1
|
Penaloza-Aponte D, Brandt S, Dent E, Underwood RM, DeMoras B, Bruckner S, López-Uribe MM, Urbina JV. Automated entrance monitoring to investigate honey bee foraging trips using open-source wireless platform and fiducial tags. HARDWAREX 2024; 20:e00609. [PMID: 39669441 PMCID: PMC11636203 DOI: 10.1016/j.ohx.2024.e00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024]
Abstract
Honey bee foraging is a complex behavior because it involves tens of thousands of organisms making decisions about where to collect pollen and nectar based on the quality of resources and the distance to flowers. Studying this aspect of their biology is possible through direct observations but the large number of individuals involved in this behavior makes the implementation of technologies ideal to scale up this type of study. Consequently, there is a need for instruments that can facilitate accurate assessments of honey bee foraging at the colony level. To address this need, this work aimed to develop an automated imaging system for monitoring the in-and-out activity of honey bee foragers as they walk through a customized entrance with a camera sensor at the hive entrance. We used AprilTags attached to each bee's thorax to provide unique identification numbers that allowed the system to track in-and-out events throughout the foraging season of the colony. Our design relies on low-cost Raspberry Pi computers and cameras, along with commercially off-the-shelf components, making it easily reproducible with the open-source documentation provided. We successfully deployed and evaluated our system in six locations, demonstrating consistent results. In this paper, we present the details about the development of the system, data collected from multiple colonies, and post-processing analysis from one of our apiaries. Our results highlight the system's effectiveness in monitoring honey bee trips, capturing various behaviors associate with their activities outside the colony, which lay the groundwork for future estimations of foraging distances.
Collapse
Affiliation(s)
- Diego Penaloza-Aponte
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Sarabeth Brandt
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Erin Dent
- Department of Geography, Texas A&M University, College Station, 77843, TX, USA
| | - Robyn M. Underwood
- Department of Entomology, The Pennsylvania State University, University Park, 16802, PA, USA
| | - Benedict DeMoras
- Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Selina Bruckner
- Department of Entomology, The Pennsylvania State University, University Park, 16802, PA, USA
| | | | - Julio V. Urbina
- School of Electrical Engineering and Computer Science, The Pennsylvania State University, University Park, 16802, PA, USA
| |
Collapse
|
2
|
Smoliński S, Glazaczow A. Causal network linking honey bee (Apis mellifera) winter mortality to temperature variations and Varroa mite density. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176245. [PMID: 39306118 DOI: 10.1016/j.scitotenv.2024.176245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Winter season is a critical time for honey bees (Apis mellifera) colonies when individual mortalities may lead to total colony losses or diminish productivity in subsequent seasons. A deeper understanding of the causes and consequences of winter mortality is required. In this study, we analyzed winter (November-March) individual bee mortality in an apiary in Central Europe from 1991 to 2023. We observed consistency in mortality times among years, but also some systematic departures from the shared trend. We distinguished four clusters of year-specific mortality trajectories. However, we found no statistically significant differences in means of spring (March-May), autumn (October), winter (November-March) temperatures, or autumn Varroa destructor density among clusters. Nevertheless, our insights into the dynamics of individual bee mortality may be important for determining critical moments during wintering when implementing additional protective measures could prove beneficial. Hypothesis-driven path analysis indicated causal links in our study system, including both direct and indirect influences. The density of V. destructor in autumn was positively related to temperature, especially in the preceding spring, but to a lesser extent also in autumn. Increased winter mortality was related to lower winter temperatures and a higher mite infestation in autumn. We found no significant effects of individual winter mortality on honey harvests in subsequent seasons. Honey harvest was determined by bee abundance in spring, and the latter, unexpectedly, was not related to winter mortality. Our study adds to accumulating evidence of the major role of weather and climatic conditions in the resilience of honey bee colonies and improves our understanding of mortality processes. We highlighted the importance of causative factors, especially seasonal temperatures and V. destructor density, and their potential as predictive indicators of individual winter mortality, bee colony fate, and honey productivity.
Collapse
Affiliation(s)
- Szymon Smoliński
- Department of Fisheries Resources, National Marine Fisheries Research Institute, Kołłątaja 1, 81-332 Gdynia, Poland.
