1
|
Ehrenfels B, Baumann KBL, Niederdorfer R, Mbonde AS, Kimirei IA, Kuhn T, Magyar PM, Odermatt D, Schubert CJ, Bürgmann H, Lehmann MF, Wehrli B, Callbeck CM. Hydrodynamic regimes modulate nitrogen fixation and the mode of diazotrophy in Lake Tanganyika. Nat Commun 2023; 14:6591. [PMID: 37852975 PMCID: PMC10584864 DOI: 10.1038/s41467-023-42391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/10/2023] [Indexed: 10/20/2023] Open
Abstract
The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys. Here, we examine the distribution of nitrogen fixation in Lake Tanganyika - a model system with well-defined hydrodynamic regimes. We report that nitrogen fixation is five times higher under stratified than under upwelling conditions. Under stratified conditions, the limited resupply of inorganic nitrogen to surface waters, combined with greater light penetration, promotes the activity of bloom-forming photoautotrophic diazotrophs. In contrast, upwelling conditions support predominantly heterotrophic diazotrophs, which are uniquely suited to chemotactic foraging in a more dynamic nutrient landscape. We suggest that these hydrodynamic regimes (stratification versus mixing) play an important role in governing both the rates and the mode of nitrogen fixation.
Collapse
Affiliation(s)
- Benedikt Ehrenfels
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland
- ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
| | - Kathrin B L Baumann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland
- ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
| | - Robert Niederdorfer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | | | - Ismael A Kimirei
- TAFIRI, Tanzania Fisheries Research Institute, Kigoma, Tanzania
- TAFIRI, Tanzania Fisheries Research Institute, Dar es Salaam, Tanzania
| | - Thomas Kuhn
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Paul M Magyar
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Daniel Odermatt
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | - Carsten J Schubert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland
- ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
| | - Helmut Bürgmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland
| | - Moritz F Lehmann
- University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Bernhard Wehrli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland
- ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics, Zurich, Switzerland
| | - Cameron M Callbeck
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department Surface Waters - Research and Management, Kastanienbaum, Switzerland.
- University of Basel, Department of Environmental Sciences, Basel, Switzerland.
| |
Collapse
|
2
|
Flores E, Mendoza U, Callbeck CM, Díaz R, Aguirre-Velarde A, Böttcher ME, Merma-Mora L, Moreira M, Saldarriaga MS, Silva-Filho EV, Albuquerque AL, Pizarro-Koch M, Graco M. Attenuation of wind intensities exacerbates anoxic conditions leading to sulfur plume development off the coast of Peru. PLoS One 2023; 18:e0287914. [PMID: 37647254 PMCID: PMC10468053 DOI: 10.1371/journal.pone.0287914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/15/2023] [Indexed: 09/01/2023] Open
Abstract
The release of vast quantities of sulfide from the sediment into the water column, known as a sulfidic event, has detrimental consequences on fish catches, including downstream effects on other linked element cycles. Despite being frequent occurrences in marine upwelling regions, our understanding of the factors that moderate sulfidic event formation and termination are still rudimentary. Here, we examined the biogeochemical and hydrodynamic conditions that underpinned the formation/termination of one of the largest sulfur plumes to be reported in the Peruvian upwelling zone. Consistent with previous research, we find that the sulfur-rich plume arose during the austral summer when anoxic conditions (i.e., oxygen and nitrate depletion) prevailed in waters overlying the upper shelf. Furthermore, the shelf sediments were organically charged and characterized by low iron-bound sulfur concentrations, further enabling the diffusion of benthic-generated sulfide into the water column. While these biogeochemical conditions provided a predicate to sulfidic event formation, we highlight that attenuations in local wind intensity served as an event trigger. Namely, interruptions in local wind speed constrained upwelling intensity, causing increased stratification over the upper shelf. Moreover, disturbances in local wind patterns likely placed additional constraints on wind-driven mesoscale eddy propagation, with feedback effects on coastal elemental sulfur plume (ESP) formation. We suggest ESP development occurs as a result of a complex interaction of biogeochemistry with regional hydrodynamics.
