1
|
Lopuszynski J, Wang J, Zahid M. Beyond Transduction: Anti-Inflammatory Effects of Cell Penetrating Peptides. Molecules 2024; 29:4088. [PMID: 39274936 PMCID: PMC11397606 DOI: 10.3390/molecules29174088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
One of the bottlenecks to bringing new therapies to the clinic has been a lack of vectors for delivering novel therapeutics in a targeted manner. Cell penetrating peptides (CPPs) have received a lot of attention and have been the subject of numerous developments since their identification nearly three decades ago. Known for their transduction abilities, they have generally been considered inert vectors. In this review, we present a schema for their classification, highlight what is known about their mechanism of transduction, and outline the existing literature as well as our own experience, vis a vis the intrinsic anti-inflammatory properties that certain CPPs exhibit. Given the inflammatory responses associated with viral vectors, CPPs represent a viable alternative to such vectors; furthermore, the anti-inflammatory properties of CPPs, mostly through inhibition of the NF-κB pathway, are encouraging. Much more work in relevant animal models, toxicity studies in large animal models, and ultimately human trials are needed before their potential is fully realized.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Department of Cardiovascular Medicine, Guggenheim Gu 9-01B, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Batistatou N, Kritzer JA. Recent advances in methods for quantifying the cell penetration of macromolecules. Curr Opin Chem Biol 2024; 81:102501. [PMID: 39024686 PMCID: PMC11323051 DOI: 10.1016/j.cbpa.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
Collapse
Affiliation(s)
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA.
| |
Collapse
|
3
|
Wang N, McNeer NA, Eton E, Fass J, Kentsis A. Proteomic Barcoding Platform for Macromolecular Screening and Delivery. J Proteome Res 2024; 23:2067-2077. [PMID: 38776430 PMCID: PMC11770985 DOI: 10.1021/acs.jproteome.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Engineered macromolecules offer compelling means for the therapy of conventionally undruggable interactions in human disease. However, their efficacy is limited by barriers to tissue and intracellular delivery. Inspired by recent advances in molecular barcoding and evolution, we developed BarcodeBabel, a generalized method for the design of libraries of peptide barcodes suitable for high-throughput mass spectrometry proteomics. Combined with PeptideBabel, a Monte Carlo sampling algorithm for the design of peptides with evolvable physicochemical properties and sequence complexity, we developed a barcoded library of cell penetrating peptides (CPPs) with distinct physicochemical features. Using quantitative targeted mass spectrometry, we identified CPPS with improved nuclear and cytoplasmic delivery exceeding hundreds of millions of molecules per human cell while maintaining minimal membrane disruption and negligible toxicity in vitro. These studies provide a proof of concept for peptide barcoding as a homogeneous high-throughput method for macromolecular screening and delivery. BarcodeBabel and PeptideBabel are available open-source from https://github.com/kentsisresearchgroup/.
Collapse
Affiliation(s)
- Ning Wang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Nicole A. McNeer
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Elliot Eton
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Josh Fass
- Tri-I PhD program in Computational Biology and Medicine, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Cornell Medical College, Cornell University, New York, NY 10065, United States
| |
Collapse
|
4
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
5
|
Sahagun DA, Lopuszynski JB, Feldman KS, Pogodzinski N, Zahid M. Toxicity Studies of Cardiac-Targeting Peptide Reveal a Robust Safety Profile. Pharmaceutics 2024; 16:73. [PMID: 38258084 PMCID: PMC10818749 DOI: 10.3390/pharmaceutics16010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Targeted delivery of therapeutics specifically to cardiomyocytes would open up new frontiers for common conditions like heart failure. Our prior work using a phage display methodology identified a 12-amino-acid-long peptide that selectively targets cardiomyocytes after an intravenous injection in as little as 5 min and was hence termed a cardiac-targeting peptide (CTP: APHLSSQYSRT). CTP has been used to deliver imaging agents, small drug molecules, photosensitizing nanoparticles, exosomes, and even miRNA to cardiomyocytes. As a natural extension to the development of CTP as a clinically viable cardiac vector, we now present toxicity studies performed with the peptide. In vitro viability studies were performed in a human left ventricular myocyte cell line with 10 µM of Cyanine-5.5-labeled CTP (CTP-Cy5.5). In vitro ion channel profiles were completed for CTP followed by extensive studies in stably transfected cell lines for several GPCR-coupled receptors. Positive data for GPCR-coupled receptors were interrogated further with RT-qPCRs performed on mouse heart tissue. In vivo studies consisted of pre- and post-blood pressure monitoring acutely after a single CTP (10 mg/Kg) injection. Further in vivo toxicity studies consisted of injecting CTP (150 µg/Kg) in 60, 6-week-old, wild-type CD1, male/female mice (1:1), with cohorts of mice euthanized on days 0, 1, 2, 7, and 14 with inhalational CO2, followed by blood collection via cardiac puncture, complete blood count analysis, metabolic profiling, and finally, liver, renal, and thyroid studies. Lastly, mouse cardiac MRI was performed immediately before and after CTP (150 µg/Kg) injection to assess changes in cardiac size or function. Human left ventricular cardiomyocytes showed no decrease in viability after a 30 min incubation with CTP-Cy5.5. No significant activation or inhibition of any of seventy-eight protein channels was observed other than OPRM1 and COX2 at the highest tested concentration, neither of which were expressed in mouse heart tissue as assessed using RT-qPCR. CTP (10 mg/Kg) injections led to no change in blood pressure. Blood counts and chemistries showed no evidence of significant hematological, hepatic, or renal toxicities. Lastly, there was no difference in cardiac function, size, or mass acutely in response to CTP injections. Our studies with CTP showed no activation or inhibition of GPCR-associated receptors in vitro. We found no signals indicative of toxicity in vivo. Most importantly, cardiac functions remained unchanged acutely in response to CTP uptake. Further studies using good laboratory practices are needed with prolonged, chronic administration of CTP conjugated to a specific cargo of choice before human studies can be contemplated.
Collapse
Affiliation(s)
- Daniella A. Sahagun
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| | - Jack B. Lopuszynski
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| | - Kyle S. Feldman
- Clinical Virology Laboratory, Yale New Haven Hospital, New Haven, CT 06511, USA;
| | - Nicholas Pogodzinski
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Maliha Zahid
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA; (D.A.S.); (J.B.L.)
| |
Collapse
|
6
|
Lee Y, Kim KM, Nguyen DL, Jannah F, Seong HJ, Kim JM, Kim YP. Cyclized proteins with tags as permeable and stable cargos for delivery into cells and liposomes. Int J Biol Macromol 2023; 252:126520. [PMID: 37625744 DOI: 10.1016/j.ijbiomac.2023.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Despite the therapeutic potential of recombinant proteins, their cell permeabilities and stabilities remain significant challenges. Here we demonstrate that cyclized recombinant proteins can be used as universal cargos for permeable and stable delivery into cells and polydiacetylene liposomes. Utilizing a split intein-mediated process, cyclized model fluorescent proteins containing short tetraarginine (R4) and hexahistidine (H6) tags were generated without compromising their native protein functions. Strikingly, as compared to linear R4/H6-tagged proteins, the cyclized counterparts have substantially increased permeabilities in both cancer cells and synthetic liposomes, as well as higher resistances to enzymatic degradation in cancer cells. These properties are likely a consequence of structural constraints imposed on the proteins in the presence of short functional peptides. Additionally, photodynamic therapy by cyclized photoprotein-loaded liposomes in cancer cells was significantly improved in comparison to that by their non-cyclized counterparts. These findings suggest that our strategy will be universally applicable to intercellular delivery of proteins and therapeutics.