| | - Adam Glazaczow
- Department of Systematic Zoology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Claing G, Dubreuil P, Bernier M, Ferland J, L'Homme Y, Rodriguez E, Arsenault J. Varroa destructor and deformed wing virus interaction increases incidence of winter mortality in honey bee colonies. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2024; 88:69-76. [PMID: 38988334 PMCID: PMC11232088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 07/12/2024]
Abstract
Winter mortality of honey bee colonies represents a major source of economic loss for the beekeeping industry. The objectives of this prospective study were to estimate the incidence risk of winter colony mortality in southwestern Quebec, Canada and to evaluate and quantify the impact of the associated risk factors. A total of 242 colonies from 31 apiaries was selected for sampling in August 2017. The presence of Varroa destructor, Vairimorpha (Nosema) spp., Melissococcus plutonius, deformed wing virus (DWV), and viruses of the acute-Kashmir-Israeli complex (AKI complex) was investigated in each colony. Management practices of the various colonies were obtained from a questionnaire. The incidence risk of colony mortality during the winter of 2017-2018 was estimated to be 26.5% [95% confidence interval (CI): 15.4 to 40.3]. In logistic regression modeling of winter mortality in colonies, an interaction was discovered between V. destructor and DWV; the detection of ≥ 1 V. destructor mites per 100 bees was associated with higher odds of mortality (3.46, 95% CI: 1.35 to 8.90) compared to colonies with < 1 mite per 100 bees, but only in DWV-positive colonies. There were more colony losses in apiaries from beekeepers owning 1 to 5 colonies than in apiaries from beekeepers owning over 100 colonies, which suggests that beekeeper experience and/or type of management are important contributors to winter colony mortality. Assuming a causal relationship, the results of this study suggest that up to 9% of all colony mortalities in the population could have been prevented by reducing the level of V. destructor to < 1 mite per 100 bees in all colonies.
Collapse
Affiliation(s)
- Gabrielle Claing
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Pascal Dubreuil
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Martine Bernier
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Julie Ferland
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Yvan L'Homme
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Edisleidy Rodriguez
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| | - Julie Arsenault
- Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, Québec J2S 2M2 (Claing, Arsenault, Dubreuil); Centre de recherche en sciences animales de Deschambault, 120a chemin du Roy, Deschambault, Québec G0A 1S0 (Bernier); Ministère de l'Agriculture, des Pêcheries et de l'Alimentation du Québec, 200 chemin Ste-Foy, ville de Québec, Québec G1R 4X6 (Ferland, Rodriguez); Cégep Garneau, 1660 boulevard de l'Entente, ville de Québec, Québec G1S 4S3 (L'Homme)
| |
Collapse
|
4
|
Requier F, Leyton MS, Morales CL, Garibaldi LA, Giacobino A, Porrini MP, Rosso-Londoño JM, Velarde RA, Aignasse A, Aldea-Sánchez P, Allasino ML, Arredondo D, Audisio C, Cagnolo NB, Basualdo M, Branchiccela B, Calderón RA, Castelli L, Castilhos D, Escareño FC, Correa-Benítez A, da Silva FO, Garnica DS, de Groot G, Delgado-Cañedo A, Fernández-Marín H, Freitas BM, Galindo-Cardona A, Garcia N, Garrido PM, Giray T, Gonçalves LS, Landi L, Malusá Gonçalves D, Martinez SI, Moja PJ, Molineri A, Müller PF, Nogueira E, Pacini A, Palacio MA, Parra GN, Parra-H A, Peres Gramacho K, Castro EP, Pires CSS, Reynaldi FJ, Luis AR, Rossini C, Sánchez Armijos M, Santos E, Scannapieco A, Spina YM, Tapia González JM, Vargas Fernández AM, Viana BF, Vieli L, Yadró García CA, Antúnez K. First large-scale study reveals important losses of managed honey bee and stingless bee colonies in Latin America. Sci Rep 2024; 14:10079. [PMID: 38698037 PMCID: PMC11066017 DOI: 10.1038/s41598-024-59513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/11/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last quarter century, increasing honey bee colony losses motivated standardized large-scale surveys of managed honey bees (Apis mellifera), particularly in Europe and the United States. Here we present the first large-scale standardized survey of colony losses of managed honey bees and stingless bees across Latin America. Overall, 1736 beekeepers and 165 meliponiculturists participated in the 2-year survey (2016-2017 and 2017-2018). On average, 30.4% of honey bee colonies and 39.6% of stingless bee colonies were lost per year across the region. Summer losses were higher than winter losses in stingless bees (30.9% and 22.2%, respectively) but not in honey bees (18.8% and 20.6%, respectively). Colony loss increased with operation size during the summer in both honey bees and stingless bees and decreased with operation size during the winter in stingless bees. Furthermore, losses differed significantly between countries and across years for both beekeepers and meliponiculturists. Overall, winter losses of honey bee colonies in Latin America (20.6%) position this region between Europe (12.5%) and the United States (40.4%). These results highlight the magnitude of bee colony losses occurring in the region and suggest difficulties in maintaining overall colony health and economic survival for beekeepers and meliponiculturists.
Collapse
Affiliation(s)
- Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France.