Collapse
Affiliation(s)
- Edgart Flores
- Programa de Maestría de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- Millennium Institute of Oceanography, Universidad de Concepción, Concepción, Chile
- Department of Geological Sciences, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, United States of America
| | - Ursula Mendoza
- Dirección General de Investigaciones en Oceanografía y Cambio Climático, Instituto del Mar del Perú, Callao, Peru
- Facultad de Ciencias Veterinarias y Biológicas, Escuela de Biología Marina, Universidad Científica del Sur, Lima, Peru
| | - Cameron M. Callbeck
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Rut Díaz
- Programa de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Arturo Aguirre-Velarde
- Dirección General de Investigaciones en Acuicultura, Instituto del Mar del Perú, Callao, Peru
| | - Michael E. Böttcher
- Geochemistry & Isotope Biogeochemistry Group, Department of Marine Geology, Leibniz Institute for Baltic Sea Research, Warnemünde, Germany
- Marine Geochemistry, University of Greifswald, Greifswald, Germany
- Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| | - Lander Merma-Mora
- Programa de Maestría de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuel Moreira
- Programa de Geoquímica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Maritza S. Saldarriaga
- Dirección General de Investigaciones de Recursos Demersales y Litorales, Instituto del Mar del Perú, Callao, Peru
| | | | - Ana L. Albuquerque
- Departamento de Geologia e Geofísica, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Matias Pizarro-Koch
- Escuela de Ingeniería Civil Oceánica, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso, Chile
- Millennium Nucleus Understanding Past Coastal Upwelling Systems and Environmental Local and Lasting Impacts, Coquimbo, Chile
| | - Michelle Graco
- Programa de Maestría de Ciencias del Mar, Universidad Peruana Cayetano Heredia, Lima, Peru
- Dirección General de Investigaciones en Oceanografía y Cambio Climático, Instituto del Mar del Perú, Callao, Peru
| |
Collapse
|
3
|
Geller-McGrath D, Mara P, Taylor GT, Suter E, Edgcomb V, Pachiadaki M. Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nat Commun 2023; 14:656. [PMID: 36746960 PMCID: PMC9902471 DOI: 10.1038/s41467-023-36026-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023] Open
Abstract
Secondary metabolites play essential roles in ecological interactions and nutrient acquisition, and are of interest for their potential uses in medicine and biotechnology. Genome mining for biosynthetic gene clusters (BGCs) can be used for the discovery of new compounds. Here, we use metagenomics and metatranscriptomics to analyze BGCs in free-living and particle-associated microbial communities through the stratified water column of the Cariaco Basin, Venezuela. We recovered 565 bacterial and archaeal metagenome-assembled genomes (MAGs) and identified 1154 diverse BGCs. We show that differences in water redox potential and microbial lifestyle (particle-associated vs. free-living) are associated with variations in the predicted composition and production of secondary metabolites. Our results indicate that microbes, including understudied clades such as Planctomycetota, potentially produce a wide range of secondary metabolites in these anoxic/euxinic waters.
Collapse
Affiliation(s)
| | - Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Gordon T Taylor
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Elizabeth Suter
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
- Biology, Chemistry and Environmental Studies Department, Molloy College, Rockville Centre, NY, USA
| | - Virginia Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Maria Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
4
|
Laglera LM, Uskaikar H, Klaas C, Naqvi SWA, Wolf-Gladrow DA, Tovar-Sánchez A. Dissolved and particulate iron redox speciation during the LOHAFEX fertilization experiment. MARINE POLLUTION BULLETIN 2022; 184:114161. [PMID: 36179387 DOI: 10.1016/j.marpolbul.2022.114161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The redox speciation of iron was determined during the iron fertilization LOHAFEX and for the first time, the chemiluminescence assay of filtered and unfiltered samples was systematically compared. We hypothesize that higher chemiluminescence in unfiltered samples was caused by Fe(II) adsorbed onto biological particles. Dissolved and particulate Fe(II) increased in the mixed layer steadily 6-fold during the first two weeks and decreased back to initial levels by the end of LOHAFEX. Both Fe(II) forms did not show diel cycles downplaying the role of photoreduction. The chemiluminescence of unfiltered samples across the patch boundaries showed strong gradients, correlated significantly to biomass and the photosynthetic efficiency and were higher at night, indicative of a biological control. At 150 m deep, a secondary maximum of dissolved Fe(II) was associated with maxima of nitrite and ammonium despite high oxygen concentrations. We hypothesize that during LOHAFEX, iron redox speciation was mostly regulated by trophic interactions.