Collapse
Affiliation(s)
- Yeonju Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Min Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Duc Long Nguyen
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Fadilatul Jannah
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Jung Seong
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
7
|
Reveret L, Leclerc M, Morin F, Émond V, Calon F. Pharmacokinetics, biodistribution and toxicology of novel cell-penetrating peptides. Sci Rep 2023; 13:11081. [PMID: 37422520 PMCID: PMC10329699 DOI: 10.1038/s41598-023-37280-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/19/2023] [Indexed: 07/10/2023] Open
Abstract
Cell-penetrating peptides (CPPs) have been used in basic and preclinical research in the past 30 years to facilitate drug delivery into target cells. However, translation toward the clinic has not been successful so far. Here, we studied the pharmacokinetic (PK) and biodistribution profiles of Shuttle cell-penetrating peptides (S-CPP) in rodents, combined or not with an immunoglobulin G (IgG) cargo. We compared two enantiomers of S-CPP that contain both a protein transduction domain and an endosomal escape domain, with previously shown capacity for cytoplasmic delivery. The plasma concentration versus time curve of both radiolabelled S-CPPs required a two-compartment PK analytical model, which showed a fast distribution phase (t1/2α ranging from 1.25 to 3 min) followed by a slower elimination phase (t1/2β ranging from 5 to 15 h) after intravenous injection. Cargo IgG combined to S-CPPs displayed longer elimination half-life, of up to 25 h. The fast decrease in plasma concentration of S-CPPs was associated with an accumulation in target organs assessed at 1 and 5 h post-injection, particularly in the liver. In addition, in situ cerebral perfusion (ISCP) of L-S-CPP yielded a brain uptake coefficient of 7.2 ± 1.1 µl g-1 s-1, consistent with penetration across the blood-brain barrier (BBB), without damaging its integrity in vivo. No sign of peripheral toxicity was detected either by examining hematologic and biochemical blood parameters, or by measuring cytokine levels in plasma. In conclusion, S-CPPs are promising non-toxic transport vectors for improved tissue distribution of drug cargos in vivo.
Collapse
Affiliation(s)
- L Reveret
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - M Leclerc
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - F Morin
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - V Émond
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada
| | - F Calon
- Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada.
- Neurosciences Axis, CHU de Québec-Université Laval Research Center, 2705, Boulevard Laurier, Room T2-67, Quebec City, QC, G1V 4G2, Canada.
| |
Collapse
|
8
|
Schissel CK, Farquhar CE, Loas A, Malmberg AB, Pentelute BL. In-Cell Penetration Selection-Mass Spectrometry Produces Noncanonical Peptides for Antisense Delivery. ACS Chem Biol 2023; 18:615-628. [PMID: 36857503 PMCID: PMC10460143 DOI: 10.1021/acschembio.2c00920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Peptide-mediated delivery of macromolecules in cells has significant potential therapeutic benefits, but no therapy employing cell-penetrating peptides (CPPs) has reached the market after 30 years of investigation due to challenges in the discovery of new, more efficient sequences. Here, we demonstrate a method for in-cell penetration selection-mass spectrometry (in-cell PS-MS) to discover peptides from a synthetic library capable of delivering macromolecule cargo to the cytosol. This method was inspired by recent in vivo selection approaches for cell-surface screening, with an added spatial dimension resulting from subcellular fractionation. A representative peptide discovered in the cytosolic extract, Cyto1a, is nearly 100-fold more active toward antisense phosphorodiamidate morpholino oligomer (PMO) delivery compared to a sequence identified from a whole cell extract, which includes endosomes. Cyto1a is composed of d-residues and two non-α-amino acids, is more stable than its all-l isoform, and is less toxic than known CPPs with comparable activity. Pulse-chase and microscopy experiments revealed that while the PMO-Cyto1a conjugate is likely taken up by endosomes, it can escape to localize to the nucleus without nonspecifically releasing other endosomal components. In-cell PS-MS introduces a means to empirically discover unnatural synthetic peptides for subcellular delivery of therapeutically relevant cargo.
Collapse
Affiliation(s)
- Carly K Schissel
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Charlotte E Farquhar
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Annika B Malmberg
- Sarepta Therapeutics, 215 First Street, Cambridge, Massachusetts 02142, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
9
|
Porosk L, Langel Ü. Approaches for evaluation of novel CPP-based cargo delivery systems. Front Pharmacol 2022; 13:1056467. [PMID: 36339538 PMCID: PMC9634181 DOI: 10.3389/fphar.2022.1056467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 08/05/2023] Open
Abstract
Cell penetrating peptides (CPPs) can be broadly defined as relatively short synthetic, protein derived or chimeric peptides. Their most remarkable property is their ability to cross cell barriers and facilitate the translocation of cargo, such as drugs, nucleic acids, peptides, small molecules, dyes, and many others across the plasma membrane. Over the years there have been several approaches used, adapted, and developed for the evaluation of CPP efficacies as delivery systems, with the fluorophore attachment as the most widely used approach. It has become progressively evident, that the evaluation method, in order to lead to successful outcome, should concede with the specialties of the delivery. For characterization and assessment of CPP-cargo a combination of research tools of chemistry, physics, molecular biology, engineering, and other fields have been applied. In this review, we summarize the diverse, in silico, in vitro and in vivo approaches used for evaluation and characterization of CPP-based cargo delivery systems.
Collapse
Affiliation(s)
- Ly Porosk
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Laboratory of Drug Delivery, Institute of Technology, Faculty of Science and Technology, University of Tartu, Tartu, Estonia
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
10
|
Mehdipour G, Wintrasiri MN, Ghasemi S. CPP-Based Bioactive Drug Delivery to Penetrate the Blood-Brain Barrier: A Potential Therapy for Glioblastoma Multiforme. Curr Drug Targets 2022; 23:719-728. [PMID: 35142277 DOI: 10.2174/1389450123666220207143750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/09/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND A large number of studies have been conducted on the treatment of glioblastoma multiforme (GBM). Chemotherapeutic drugs cannot penetrate deeply into the brain parenchyma due to the presence of the blood-brain barrier (BBB). Hence, crossing BBB is the significant obstacle in developing new therapeutic methods for GBM. OBJECTIVE Cell penetrating peptides (CPPs) have emerged as new tools that can efficiently deliver various substances across BBB. CPPs beneficial properties, such as BBB penetration capacity, low toxicity, and the ability to achieve active targeting and controllable drug release, have made them worthy candidates for GBM treatment. However, their application is limited by several drawbacks, including lack of selectivity, insufficient transport efficacy, and low stability. In order to overcome the selectivity issue, tumor targeting peptides and sequences that can be activated at the target site have been embedded into the structure of CPPs. To overcome their insufficient transport efficacy into the cells, which is mostly due to endosomal entrapment, various endosomolytic moieties have been incorporated into CPPs. Finally, their instability in blood circulation can be solved through different modifications to their structures. As this field is moving beyond preclinical studies, the discovery of new and more efficient CPPs for GBM treatment has become crucial. Thus, by using display techniques, such as phage display, this encouraging treatment strategy can be developed further. CONCLUSION Consequently, despite several challenges in CPPs application, recent progress in studies has shown their potential for the development of the next generation GBM therapeutics.
Collapse
Affiliation(s)
- Golnaz Mehdipour
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| | - Milint Neleptchenko Wintrasiri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
11
|
Wylie B, Ong F, Belhoul-Fakir H, Priebatsch K, Bogdawa H, Stirnweiss A, Watt P, Cunningham P, Stone SR, Waithman J. Targeting Cross-Presentation as a Route to Improve the Efficiency of Peptide-Based Cancer Vaccines. Cancers (Basel) 2021; 13:6189. [PMID: 34944809 PMCID: PMC8699136 DOI: 10.3390/cancers13246189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Cross-presenting dendritic cells (DC) offer an attractive target for vaccination due to their unique ability to process exogenous antigens for presentation on MHC class I molecules. Recent reports have established that these DC express unique surface receptors and play a critical role in the initiation of anti-tumor immunity, opening the way for the development of vaccination strategies specifically targeting these cells. This study investigated whether targeting cross-presenting DC by two complementary mechanisms could improve vaccine effectiveness, in both a viral setting and in a murine melanoma model. Our novel vaccine construct contained the XCL1 ligand, to target uptake to XCR1+ cross-presenting DC, and a cell penetrating peptide (CPP) with endosomal escape properties, to enhance antigen delivery into the cross-presentation pathway. Using a prime-boost regimen, we demonstrated robust expansion of antigen-specific T cells following vaccination with our CPP-linked peptide vaccine and protective immunity against HSV-1 skin infection, where vaccine epitopes were natively expressed by the virus. Additionally, our novel vaccination strategy slowed tumor outgrowth in a B16 murine melanoma model, compared to adjuvant only controls, suggesting antigen-specific anti-tumor immunity was generated following vaccination. These findings suggest that novel strategies to target the antigen cross-presentation pathway in DC may be beneficial for the generation of anti-tumor immunity.
