and enrichment of pathogenic bacteria may be responsible for the reduction of effective nitrogen and total sulfur content in rhizospheric soil of continuous sugarcane as well as the reduction of sugarcane yield and sugar content. Additionally, genes related to nitrogen and sulfur cycling were identified in our study, and the decreased abundance of nitrogen translocation genes and AprAB and DsrAB in the dissimilatory sulfate reduction pathway could be the cause of declined biomass. The findings of this study may provide a theoretical basis for uncovering the mechanism of obstacles in continuous sugarcane cropping and provide better guidance for sustainable development of the sugarcane.
Collapse
Affiliation(s)
- Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| | - Fei Dong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Liu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaohua Hu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhaonian Yuan
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Agricultural, Fujian Agriculture and Forestry University, Fuzhou, China
- Province and Ministry Co-sponsored Collaborative Innovation Center of Sugar Industry, Nanning, China
| |
Collapse
|
20
|
Manion M, Dulanto Chiang A, Pei L, Wong CS, Khil P, Hammoud DA, Anderson M, Laidlaw E, Kuriakose S, Lisco A, Zelazny AM, Dekker JP, Sereti I. Disseminated Mycobacterium marinum in Human Immunodeficiency Virus Unmasked by Immune Reconstitution Inflammatory Syndrome. J Infect Dis 2020; 224:453-457. [PMID: 33336253 DOI: 10.1093/infdis/jiaa769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/16/2020] [Indexed: 11/14/2022] Open
Abstract
Distinguishing disseminated Mycobacterium marinum from multifocal cutaneous disease in persons with human immunodeficiency virus/AIDS can present a diagnostic challenge, especially in the context of immune reconstitution inflammatory syndrome (IRIS). In this work, we demonstrate the utility of flow cytometry and whole genome sequencing (WGS) to diagnose disseminated M. marinum unmasked by IRIS following initiation of antiretroviral therapy. Flow cytometry demonstrated robust cytokine production by CD4 T cells in response to stimulation with M. marinum lysate. WGS of isolates from distinct lesions was consistent with clonal dissemination, supporting that preexisting disseminated M. marinum disease was uncovered by inflammatory manifestations, consistent with unmasking mycobacterial IRIS.
Collapse
Affiliation(s)
- Maura Manion
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | - Luxin Pei
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Chun-Shu Wong
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Pavel Khil
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA.,National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dima A Hammoud
- Center for Infectious Disease Imaging, Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland, USA
| | - Megan Anderson
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Safia Kuriakose
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | | | - Adrian M Zelazny
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, Maryland, USA
| | - John P Dekker
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Bezerra GH, Honório MLP, Costa VLDC, Vechi HT, Alves MDM, Britto MHMFD, Rocha KBF, Carvalho LDD. Mycobacterium marinum infection simulating chromomycosis: a case report. Rev Inst Med Trop Sao Paulo 2020; 62:e95. [PMID: 33263701 PMCID: PMC7694539 DOI: 10.1590/s1678-9946202062095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 11/22/2022] Open
Abstract
Skins infections caused by Mycobacterium marinum occur only rarely. We report one case of chronic and extensive M. marinum cutaneous infection simulating chromoblastomycosis and review the pertinent literature. A 52-year-old farmer reported a 32-year chronic skin problem on his right lower limb, resulting from contact with cacti. It consisted of skin lesion presenting with dyschromic atrophic center plate and verrucous borders with hematic crusts, extending from the knee anteriorly to the inferior third of the right leg. Mycobacterium marinum infection was detected by histopathological examination of a skin fragment, culture for mycobacteria and genetic mapping of the culture material. The patient was successfully treated with Ethambutol, Rifampicin and Trimethoprim-Sulfamethoxazole. The clinical and histopathological findings of M. marinum infection is nonspecific showing clinical polymorphism and bacilli are rarely evident on histopathological examination. Given these difficulties, it is essential to perform tissue culture in a suspicious case and it is important keep this infection in mind in patients with long-lasting indolent verrucous lesions and a history of exposure to sea water, freshwater, aquaria or fish.