Collapse
Affiliation(s)
- Luis M Laglera
- FI-TRACE, Departamento de Química, Universidad de las Islas Baleares, Palma, Balearic Islands 07122, Spain; Laboratori Interdisciplinari sobre Canvi Climàtic, Universidad de las Islas Baleares, Palma, Balearic Islands 07122, Spain.
| | - Hema Uskaikar
- National Institute of Oceanography, Dona Paula, Goa, India
| | - Christine Klaas
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | | | - Dieter A Wolf-Gladrow
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Andalusian Institute for Marine Science, ICMAN (CSIC), Campus Universitario Río San Pedro, Puerto Real, Cádiz, Spain
| |
Collapse
|
5
|
Microbial Activities and Selection from Surface Ocean to Subseafloor on the Namibian Continental Shelf. Appl Environ Microbiol 2022; 88:e0021622. [PMID: 35404072 PMCID: PMC9088280 DOI: 10.1128/aem.00216-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxygen minimum zones (OMZs) are hot spots for redox-sensitive nitrogen transformations fueled by sinking organic matter. In comparison, the regulating role of sulfur-cycling microbes in marine OMZs, their impact on carbon cycling in pelagic and benthic habitats, and activities below the seafloor remain poorly understood. Using 13C DNA stable isotope probing (SIP) and metatranscriptomics, we explored microbial guilds involved in sulfur and carbon cycling from the ocean surface to the subseafloor on the Namibian shelf. There was a clear separation in microbial community structure across the seawater-seafloor boundary, which coincided with a 100-fold-increased concentration of microbial biomass and unique gene expression profiles of the benthic communities. 13C-labeled 16S rRNA genes in SIP experiments revealed carbon-assimilating taxa and their distribution across the sediment-water interface. Most of the transcriptionally active taxa among water column communities that assimilated 13C from diatom exopolysaccharides (mostly Bacteroidetes, Actinobacteria, Alphaproteobacteria, and Planctomycetes) also assimilated 13C-bicarbonate under anoxic conditions in sediment incubations. Moreover, many transcriptionally active taxa from the seafloor community (mostly sulfate-reducing Deltaproteobacteria and sulfide-oxidizing Gammaproteobacteria) that assimilated 13C-bicarbonate under sediment anoxic conditions also assimilated 13C from diatom exopolysaccharides in the surface ocean and OMZ waters. Despite strong selection at the sediment-water interface, many taxa related to either planktonic or benthic communities were found to be present at low abundance and actively assimilating carbon under both sediment and water column conditions. In austral winter, mixing of shelf waters reduces stratification and suspends sediments from the seafloor into the water column, potentially spreading metabolically versatile microbes across niches. IMPORTANCE Microbial activities in oxygen minimum zones (OMZs) transform inorganic fixed nitrogen into greenhouse gases, impacting the Earth’s climate and nutrient equilibrium. Coastal OMZs are predicted to expand with global change and increase carbon sedimentation to the seafloor. However, the role of sulfur-cycling microbes in assimilating carbon in marine OMZs and related seabed habitats remain poorly understood. Using 13C DNA stable isotope probing and metatranscriptomics, we explore microbial guilds involved in sulfur and carbon cycling from ocean surface to subseafloor on the Namibian shelf. Despite strong selection and differential activities across the sediment-water interface, many active taxa were identified in both planktonic and benthic communities, either fixing inorganic carbon or assimilating organic carbon from algal biomass. Our data show that many planktonic and benthic microbes linked to the sulfur cycle can cross redox boundaries when mixing of the shelf waters reduces stratification and suspends seafloor sediment particles into the water column.
Collapse
|
6
|
Fuchsman CA, Cherubini L, Hays MD. An analysis of protists in Pacific oxygen deficient zones: implications for Prochlorococcus and N 2 -producing bacteria. Environ Microbiol 2022; 24:1790-1804. [PMID: 34995411 DOI: 10.1111/1462-2920.15893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Ocean oxygen deficient zones (ODZs) host 30%-50% of marine N2 production. Cyanobacteria photosynthesizing in the ODZ create a secondary chlorophyll maximum and provide organic matter to N2 -producing bacteria. This chlorophyll maximum is thought to occur due to reduced grazing in anoxic waters. We first examine ODZ protists with long amplicon reads. We then use non-primer-based methods to examine the composition and relative abundance of protists in metagenomes from the Eastern Tropical North and South Pacific ODZs and compare these data to the oxic Hawaii Ocean Time-series (HOT) in the North Pacific. We identify and quantify protists in proportion to the total microbial community. From metagenomic data, we see a large drop in abundance of fungi and protists such as choanoflagellates, radiolarians, cercozoa and ciliates in the ODZs but not in the oxic mesopelagic at HOT. Diplonemid euglenozoa were the only protists that increased in the ODZ. Dinoflagellates and foraminifera reads were also present in the ODZ though less abundant compared to oxic waters. Denitrification has been found in foraminifera but not yet in dinoflagellates. DNA techniques cannot separate dinoflagellate cells and cysts. Metagenomic analysis found taxonomic groups missed by amplicon sequencing and identified trends in abundance.