Collapse
Affiliation(s)
- Ben Wylie
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Ferrer Ong
- PYC Therapeutics, Harry Perkins Institute, QEII Medical Centre, Nedlands, WA 6009, Australia; (F.O.); (A.S.); (P.C.)
| | - Hanane Belhoul-Fakir
- School of Public Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia;
| | | | | | - Anja Stirnweiss
- PYC Therapeutics, Harry Perkins Institute, QEII Medical Centre, Nedlands, WA 6009, Australia; (F.O.); (A.S.); (P.C.)
| | - Paul Watt
- Avicena, West Perth, WA 6005, Australia;
| | - Paula Cunningham
- PYC Therapeutics, Harry Perkins Institute, QEII Medical Centre, Nedlands, WA 6009, Australia; (F.O.); (A.S.); (P.C.)
| | - Shane R. Stone
- School of Agriculture and the Environment, University of Western Australia, Nedlands, WA 6009, Australia
| | - Jason Waithman
- Telethon Kids Institute, The University of Western Australia, Nedlands, WA 6009, Australia;
| |
Collapse
|
12
|
Garizo AR, Castro F, Martins C, Almeida A, Dias TP, Fernardes F, Barrias CC, Bernardes N, Fialho AM, Sarmento B. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J Control Release 2021; 337:329-342. [PMID: 34311024 DOI: 10.1016/j.jconrel.2021.07.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is still the main cause of cancer-related deaths worldwide. Its treatment generally includes surgical resection, immunotherapy, radiotherapy, and chemo-targeted therapies such as the application of tyrosine kinase inhibitors. Gefitinib (GEF) is one of them, but its poor solubility in gastric fluids weakens its bioavailability and therapeutic activity. In addition, like all other chemotherapy treatments, GEF administration can cause damage to healthy tissues. Therefore, the development of novel GEF delivery systems to increase its bioavailability and distribution in tumor site is highly demanded. Herein, an innovative strategy for GEF delivery, by functionalizing PLGA nanoparticles with p28 (p28-NPs), a cell-penetrating peptide derived from the bacterial protein azurin, was developed. Our data indicated that p28 potentiates the selective interaction of these nanosystems with A549 lung cancer cells (active targeting). Further p28-NPs delivering GEF (p28-NPs-GEF) were able to selectively reduce the metabolic activity of A549 cells, while no impact was observed in non-tumor cells (16HBE14o-). In vivo studies using A549 subcutaneous xenograft showed that p28-NPs-GEF reduced A549 primary tumor burden and lung metastases formation. Overall, the design of a p28-functionalized delivery nanosystem to effectively penetrate the membranes of cancer cells while deliver GEF could provide a new strategy to improve lung cancer therapy.
Collapse
Affiliation(s)
- Ana Rita Garizo
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Flávia Castro
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cláudia Martins
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Andreia Almeida
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tiago P Dias
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Fábio Fernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Cristina C Barrias
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Arsénio M Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Bruno Sarmento
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, R. Central de Gandra, 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
13
|
Efficient Peptide-Mediated In Vitro Delivery of Cas9 RNP. Pharmaceutics 2021; 13:pharmaceutics13060878. [PMID: 34198625 PMCID: PMC8232299 DOI: 10.3390/pharmaceutics13060878] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
The toolbox for genetic engineering has quickly evolved from CRISPR/Cas9 to a myriad of different gene editors, each with promising properties and enormous clinical potential. However, a major challenge remains: delivering the CRISPR machinery to the nucleus of recipient cells in a nontoxic and efficient manner. In this article, we repurpose an RNA-delivering cell-penetrating peptide, PepFect14 (PF14), to deliver Cas9 ribonucleoprotein (RNP). The RNP-CPP complex achieved high editing rates, e.g., up to 80% in HEK293T cells, while being active at low nanomolar ranges without any apparent signs of toxicity. The editing efficiency was similar to or better compared to the commercially available reagents RNAiMAX and CRISPRMax. The efficiency was thoroughly evaluated in reporter cells and wild-type cells by restriction enzyme digest and next-generation sequencing. Furthermore, the CPP-Cas9-RNP complexes were demonstrated to withstand storage at different conditions, including freeze-thaw cycles and freeze-drying, without a loss in editing efficiency. This CPP-based delivery strategy complements existing technologies and further opens up new opportunities for Cas9 RNP delivery, which can likely be extended to other gene editors in the future.
Collapse
|
14
|
Flynn LL, Mitrpant C, Adams A, Pitout IL, Stirnweiss A, Fletcher S, Wilton SD. Targeted SMN Exon Skipping: A Useful Control to Assess In Vitro and In Vivo Splice-Switching Studies. Biomedicines 2021; 9:552. [PMID: 34069072 PMCID: PMC8156830 DOI: 10.3390/biomedicines9050552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/23/2023] Open
Abstract
The literature surrounding the use of antisense oligonucleotides continues to grow, with new disease and mechanistic applications constantly evolving. Furthermore, the discovery and advancement of novel chemistries continues to improve antisense delivery, stability and effectiveness. For each new application, a rational sequence design is recommended for each oligomer, as is chemistry and delivery optimization. To confirm oligomer delivery and antisense activity, a positive control AO sequence with well characterized target-specific effects is recommended. Here, we describe splice-switching antisense oligomer sequences targeting the ubiquitously expressed human and mouse SMN and Smn genes for use as control AOs for this purpose. We report two AO sequences that induce targeted skipping of SMN1/SMN2 exon 7 and two sequences targeting the Smn gene, that induce skipping of exon 5 and exon 7. These antisense sequences proved effective in inducing alternative splicing in both in vitro and in vivo models and are therefore broadly applicable as controls. Not surprisingly, we discovered a number of differences in efficiency of exon removal between the two species, further highlighting the differences in splice regulation between species.
Collapse
Affiliation(s)
- Loren L. Flynn
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- Black Swan Pharmaceuticals, Wake Forest, NC 27587, USA
| | - Chalermchai Mitrpant
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Abbie Adams
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| | - Ianthe L. Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | | | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
- PYC Therapeutics, Nedlands, WA 6009, Australia;
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia; (L.L.F.); (A.A.); (I.L.P.); (S.F.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia;
- Centre for Neuromuscular & Neurological Disorders, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
15
|
Predicting cell-penetrating peptides using machine learning algorithms and navigating in their chemical space. Sci Rep 2021; 11:7628. [PMID: 33828175 PMCID: PMC8027643 DOI: 10.1038/s41598-021-87134-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/24/2021] [Indexed: 02/01/2023] Open
Abstract
Cell-penetrating peptides (CPPs) are naturally able to cross the lipid bilayer membrane that protects cells. These peptides share common structural and physicochemical properties and show different pharmaceutical applications, among which drug delivery is the most important. Due to their ability to cross the membranes by pulling high-molecular-weight polar molecules, they are termed Trojan horses. In this study, we proposed a machine learning (ML)-based framework named BChemRF-CPPred (beyond chemical rules-based framework for CPP prediction) that uses an artificial neural network, a support vector machine, and a Gaussian process classifier to differentiate CPPs from non-CPPs, using structure- and sequence-based descriptors extracted from PDB and FASTA formats. The performance of our algorithm was evaluated by tenfold cross-validation and compared with those of previously reported prediction tools using an independent dataset. The BChemRF-CPPred satisfactorily identified CPP-like structures using natural and synthetic modified peptide libraries and also obtained better performance than those of previously reported ML-based algorithms, reaching the independent test accuracy of 90.66% (AUC = 0.9365) for PDB, and an accuracy of 86.5% (AUC = 0.9216) for FASTA input. Moreover, our analyses of the CPP chemical space demonstrated that these peptides break some molecular rules related to the prediction of permeability of therapeutic molecules in cell membranes. This is the first comprehensive analysis to predict synthetic and natural CPP structures and to evaluate their chemical space using an ML-based framework. Our algorithm is freely available for academic use at http://comptools.linc.ufpa.br/BChemRF-CPPred .