Collapse
|
22
|
Gu CH, Zhao C, Hofstaedter C, Tebas P, Glaser L, Baldassano R, Bittinger K, Mattei LM, Bushman FD. Investigating hospital Mycobacterium chelonae infection using whole genome sequencing and hybrid assembly. PLoS One 2020; 15:e0236533. [PMID: 33166284 PMCID: PMC7652343 DOI: 10.1371/journal.pone.0236533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium chelonae is a rapidly growing nontuberculous mycobacterium that is a common cause of nosocomial infections. Here we describe investigation of a possible nosocomial transmission of M. chelonae at the Hospital of the University of Pennsylvania (HUP). M. chelonae strains with similar high-level antibiotic resistance patterns were isolated from two patients who developed post-operative infections at HUP in 2017, suggesting a possible point source infection. The isolates, along with other clinical isolates from other patients, were sequenced using the Illumina and Oxford Nanopore technologies. The resulting short and long reads were hybrid assembled into draft genomes. The genomes were compared by quantifying single nucleotide variants in the core genome and assessed using a control dataset to quantify error rates in comparisons of identical genomes. We show that all M. chelonae isolates tested were highly dissimilar, as indicated by high pairwise SNV values, consistent with environmental acquisition and not a nosocomial point source. Our control dataset determined a threshold for evaluating identity between strains while controlling for sequencing error. Finally, antibiotic resistance genes were predicted for our isolates, and several single nucleotide variants were identified that have the potential to modulated drug resistance.
Collapse
Affiliation(s)
- Christopher H. Gu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Chunyu Zhao
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Casey Hofstaedter
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Pablo Tebas
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Laurel Glaser
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Lisa M. Mattei
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
23
|
Behra PRK, Pettersson BMF, Ramesh M, Dasgupta S, Kirsebom LA. Insight into the biology of Mycobacterium mucogenicum and Mycobacterium neoaurum clade members. Sci Rep 2019; 9:19259. [PMID: 31848383 PMCID: PMC6917791 DOI: 10.1038/s41598-019-55464-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/12/2019] [Indexed: 11/09/2022] Open
Abstract
Nontuberculous mycobacteria, NTM, are of growing concern and among these members of the Mycobacterium mucogenicum (Mmuc) and Mycobacterium neoaurum (Mneo) clades can cause infections in humans and they are resistant to first-line anti-tuberculosis drugs. They can be isolated from different ecological niches such as soil, tap water and ground water. Mycobacteria, such as Mmuc and Mneo, are classified as rapid growing mycobacteria, RGM, while the most familiar, Mycobacterium tuberculosis, belongs to the slow growing mycobacteria, SGM. Modern “omics” approaches have provided new insights into our understanding of the biology and evolution of this group of bacteria. Here we present comparative genomics data for seventeen NTM of which sixteen belong to the Mmuc- and Mneo-clades. Focusing on virulence genes, including genes encoding sigma/anti-sigma factors, serine threonine protein kinases (STPK), type VII (ESX genes) secretion systems and mammalian cell entry (Mce) factors we provide insight into their presence as well as phylogenetic relationship in the case of the sigma/anti-sigma factors and STPKs. Our data further suggest that these NTM lack ESX-5 and Mce2 genes, which are known to affect virulence. In this context, Mmuc- and Mneo-clade members lack several of the genes in the glycopeptidolipid (GLP) locus, which have roles in colony morphotype appearance and virulence. For the M. mucogenicum type strain, MmucT, we provide RNASeq data focusing on mRNA levels for sigma factors, STPK, ESX proteins and Mce proteins. These data are discussed and compared to in particular the SGM and fish pathogen Mycobacterium marinum. Finally, we provide insight into as to why members of the Mmuc- and Mneo-clades show resistance to rifampin and isoniazid, and why MmucT forms a rough colony morphotype.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Malavika Ramesh
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, BMC, Uppsala University, SE 751 24, Uppsala, Sweden.
| |
Collapse
|
24
|
Behra PRK, Das S, Pettersson BMF, Shirreff L, DuCote T, Jacobsson KG, Ennis DG, Kirsebom LA. Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains. Sci Rep 2019; 9:4603. [PMID: 30872669 PMCID: PMC6418233 DOI: 10.1038/s41598-019-40922-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Lisa Shirreff
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Tanner DuCote
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | | | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
25
|
Turenne CY. Nontuberculous mycobacteria: Insights on taxonomy and evolution. INFECTION GENETICS AND EVOLUTION 2019; 72:159-168. [PMID: 30654178 DOI: 10.1016/j.meegid.2019.01.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 12/14/2022]
Abstract
Seventy years have passed since Ernest H. Runyon presented a phenotypic classification approach for nontuberculous mycobacteria (NTM), primarily as a starting point in trying to understand their clinical relevance. From numerical taxonomy (biochemical testing) to 16S rRNA gene sequencing to whole genome sequencing (WGS), our understanding of NTM has also evolved. Novel species are described at a rapid pace, while taxonomical relationships are re-defined in large part due to the accessibility of WGS. The evolutionary course of clonal complexes within species is better known for some NTM and less for others. In contrast with M. tuberculosis, much is left to learn about NTM as a whole.
Collapse
Affiliation(s)
- Christine Y Turenne
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada; Shared Health - Diagnostic Services, Winnipeg, MB, Canada.
| |
Collapse
|