Collapse
Affiliation(s)
- Clara A Fuchsman
- University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge, MD, 21613, USA
| | - Luca Cherubini
- Maryland Sea Grant College, College Park, MD, 20740, USA
| | - Matthew D Hays
- University of Maryland Center for Environmental Science Horn Point Laboratory, Cambridge, MD, 21613, USA
| |
Collapse
|
7
|
Pasquier V, Fike DA, Halevy I. Sedimentary pyrite sulfur isotopes track the local dynamics of the Peruvian oxygen minimum zone. Nat Commun 2021; 12:4403. [PMID: 34285238 PMCID: PMC8292381 DOI: 10.1038/s41467-021-24753-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
Sulfur cycling is ubiquitous in sedimentary environments, where it mediates organic carbon remineralization, impacting both local and global redox budgets, and leaving an imprint in pyrite sulfur isotope ratios (δ34Spyr). It is unclear to what extent stratigraphic δ34Spyr variations reflect local aspects of the depositional environment or microbial activity versus global sulfur-cycle variations. Here, we couple carbon-nitrogen-sulfur concentrations and stable isotopes to identify clear influences on δ34Spyr of local environmental changes along the Peru margin. Stratigraphically coherent glacial-interglacial δ34Spyr fluctuations (>30‰) were mediated by Oxygen Minimum Zone intensification/expansion and local enhancement of organic matter deposition. The higher resulting microbial sulfate reduction rates led to more effective drawdown and 34S-enrichment of residual porewater sulfate and sulfide produced from it, some of which is preserved in pyrite. We identify organic carbon loading as a major influence on δ34Spyr, adding to the growing body of evidence highlighting the local controls on these records. To explore the importance of local vs. global sulfur-cycle controls on variations in pyrite sulfur isotopes, the authors couple carbon-nitrogen-sulfur concentrations and stable isotopes of sediments from the Peruvian oxygen minimum zone, identifying a major role for the local organic carbon loading.
Collapse
Affiliation(s)
- Virgil Pasquier
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - David A Fike
- Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Itay Halevy
- Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Zhu K, Hopwood MJ, Groenenberg JE, Engel A, Achterberg EP, Gledhill M. Influence of pH and Dissolved Organic Matter on Iron Speciation and Apparent Iron Solubility in the Peruvian Shelf and Slope Region. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9372-9383. [PMID: 34110803 DOI: 10.1021/acs.est.1c02477] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chemical speciation of iron (Fe) in oceans is influenced by ambient pH, dissolved oxygen, and the concentrations and strengths of the binding sites of dissolved organic matter (DOM). Here, we derived new nonideal competitive adsorption (NICA) constants for Fe(III) binding to marine DOM via pH-Fe titrations. We used the constants to calculate Fe(III) speciation and derive the apparent Fe(III) solubility (SFe(III)app) in the ambient water column across the Peruvian shelf and slope region. We define SFe(III)app as the sum of aqueous inorganic Fe(III) species and Fe(III) bound to DOM at a free Fe (Fe3+) concentration equal to the limiting solubility of Fe hydroxide (Fe(OH)3(s)). A ca. twofold increase in SFe(III)app in the oxygen minimum zone (OMZ) compared to surface waters is predicted. The increase results from a one order of magnitude decrease in H+ concentration which impacts both Fe(III) hydroxide solubility and organic complexation. A correlation matrix suggests that changes in pH have a larger impact on SFe(III)app and Fe(III) speciation than DOM in this region. Using Fe(II) measurements, we calculated ambient DFe(III) and compared the value with the predicted SFe(III)app. The underlying distribution of ambient DFe(III) largely reflected the predicted SFe(III)app, indicating that decreased pH as a result of OMZ intensification and ocean acidification may increase SFe(III)app with potential impacts on surface DFe inventories.