Collapse
|
16
|
Structural Characterization of Receptor-Receptor Interactions in the Allosteric Modulation of G Protein-Coupled Receptor (GPCR) Dimers. Int J Mol Sci 2021; 22:ijms22063241. [PMID: 33810175 PMCID: PMC8005122 DOI: 10.3390/ijms22063241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 01/07/2023] Open
Abstract
G protein-coupled receptor (GPCR) oligomerization, while contentious, continues to attract the attention of researchers. Numerous experimental investigations have validated the presence of GPCR dimers, and the relevance of dimerization in the effectuation of physiological functions intensifies the attractiveness of this concept as a potential therapeutic target. GPCRs, as a single entity, have been the main source of scrutiny for drug design objectives for multiple diseases such as cancer, inflammation, cardiac, and respiratory diseases. The existence of dimers broadens the research scope of GPCR functions, revealing new signaling pathways that can be targeted for disease pathogenesis that have not previously been reported when GPCRs were only viewed in their monomeric form. This review will highlight several aspects of GPCR dimerization, which include a summary of the structural elucidation of the allosteric modulation of class C GPCR activation offered through recent solutions to the three-dimensional, full-length structures of metabotropic glutamate receptor and γ-aminobutyric acid B receptor as well as the role of dimerization in the modification of GPCR function and allostery. With the growing influence of computational methods in the study of GPCRs, we will also be reviewing recent computational tools that have been utilized to map protein-protein interactions (PPI).
Collapse
|
17
|
Kardani K, Bolhassani A. Exploring novel and potent cell penetrating peptides in the proteome of SARS-COV-2 using bioinformatics approaches. PLoS One 2021; 16:e0247396. [PMID: 33606823 PMCID: PMC7894964 DOI: 10.1371/journal.pone.0247396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/06/2021] [Indexed: 02/08/2023] Open
Abstract
Among various delivery systems for vaccine and drug delivery, cell-penetrating peptides (CPPs) have been known as a potent delivery system because of their capability to penetrate cell membranes and deliver some types of cargoes into cells. Several CPPs were found in the proteome of viruses such as Tat originated from human immunodeficiency virus-1 (HIV-1), and VP22 derived from herpes simplex virus-1 (HSV-1). In the current study, a wide-range of CPPs was identified in the proteome of SARS-CoV-2, a new member of coronaviruses family, using in silico analyses. These CPPs may play a main role for high penetration of virus into cells and infection of host. At first, we submitted the proteome of SARS-CoV-2 to CellPPD web server that resulted in a huge number of CPPs with ten residues in length. Afterward, we submitted the predicted CPPs to C2Pred web server for evaluation of the probability of each peptide. Then, the uptake efficiency of each peptide was investigated using CPPred-RF and MLCPP web servers. Next, the physicochemical properties of the predicted CPPs including net charge, theoretical isoelectric point (pI), amphipathicity, molecular weight, and water solubility were calculated using protparam and pepcalc tools. In addition, the probability of membrane binding potential and cellular localization of each CPP were estimated by Boman index using APD3 web server, D factor, and TMHMM web server. On the other hand, the immunogenicity, toxicity, allergenicity, hemolytic potency, and half-life of CPPs were predicted using various web servers. Finally, the tertiary structure and the helical wheel projection of some CPPs were predicted by PEP-FOLD3 and Heliquest web servers, respectively. These CPPs were divided into: a) CPP containing tumor homing motif (RGD) and/or tumor penetrating motif (RXXR); b) CPP with the highest Boman index; c) CPP with high half-life (~100 hour) in mammalian cells, and d) CPP with +5.00 net charge. Based on the results, we found a large number of novel CPPs with various features. Some of these CPPs possess tumor-specific motifs which can be evaluated in cancer therapy. Furthermore, the novel and potent CPPs derived from SARS-CoV-2 may be used alone or conjugated to some sequences such as nuclear localization sequence (NLS) for vaccine and drug delivery.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
- * E-mail: ,
| |
Collapse
|
18
|
Buccini DF, Cardoso MH, Franco OL. Antimicrobial Peptides and Cell-Penetrating Peptides for Treating Intracellular Bacterial Infections. Front Cell Infect Microbiol 2021; 10:612931. [PMID: 33614528 PMCID: PMC7892433 DOI: 10.3389/fcimb.2020.612931] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Bacterial infections caused by intracellular pathogens are difficult to control. Conventional antibiotic therapies are often ineffective, as high doses are needed to increase the number of antibiotics that will cross the host cell membrane to act on the intracellular bacterium. Moreover, higher doses of antibiotics may lead to elevated severe toxic effects against host cells. In this context, antimicrobial peptides (AMPs) and cell-penetrating peptides (CPPs) have shown great potential to treat such infections by acting directly on the intracellular pathogenic bacterium or performing the delivery of cargos with antibacterial activities. Therefore, in this mini-review, we cover the main AMPs and CPPs described to date, aiming at intracellular bacterial infection treatment. Moreover, we discuss some of the proposed mechanisms of action for these peptide classes and their conjugation with other antimicrobials.
Collapse
Affiliation(s)
- Danieli F Buccini
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marlon H Cardoso
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Octavio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
19
|
Feni L, Jütten L, Parente S, Piarulli U, Neundorf I, Diaz D. Cell-penetrating peptides containing 2,5-diketopiperazine (DKP) scaffolds as shuttles for anti-cancer drugs: conformational studies and biological activity. Chem Commun (Camb) 2020; 56:5685-5688. [PMID: 32319458 DOI: 10.1039/d0cc01490g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of linear and cyclic peptidomimetics composed of a cell-penetrating peptide and a non-natural, bifunctional 2,5-diketopiperazine scaffold is reported. Conformational studies revealed well-defined helical structures in micellar medium for linear structures, while cyclic peptidomimetics were more flexible. Biological investigations showed higher membrane-activity of cyclic derivatives allowing their use as shuttles for anti-cancer drugs.
Collapse
Affiliation(s)
- Lucia Feni
- University of Cologne, Department of Chemistry, Biochemistry, Zülpicher Str. 47a, D-50674 Cologne, Germany.
| | - Linda Jütten
- University of Cologne, Department of Chemistry, Organic Chemistry, Greinstraße 4, D-50939, Cologne, Germany.
| | - Sara Parente
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Umberto Piarulli
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, Via Valleggio 11, 22100, Como, Italy.
| | - Ines Neundorf
- University of Cologne, Department of Chemistry, Biochemistry, Zülpicher Str. 47a, D-50674 Cologne, Germany.
| | - Dolores Diaz
- University of Cologne, Department of Chemistry, Organic Chemistry, Greinstraße 4, D-50939, Cologne, Germany.
| |
Collapse
|
20
|
Porosk L, Gaidutšik I, Langel Ü. Approaches for the discovery of new cell-penetrating peptides. Expert Opin Drug Discov 2020; 16:553-565. [PMID: 33874824 DOI: 10.1080/17460441.2021.1851187] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Introduction: The capability of cell-penetrating peptides (CPP), also known as protein transduction domains (PTD), to enter into cells possibly with an attached cargo, makes their application as delivery vectors or as direct therapeutics compelling. They are generally biocompatible, nontoxic, and easy to synthesize and modify. Three decades after the discovery of the first CPPs, ~2,000 CPP sequences have been identified, and many more predicted. Nevertheless, the field has a strong commitment to authenticate new, more efficient, and specific CPPs.Areas covered: Although a scattering of CPPs have been found by chance, various systematic approaches have been developed and refined over the years to directly aid the identification and depiction of new peptide-based delivery vectors or therapeutics. Here, the authors give an overview of CPPs, and review various approaches of discovering new ones. An emphasis is placed on in silico methods, as these have advanced rapidly in recent years.Expert opinion: Although there are many known CPPs, there is a need to find more efficient and specific CPPs. Several approaches are used to identify such sequences. The success of these approaches depends on the advancement of others and the successful prediction of CPP sequences relies on experimental data.