Collapse
Affiliation(s)
- Kechen Zhu
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, Kiel 24148, Germany
| | - Mark J Hopwood
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, Kiel 24148, Germany
| | - Jan E Groenenberg
- Department of Environmental Sciences, Wageningen University, P.O. Box 47, Wageningen 6700 AA, The Netherlands
| | - Anja Engel
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, Kiel 24148, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, Kiel 24148, Germany
| | - Martha Gledhill
- GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstr. 1-3, Kiel 24148, Germany
| |
Collapse
|
9
|
Upcycling of Electroplating Sludge to Prepare Erdite-Bearing Nanorods for the Adsorption of Heavy Metals from Electroplating Wastewater Effluent. WATER 2020. [DOI: 10.3390/w12041027] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Electroplating sludge is a hazardous waste produced in plating and metallurgical processes which is commonly disposed of in safety landfills. In this work, electroplating sludge containing 25.6% Fe and 5.5% Co (named S1) and another containing 36.8% Fe and 7.8% Cr (S2) were recycled for the preparation of erdite-bearing particles via a facile hydrothermal route with only the addition of Na2S·9H2O. In the sludges, Fe-containing compounds were weakly crystallized and spontaneously converted to short rod-like erdite particles (SP1) in the presence of Co or long nanorod (SP2) particles with a diameter of 100 nm and length of 0.5–1.5 μm in the presence of Cr. The two products, SP1 and SP2, were applied in electroplating wastewater treatment, in which a small portion of Co in SP1 was released in wastewater, whereas Cr in SP2 was not. Adding 0.3 g/L SP2 resulted in the removal of 99.7% of Zn, 99.4% of Cu, 37.9% of Ni and 53.3% of Co in the electroplating wastewater, with residues at concentrations of 0.007, 0.003, 0.33, 0.09 and 0.002 mg/L, respectively. Thus, the treated electroplating wastewater met the discharge standard for electroplating wastewater in China. These removal efficiencies were higher than those achieved using powdered activated carbon, polyaluminum chloride, polyferric sulfate or pure Na2S·9H2O reagent. With the method, waste electroplating sludge was recycled as nanorod erdite-bearing particles which showed superior efficiency in electroplating wastewater treatment.
Collapse
|
10
|
Beck AJ, van der Lee EM, Eggert A, Stamer B, Gledhill M, Schlosser C, Achterberg EP. In Situ Measurements of Explosive Compound Dissolution Fluxes from Exposed Munition Material in the Baltic Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:5652-5660. [PMID: 30997802 DOI: 10.1021/acs.est.8b06974] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Underwater munitions containing millions of tons of toxic explosives are present worldwide in coastal marine waters as a result of unexploded ordnance and intentional dumping. The dissolution flux of solid explosives following corrosion of metal munition housings controls the exposure of biological receptors to toxic munition compounds (MC), including TNT: 2,4,6-trinitrotoluene, RDX: 1,3,5-trinitro-1,3,5-triazinane, and DNB: 1,3-dinitrobenzene. Very little is known about the dissolution behavior of MC in the marine environment. In this work, we exploit a unique marine study site in the Baltic Sea with exposed solid explosives to quantify in situ MC dissolution fluxes using dissolved MC gradients near the exposed explosive surface, as well as benthic chamber incubations. The gradient method gave dissolution fluxes that ranged between 0.001 and 3.2, between 0.0001 and 0.04, and between 0.003 and 1.7 mg cm-2 day-1 for TNT, RDX, and DNB, respectively. Benthic chamber incubations indicated dissolution fluxes of 0.0047-0.277, 0-0.11, and 0.00047-1.45 mg cm-2 day-1 for TNT, RDX, and DNB, respectively. In situ dissolution fluxes estimated in the current study were lower than most dissolution rates reported for laboratory experiments, but they clearly demonstrated that MC are released from underwater munitions to the water column in the Baltic Sea.
Collapse
Affiliation(s)
- Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel , Wischhofstraße 1-3 , 24148 Kiel , Germany
| | - Eefke M van der Lee
- Leibniz-Institute for Baltic Sea Research Warnemünde , Seestraße 15 , 18119 Rostock , Germany
| | - Anja Eggert
- Leibniz-Institute for Baltic Sea Research Warnemünde , Seestraße 15 , 18119 Rostock , Germany
| | - Beate Stamer
- GEOMAR Helmholtz Centre for Ocean Research Kiel , Wischhofstraße 1-3 , 24148 Kiel , Germany
| | - Martha Gledhill
- GEOMAR Helmholtz Centre for Ocean Research Kiel , Wischhofstraße 1-3 , 24148 Kiel , Germany
| | - Christian Schlosser
- GEOMAR Helmholtz Centre for Ocean Research Kiel , Wischhofstraße 1-3 , 24148 Kiel , Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel , Wischhofstraße 1-3 , 24148 Kiel , Germany
| |
Collapse
|