Collapse
Affiliation(s)
- Ly Porosk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ilja Gaidutšik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ülo Langel
- Department Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Bowen J, Schloop AE, Reeves GT, Menegatti S, Rao BM. Discovery of Membrane-Permeating Cyclic Peptides via mRNA Display. Bioconjug Chem 2020; 31:2325-2338. [PMID: 32786364 DOI: 10.1021/acs.bioconjchem.0c00413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Small synthetic peptides capable of crossing biological membranes represent valuable tools in cell biology and drug delivery. While several cell-penetrating peptides (CPPs) of natural or synthetic origin have been reported, no peptide is currently known to cross both cytoplasmic and outer embryonic membranes. Here, we describe a method to engineer membrane-permeating cyclic peptides (MPPs) with broad permeation activity by screening mRNA display libraries of cyclic peptides against embryos at different developmental stages. The proposed method was demonstrated by identifying peptides capable of permeating Drosophila melanogaster (fruit fly) embryos and mammalian cells. The selected peptide cyclo[Glut-MRKRHASRRE-K*] showed a strong permeation activity of embryos exposed to minimal permeabilization pretreatment, as well as human embryonic stem cells and a murine fibroblast cell line. Notably, in both embryos and mammalian cells, the cyclic peptide outperformed its linear counterpart and the control MPPs. Confocal microscopy and single cell flow cytometry analysis were utilized to assess the degree of permeation both qualitatively and quantitatively. These MPPs have potential application in studying and nondisruptively controlling intracellular or intraembryonic processes.
Collapse
Affiliation(s)
- John Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, North Carolina 27606, United States
| | - Allison E Schloop
- Genetics Program, North Carolina State University, 112 Derieux Place, Raleigh, North Carolina 27695, United States
| | - Gregory T Reeves
- Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Engineering Building, College Station, Texas 77843, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Raleigh, North Carolina 27606, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, North Carolina 27606, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, 850 Oval Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
22
|
Lieser RM, Yur D, Sullivan MO, Chen W. Site-Specific Bioconjugation Approaches for Enhanced Delivery of Protein Therapeutics and Protein Drug Carriers. Bioconjug Chem 2020; 31:2272-2282. [DOI: 10.1021/acs.bioconjchem.0c00456] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rachel M. Lieser
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Daniel Yur
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United States of America
| |
Collapse
|
23
|
Characterization and validation of a preventative therapy for hypertrophic cardiomyopathy in a murine model of the disease. Proc Natl Acad Sci U S A 2020; 117:23113-23124. [PMID: 32859761 PMCID: PMC7502707 DOI: 10.1073/pnas.2002976117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypertrophic cardiomyopathy affects 1:500 of the general population. Current drug therapy is used to manage symptoms in patients. There is an unmet need for treatments that can prevent the cardiomyopathy. Here we identify biomarkers of hypertrophic cardiomyopathy resulting from causing cardiac troponin I mutation Gly203Ser, and present a safe, nontoxic, preventative approach for the treatment of associated cardiomyopathy. Currently there is an unmet need for treatments that can prevent hypertrophic cardiomyopathy (HCM). Using a murine model we previously identified that HCM causing cardiac troponin I mutation Gly203Ser (cTnI-G203S) is associated with increased mitochondrial metabolic activity, consistent with the human condition. These alterations precede development of the cardiomyopathy. Here we examine the efficacy of in vivo treatment of cTnI-G203S mice with a peptide derived against the α-interaction domain of the cardiac L-type calcium channel (AID-TAT) on restoring mitochondrial metabolic activity, and preventing HCM. cTnI-G203S or age-matched wt mice were treated with active or inactive AID-TAT. Following treatment, targeted metabolomics was utilized to evaluate myocardial substrate metabolism. Cardiac myocyte mitochondrial metabolic activity was assessed as alterations in mitochondrial membrane potential and flavoprotein oxidation. Cardiac morphology and function were examined using echocardiography. Cardiac uptake was assessed using an in vivo multispectral imaging system. We identified alterations in six biochemical intermediates in cTnI-G203S hearts consistent with increased anaplerosis. We also reveal that AID-TAT treatment of precardiomyopathic cTnI-G203S mice, but not mice with established cardiomyopathy, restored cardiac myocyte mitochondrial membrane potential and flavoprotein oxidation, and prevented myocardial hypertrophy. Importantly, AID-TAT was rapidly targeted to the heart, and not retained by the liver or kidneys. Overall, we identify biomarkers of HCM resulting from the cTnI mutation Gly203Ser, and present a safe, preventative therapy for associated cardiomyopathy. Utilizing AID-TAT to modulate cardiac metabolic activity may be beneficial in preventing HCM in “at risk” patients with identified Gly203Ser gene mutations.
Collapse
|
24
|
Sorolla A, Sorolla MA, Wang E, Ceña V. Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opin Drug Deliv 2020; 17:1597-1613. [PMID: 32835538 DOI: 10.1080/17425247.2020.1814733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The use of nanoparticles for breast cancer targeting and treatment has become a reality. They are safe and possess interesting peculiarities such as the unspecific accumulation into the tumor site and the possibility to activate controlled drug release as compared to free drugs. However, there are still many areas of improvement which can certainly be addressed with the use of peptide-based elements. AREAS COVERED The article reviews different preclinical strategies employing peptides and proteins in combination with nanoparticles for breast cancer targeting and treatment as well as peptide and protein-targeted encapsulated drugs, and it lists the current clinical status of therapies using peptides and proteins for breast cancer. EXPERT OPINION The conjugation of protein and peptides can improve tumor homing of nanoparticles, increase cellular penetration and attack specific drivers and vulnerabilities of the breast cancer cell to promote tumor cytotoxicity while reducing secondary effects in healthy tissues. Examples are the use of antibodies, arginylglycylaspartic acid (RGD) peptides, membrane disruptive peptides, interference peptides, and peptide vaccines. Although their implementation in the clinic has been relatively slow up to now, we anticipate great progress in the field which will translate into more efficacious and selective nanotherapies for breast cancer.
Collapse
Affiliation(s)
- Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia , Crawley, Australia
| | - Maria Alba Sorolla
- Biomedical Research Institute (IRB Lleida), Research Group of Cancer Biomarkers , Lleida, Spain
| | - Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia , Crawley, Australia
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad De Castilla-La Mancha , Albacete, Spain.,Centro De Investigación En Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII , Madrid, Spain
| |
Collapse
|
25
|
Gordon RE, Nemeth JF, Singh S, Lingham RB, Grewal IS. Harnessing SLE Autoantibodies for Intracellular Delivery of Biologic Therapeutics. Trends Biotechnol 2020; 39:298-310. [PMID: 32807530 DOI: 10.1016/j.tibtech.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
Abstract
Intracellular delivery of therapeutic antibodies is highly desirable but remains a challenge for biomedical research and the pharmaceutical industry. Approximately two-thirds of disease-associated targets are found inside the cell. Difficulty blocking these targets with available drugs creates a need for technology to deliver highly specific therapeutic antibodies intracellularly. Historically, antibodies have not been believed to traverse the cell membrane and neutralize intracellular targets. Emerging evidence has revealed that anti-DNA autoantibodies found in systemic lupus erythematosus (SLE) patients can penetrate inside the cell. Harnessing this technology has the potential to accelerate the development of drugs against intracellular targets. Here, we dissect the mechanisms of the intracellular localization of SLE antibodies and discuss how to apply these insights to engineer successful cell-penetrating antibody drugs.
Collapse
Affiliation(s)
- Renata E Gordon
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Jennifer F Nemeth
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Sanjaya Singh
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Russell B Lingham
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, 1400 McKean Road, Spring House, PA 19477, USA.
| |
Collapse
|
26
|
Viola HM, Shah AA, Kretzmann JA, Evans CW, Norret M, Iyer KS, Hool LC. A dendronized polymer variant that facilitates safe delivery of a calcium channel antagonist to the heart. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102264. [PMID: 32659322 DOI: 10.1016/j.nano.2020.102264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/29/2020] [Accepted: 07/02/2020] [Indexed: 11/27/2022]
Abstract
Therapeutic approaches for myocardial ischemia-reperfusion injury (MI) have been ineffective due to limited bioavailability and poor specificity. We have previously shown that a peptide that targets the α-interaction domain of the cardiac L-type calcium channel (AID-peptide) attenuates MI when tethered to transactivator of transcription sequence (TAT) or spherical nanoparticles. However some reservations remain regarding use of these delivery platforms due to the relationship with human immunodeficiency virus, off-target effects and toxicity. Here we investigate the use of linear dendronized polymers (denpols) to deliver AID-peptide as a potential MI therapy using in vitro, ex vivo and in vivo models. Optimized denpol-complexed AID-peptide facilitated in vitro cardiac uptake of AID-peptide, and reduced MI. Maximal in vivo cardiac uptake was achieved within the 2 h therapeutic time window for acute myocardial infarction. Importantly, optimized denpol-complexed AID-peptide was not toxic. This platform may represent an alternative therapeutic approach for the prevention of MI.
Collapse
Affiliation(s)
- Helena M Viola
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA, Australia
| | - Ashay A Shah
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA, Australia
| | - Jessica A Kretzmann
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Livia C Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
27
|
In Vitro Assays: Friends or Foes of Cell-Penetrating Peptides. Int J Mol Sci 2020; 21:ijms21134719. [PMID: 32630650 PMCID: PMC7369778 DOI: 10.3390/ijms21134719] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022] Open
Abstract
The cell membrane is a complex and highly regulated system that is composed of lipid bilayer and proteins. One of the main functions of the cell membrane is the regulation of cell entry. Cell-penetrating peptides (CPPs) are defined as peptides that can cross the plasma membrane and deliver their cargo inside the cell. The uptake of a peptide is determined by its sequence and biophysicochemical properties. At the same time, the uptake mechanism and efficiency are shown to be dependent on local peptide concentration, cell membrane lipid composition, characteristics of the cargo, and experimental methodology, suggesting that a highly efficient CPP in one system might not be as productive in another. To better understand the dependence of CPPs on the experimental system, we present a review of the in vitro assays that have been employed in the literature to evaluate CPPs and CPP-cargos. Our comprehensive review suggests that utilization of orthogonal assays will be more effective for deciphering the true ability of CPPs to translocate through the membrane and enter the cell cytoplasm.
Collapse
|
28
|
Gupta S, Singh I, Sharma AK, Kumar P. Ultrashort Peptide Self-Assembly: Front-Runners to Transport Drug and Gene Cargos. Front Bioeng Biotechnol 2020; 8:504. [PMID: 32548101 PMCID: PMC7273840 DOI: 10.3389/fbioe.2020.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/29/2020] [Indexed: 12/18/2022] Open
Abstract
The translational therapies to promote interaction between cell and signal come with stringent eligibility criteria. The chemically defined, hierarchically organized, and simpler yet blessed with robust intermolecular association, the peptides, are privileged to make the cut-off for sensing the cell-signal for biologics delivery and tissue engineering. The signature service and insoluble network formation of the peptide self-assemblies as hydrogels have drawn a spell of research activity among the scientists all around the globe in the past decades. The therapeutic peptide market players are anticipating promising growth opportunities due to the ample technological advancements in this field. The presence of the other organic moieties, enzyme substrates and well-established protecting groups like Fmoc and Boc etc., bring the best of both worlds. Since the large sequences of peptides severely limit the purification and their isolation, this article reviews the account of last 5 years' efforts on novel approaches for formulation and development of single molecule amino acids, ultra-short peptide self-assemblies (di- and tri- peptides only) and their derivatives as drug/gene carriers and tissue-engineering systems.
Collapse
Affiliation(s)
- Seema Gupta
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Indu Singh
- Chemistry Department, Acharya Narendra Dev College, University of Delhi, New Delhi, India
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Ashwani K. Sharma
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pradeep Kumar
- Nucleic Acids Research Laboratory, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
29
|
Massó-Vallés D, Soucek L. Blocking Myc to Treat Cancer: Reflecting on Two Decades of Omomyc. Cells 2020; 9:cells9040883. [PMID: 32260326 PMCID: PMC7226798 DOI: 10.3390/cells9040883] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022] Open
Abstract
First designed and published in 1998 as a laboratory tool to study Myc perturbation, Omomyc has come a long way in the past 22 years. This dominant negative has contributed to our understanding of Myc biology when expressed, first, in normal and cancer cells, and later in genetically-engineered mice, and has shown remarkable anti-cancer properties in a wide range of tumor types. The recently described therapeutic effect of purified Omomyc mini-protein—following the surprising discovery of its cell-penetrating capacity—constitutes a paradigm shift. Now, much more than a proof of concept, the most characterized Myc inhibitor to date is advancing in its drug development pipeline, pushing Myc inhibition into the clinic.
Collapse
Affiliation(s)
| | - Laura Soucek
- Peptomyc S.L., Edifici Cellex, 08035 Barcelona, Spain;
- Vall d’Hebron Institute of Oncology (VHIO), Edifici Cellex, 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence:
| |
Collapse
|
30
|
Majerova P, Hanes J, Olesova D, Sinsky J, Pilipcinec E, Kovac A. Novel Blood-Brain Barrier Shuttle Peptides Discovered through the Phage Display Method. Molecules 2020; 25:molecules25040874. [PMID: 32079185 PMCID: PMC7070575 DOI: 10.3390/molecules25040874] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/12/2023] Open
Abstract
Delivery of therapeutic agents into the brain is a major challenge in central nervous system drug development. The blood–brain barrier (BBB) prevents access of biotherapeutics to their targets in the central nervous system and, therefore, prohibits the effective treatment of many neurological disorders. To find blood–brain barrier shuttle peptides that could target therapeutics to the brain, we applied a phage display technology on a primary endothelial rat cellular model. Two identified peptides from a 12 mer phage library, GLHTSATNLYLH and VAARTGEIYVPW, were selected and their permeability was validated using the in vitro BBB model. The permeability of peptides through the BBB was measured by ultra-performance liquid chromatography-tandem mass spectrometry coupled to a triple-quadrupole mass spectrometer (UHPLC-MS/MS). We showed higher permeability for both peptides compared to N–C reversed-sequence peptides through in vitro BBB: for peptide GLHTSATNLYLH 3.3 × 10−7 cm/s and for peptide VAARTGEIYVPW 1.5 × 10−6 cm/s. The results indicate that the peptides identified by the in vitro phage display technology could serve as transporters for the administration of biopharmaceuticals into the brain. Our results also demonstrated the importance of proper BBB model for the discovery of shuttle peptides through phage display libraries.
Collapse
Affiliation(s)
- Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Dominika Olesova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Jakub Sinsky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
| | - Emil Pilipcinec
- Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia;
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovakia; (P.M.); (J.H.); (D.O.); (J.S.)
- Department of Pharmacology and Toxicology, The University of Veterinary Medicine and Pharmacy, Komenskeho 73, 04181 Kosice, Slovakia
- Correspondence: ; Tel.: +421-254788100
| |
Collapse
|
31
|
Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 Polyepitope Constructs Using Cationic and Amphipathic Cell Penetrating Peptides into Mammalian Cells. Curr HIV Res 2020; 17:408-428. [DOI: 10.2174/1570162x17666191121114522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Background:
An effective vaccine against human immunodeficiency virus 1 (HIV-1) is
an important global health priority. Despite many efforts in the development of the HIV-1 vaccine,
no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic
and conserved epitopes of HIV-1 proteins have received special attention.
Methods:
In this study, HIV-1 Nef, Tat, Gp160 and P24 proteins were considered for selection of
immunodominant and conserved epitopes due to their critical roles in the viral life cycle and pathogenesis.
At first, the Nef60-84-Nef126-144-Tat29-49-Gp16030-53-Gp160308-323-P248-151 DNA construct was
designed using in silico studies. Then, the DNA construct was subcloned in pEGFP-N1 and pET-
24a (+) expression vectors and the rNef-Tat-Gp160-P24 polyepitope peptide was generated in E.coli
expression system for in vitro delivery using novel cell-penetrating peptides (CPPs), LDP-NLS and
CyLoP-1, in a non-covalent manner. Also, the HR9 and MPG CPPs were used to transfer the DNA
construct.
Results:
Our results showed that the recombinant polyepitope peptide generated in Rosetta strain
migrated as a clear band of ~31 kDa in SDS-PAGE. The SEM data confirmed the formation of stable
nanoparticles with a size below 250 nm. MTT assay revealed that the complexes did not represent
any considerable cytotoxic effect compared to untreated cells. The results of fluorescence microscopy,
flow cytometry and western blotting indicated that these CPPs successfully delivered polyepitope
constructs into HEK-293T cell line.
Conclusion:
These data suggested that these CPPs can be used as a promising approach for the development
of the HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Nanomaterials and Their Negative Effects on Human Health. APPLICATIONS OF NANOMATERIALS IN HUMAN HEALTH 2020. [PMCID: PMC7305518 DOI: 10.1007/978-981-15-4802-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mesostructured silica, dendrimers, and allotropes of carbon were exhaustively used in biomedical, cosmetics, semiconductors, and food industry applications. Considering the huge prospect of nanomaterials, their potential hazards on exposure to humans and their related ecotoxicological effects needs to be summarized. Nanoparticles with size below 100 nm could pass into the lung and then to blood through inhalation, ingestion, and skin contact. As nanotechnology innovation is expected to achieve $ 2231 million by 2025, humans will be exposed ever increasingly in day-to-day life and in industries. In this review, the latest synthetic methodology of silica, dendrimers, and CNTs, their biological applications (in vitro and in vivo) related to toxicity were discussed. In terms of structured silica, the toxic and non-toxic effect induced by specific templates (cetylpyridinium bromide, cetyltrimethylammonium bromide, dipalmitoylphosphatidylcholine, C16L-tryptophan, C16-L-histidine, and C16-L-poline) that are used to generate mesoporous silica, silica nanoparticle sizes (25, 50, 60, 115, and 500 nm), and silane functionalization (NH2 and COOH) were discussed. The recent applications of different generations (G3, G4, G5, and G6) of amphiphilic Janus dendrimers were discussed along with toxicity effect of different charged dendrimers (cationic and anionic) and effect of PEGylation. Recent synthesis, advantages, and disadvantages of carbon nanotubes (CNTs) were presented for structures like single walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs). The influence of diameter of SWCNTs (linear and short), thickness (thin and thick), effect of oxidation, metal oxide species (TiO2, Fe, and Au), and biocompatible polymers (polyethylene glycol, bisphosphonate, and alendronate) were shown in relation to molecular pathways in animal cells.
Collapse
|
33
|
Lopez-Barbosa N, Suárez-Arnedo A, Cifuentes J, Gonzalez Barrios AF, Silvera Batista CA, Osma JF, Muñoz-Camargo C, Cruz JC. Magnetite-OmpA Nanobioconjugates as Cell-Penetrating Vehicles with Endosomal Escape Abilities. ACS Biomater Sci Eng 2019; 6:415-424. [PMID: 33463215 DOI: 10.1021/acsbiomaterials.9b01214] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Outer membrane protein A (OmpA) has been extensively studied in Gram-negative bacteria due to its relevance in the adhesion of pathogens to host cells and its surfactant capabilities. It consists of a hydrophobic β-barrel domain and a hydrophilic periplasmic domain, that confers OmpA an amphiphilic structure. This study aims to elucidate the capacity of Escherichia coli OmpA to translocate liposomal membranes and serve as a potential cell-penetrating vehicle. We immobilized OmpA on magnetite nanoparticles and investigated the possible functional changes exhibited by OmpA after immobilization. Liposomal intake was addressed using egg lecithin liposomes as a model, where magnetite-OmpA nanobioconjugates were able to translocate the liposomal membrane and caused a disruptive effect when subjected to a magnetic field. Nanobioconjugates showed both low cytotoxicity and hemolytic tendency. Additional interactions within the intracellular space led to altered viability results via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Confocal microscopy images revealed that immobilized nanoparticles effectively enter the cytoplasm of THP-1 and Vero cells by different routes, and, subsequently, some escape endosomes, lysosomes, and other intracellular compartments with relatively high efficiencies. This was demonstrated by co-localization analyses with LysoTracker green that showed Pearson correlations of about 80 and 28%.
Collapse
Affiliation(s)
| | | | | | | | - Carlos A Silvera Batista
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | | | |
Collapse
|
34
|
Sorolla A, Wang E, Golden E, Duffy C, Henriques ST, Redfern AD, Blancafort P. Precision medicine by designer interference peptides: applications in oncology and molecular therapeutics. Oncogene 2019; 39:1167-1184. [PMID: 31636382 PMCID: PMC7002299 DOI: 10.1038/s41388-019-1056-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/28/2019] [Accepted: 10/02/2019] [Indexed: 01/17/2023]
Abstract
In molecular cancer therapeutics only 10% of known cancer gene products are targetable with current pharmacological agents. Major oncogenic drivers, such as MYC and KRAS proteins are frequently highly overexpressed or mutated in multiple human malignancies. However, despite their key role in oncogenesis, these proteins are hard to target with traditional small molecule drugs due to their large, featureless protein interfaces and lack of deep pockets. In addition, they are inaccessible to large biologicals, which are unable to cross cell membranes. Designer interference peptides (iPeps) represent emerging pharmacological agents created to block selective interactions between protein partners that are difficult to target with conventional small molecule chemicals or with large biologicals. iPeps have demonstrated successful inhibition of multiple oncogenic drivers with some now entering clinical settings. However, the clinical translation of iPeps has been hampered by certain intrinsic limitations including intracellular localization, targeting tissue specificity and pharmacological potency. Herein, we outline recent advances for the selective inhibition of major cancer oncoproteins via iPep approaches and discuss the development of multimodal peptides to overcome limitations of the first generations of iPeps. Since many protein–protein interfaces are cell-type specific, this approach opens the door to novel programmable, precision medicine tools in cancer research and treatment for selective manipulation and reprogramming of the cancer cell oncoproteome.
Collapse
Affiliation(s)
- Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Emily Golden
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Ciara Duffy
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Sónia T Henriques
- School of Biomedical Sciences, Faculty of Health, Institute of Health & Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Andrew D Redfern
- School of Medicine, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Pilar Blancafort
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA, 6009, Australia.
| |
Collapse
|
35
|
Kardani K, Milani A, H Shabani S, Bolhassani A. Cell penetrating peptides: the potent multi-cargo intracellular carriers. Expert Opin Drug Deliv 2019; 16:1227-1258. [PMID: 31583914 DOI: 10.1080/17425247.2019.1676720] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cell penetrating peptides (CPPs) known as protein translocation domains (PTD), membrane translocating sequences (MTS), or Trojan peptides (TP) are able to cross biological membranes without clear toxicity using different mechanisms, and facilitate the intracellular delivery of a variety of bioactive cargos. CPPs could overcome some limitations of drug delivery and combat resistant strains against a broad range of diseases. Despite delivery of different therapeutic molecules by CPPs, they lack cell specificity and have a short duration of action. These limitations led to design of combined cargo delivery systems and subsequently improvement of their clinical applications. Areas covered: This review covers all our studies and other researchers in different aspects of CPPs such as classification, uptake mechanisms, and biomedical applications. Expert opinion: Due to low cytotoxicity of CPPs as compared to other carriers and final degradation to amino acids, they are suitable for preclinical and clinical studies. Generally, the efficiency of CPPs was suitable to penetrate the cell membrane and deliver different cargos to specific intracellular sites. However, no CPP-based therapeutic approach has approved by FDA, yet; because there are some disadvantages for CPPs including short half-life in blood, and nonspecific CPP-mediated delivery to normal tissue. Thus, some methods were used to develop the functions of CPPs in vitro and in vivo including the augmentation of cell specificity by activatable CPPs, specific transport into cell organelles by insertion of corresponding localization sequences, incorporation of CPPs into multifunctional dendrimeric or liposomal nanocarriers to improve selectivity and efficiency especially in tumor cells.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran , Iran
| |
Collapse
|
36
|
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309:106-124. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site. Cell penetrating peptides (CPPs) are a group of short peptides harnessed in this condition, possessing a significant capacity for membrane transduction and could be exploited to transfer various biologically active cargoes into the cells. Since their discovery, CPPs have been employed for delivery of a wide variety of therapeutic molecules to treat various disorders including cranial nerve involvement, ocular inflammation, myocardial ischemia, dermatosis and cancer. The promising results of CPPs-derived therapeutics in various tumor models demonstrated a potential and worthwhile scope of CPPs in chemotherapy. This review describes the detailed description of CPPs and CPPs-assisted molecular delivery against various tissues and organs disorders. An emphasis is focused on summarizing the novel insights and achievements of CPPs in surmounting the natural membrane barriers during the last 5 years.
Collapse
Affiliation(s)
- Jiangkang Xu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Manfei Fu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rujuan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
37
|
Rostami B, Irani S, Bolhassani A, Cohan RA. M918: A Novel Cell Penetrating Peptide for Effective Delivery of HIV-1 Nef and Hsp20-Nef Proteins into Eukaryotic Cell Lines. Curr HIV Res 2019; 16:280-287. [PMID: 30520377 PMCID: PMC6416460 DOI: 10.2174/1570162x17666181206111859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND HIV-1 Nef protein is a possible attractive target in the development of therapeutic HIV vaccines including protein-based vaccines. The most important disadvantage of protein-based vaccines is their low immunogenicity which can be improved by heat shock proteins (Hsps) as an immunomodulator, and cell-penetrating peptides (CPPs) as a carrier. METHODS In this study, the HIV-1 Nef and Hsp20-Nef proteins were generated in E.coli expression system for delivery into the HEK-293T mammalian cell line using a novel cell-penetrating peptide, M918, in a non-covalent fashion. The size, zeta potential and morphology of the peptide/protein complexes were studied by scanning electron microscopy (SEM) and Zeta sizer. The efficiency of Nef and Hsp20-Nef transfection using M918 was evaluated by western blotting in HEK-293T cell line. RESULTS The SEM data confirmed the formation of discrete nanoparticles with a diameter of approximately 200-250 nm and 50-80 nm for M918/Nef and M918/Hsp20-Nef, respectively. The dominant band of ~ 27 kDa and ~ 47 kDa was detected in the transfected cells with the Nef/ M918 and Hsp20-Nef/ M918 nanoparticles at a molar ratio of 1:20 using anti-HIV-1 Nef monoclonal antibody. These bands were not detected in the un-transfected and transfected cells with Nef or Hsp20- Nef protein alone indicating that M918 could increase the penetration of Nef and Hsp20-Nef proteins into the cells. CONCLUSION These data suggest that M918 CPP can be used to enter HIV-1 Nef and Hsp20-Nef proteins inside mammalian cells efficiently as a promising approach in HIV-1 vaccine development.
Collapse
Affiliation(s)
- Bahareh Rostami
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Pilot Nano-Biotechnology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
38
|
Pitout I, Flynn LL, Wilton SD, Fletcher S. Antisense-mediated splice intervention to treat human disease: the odyssey continues. F1000Res 2019; 8. [PMID: 31164976 PMCID: PMC6534073 DOI: 10.12688/f1000research.18466.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/15/2019] [Indexed: 12/24/2022] Open
Abstract
Recent approvals of oligonucleotide analogue drugs to alter gene expression have been welcomed by patient communities but not universally supported. These compounds represent a class of drugs that are designed to target a specific gene transcript, and they include a number of chemical entities to evoke different antisense mechanisms, depending upon the disease aetiology. To date, oligonucleotide therapeutics that are in the clinic or at advanced stages of translation target rare diseases, posing challenges to clinical trial design, recruitment and evaluation and requiring new evaluation paradigms. This review discusses the currently available and emerging therapeutics that alter exon selection through an effect on pre-mRNA splicing and explores emerging concerns over safety and efficacy. Although modification of synthetic nucleic acids destined for therapeutic application is common practice to protect against nuclease degradation and to influence drug function, such modifications may also confer unexpected physicochemical and biological properties. Negatively charged oligonucleotides have a strong propensity to bind extra- and intra-cellular proteins, whereas those analogues with a neutral backbone show inefficient cellular uptake but excellent safety profiles. In addition, the potential for incorporation of chemically modified nucleic acid monomers, yielded by nuclease degradation of exogenous oligonucleotides, into biomolecules has been raised and the possibility not entirely discounted. We conclude with a commentary on the ongoing efforts to develop novel antisense compounds and enhance oligonucleotide delivery in order to further improve efficacy and accelerate implementation of antisense therapeutics for human disease.
Collapse
Affiliation(s)
| | - Loren L Flynn
- Murdoch University, Murdoch, WA, 6150, Australia.,The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute, Nedlands, WA, 6009, Australia
| | - Steve D Wilton
- Murdoch University, Murdoch, WA, 6150, Australia.,The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute, Nedlands, WA, 6009, Australia
| | - Sue Fletcher
- Murdoch University, Murdoch, WA, 6150, Australia.,The University of Western Australia, Nedlands, WA, 6009, Australia.,Perron Institute, Nedlands, WA, 6009, Australia
| |
Collapse
|
39
|
Jauset T, Beaulieu ME. Bioactive cell penetrating peptides and proteins in cancer: a bright future ahead. Curr Opin Pharmacol 2019; 47:133-140. [PMID: 31048179 DOI: 10.1016/j.coph.2019.03.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 02/05/2023]
Abstract
Peptides and proteins bear an extraordinary therapeutic potential to effectively and selectively target many components of cells currently considered undruggable. However, their intracellular delivery remains a critical challenge. Cell penetrating peptides and protein domains (CPPs) can be employed to translocate therapeutic polypeptides through the cellular membrane. Here, we describe examples of linear peptides and proteins, byciclic macropeptides and nanobodies that target key players in cancer development, with intrinsic and engineered cell penetrating ability. We also describe current solutions to the main challenges to their clinical viability.
Collapse
Affiliation(s)
- Toni Jauset
- Peptomyc, Edifici Cellex, Hospital Vall d'Hebron, Barcelona, 08035, Spain
| | - Marie-Eve Beaulieu
- Peptomyc, Edifici Cellex, Hospital Vall d'Hebron, Barcelona, 08035, Spain.
| |
Collapse
|
40
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
41
|
Insider information on successful covalent protein coupling with help from SpyBank. Methods Enzymol 2019; 617:443-461. [DOI: 10.1016/bs.mie.2018.12.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|