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay.
| | - Malena Sibaja Leyton
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198, Gif-sur-Yvette, France
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
| | - Carolina L Morales
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Grupo Ecología de la Polinización, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250, Bariloche, Río Negro, Argentina
| | - Lucas A Garibaldi
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Universidad Nacional de Río Negro, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Bariloche, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Bariloche, Río Negro, Argentina
| | - Agostina Giacobino
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria- Rafaela, Ruta 34 Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - Martin Pablo Porrini
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro de Investigaciones en Abejas Sociales (CIAS)-Instituto de Investigación en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Estación Costera J.J. Nágera, Ruta Provincial 11 Km 5395 Playa Chapadmalal (7603) Mar del Plata, Buenos Aires, Argentina
| | - Juan Manuel Rosso-Londoño
- Universidad Distrital Francisco José de Caldas, Facultad de Medio Ambiente y Recursos Naturales and Colectivo Abejas Vivas, Bogotá, Colombia
| | - Rodrigo A Velarde
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
| | - Andrea Aignasse
- Ministerio de la producción y ambiente Formosa (MPA), Facultad de Recursos Naturales, Universidad de Formosa (UNAF), Av Luís Gutnisky 3200, Formosa, Argentina
| | - Patricia Aldea-Sánchez
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Universidad SEK, Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK, Santiago, Chile
| | - Mariana Laura Allasino
- Área de Investigación y Desarrollo Tecnológico para la Agricultura Familiar Región Cuyo, INTA, San Juan entre Sarmiento y José Pedro Cortinez Oeste, San Martín, 5439, San Juan, Argentina
| | - Daniela Arredondo
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Lab. de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Carina Audisio
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Investigaciones para la Industria Química (INIQUI-CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, Salta, Argentina
| | - Natalia Bulacio Cagnolo
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria- Rafaela, Ruta 34 Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - Marina Basualdo
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Facultad de Ciencias Veterinarias-PROANVET Universidad Nacional del Centro de la Provincia de Buenos Aires UNCPBA, Tandil, Buenos Aires, Argentina
| | - Belén Branchiccela
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Sección Apicultura, Instituto Nacional de Investigación Agropecuaria, Ruta 50, km 11, Colonia, Uruguay
| | - Rafael A Calderón
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Programa Integrado de Patología Apícola, Centro de Investigaciones Apícolas Tropicales, Universidad Nacional, Heredia, Costa Rica
| | - Loreley Castelli
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Lab. de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Dayson Castilhos
- Dep. de Ciências Animais, Universidade Federal Rural do Semi-Arido, Mossoró, RN, Brazil
| | - Francisca Contreras Escareño
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Universidad de Guadalajara, Centro Universitario de la Costa Sur, Autlán, Jalisco, México
| | - Adriana Correa-Benítez
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Acuáticos, Facultad de Medicina Veterinaria y Zootecnia de la Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04510, Mexico City, Mexico
| | - Fabiana Oliveira da Silva
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Universidade Federal de Sergipe, Campus do Sertão, Departamento de Educação em Ciências Agrárias e da Terra, e Instituto Nacional de Ciência e Tecnologia em Estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução (INCT-IN-TREE), Mossoró, Brazil
| | - Diego Silva Garnica
- Federación Colombiana de Apicultores y Criadores de Abejas, Bogota, Colombia
| | - Grecia de Groot
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Grupo Ecología de la Polinización, INIBIOMA (CONICET-Universidad Nacional del Comahue), Quintral 1250, Bariloche, Río Negro, Argentina
| | - Andres Delgado-Cañedo
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro Integrado de Pesquisas Biotecnológicas, Campus São Gabriel, Universidade Federal do Pampa (UNIPAMPA), Rua Aluízio Barros Macedo, Br 290, km 423 Bairro Piraí, São Gabriel, RS, 97300-000, Brazil
| | - Hermógenes Fernández-Marín
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Clayton, 0843-01103, Panamá
| | - Breno M Freitas
- Departamento de Zootecnia, Centro de Ciências Agrárias, Universidade Federal do Ceará, Fortaleza, CE, 60356-000, Brazil
| | - Alberto Galindo-Cardona
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Ecología Regional (IER-CONICET), Tucumán, Argentina
| | - Nancy Garcia
- Centro Pyme Adeneu, Agencia de desarrollo económico del Neuquen, Neuquén, Argentina
| | - Paula M Garrido
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro de Investigaciones en Abejas Sociales (CIAS)-Instituto de Investigación en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Centro Científico Tecnológico Mar del Plata-CONICET, Centro de Asociación Simple CIC PBA, Estación Costera J.J. Nágera, Ruta Provincial 11 Km 5395 Playa Chapadmalal (7603) Mar del Plata, Buenos Aires, Argentina
| | - Tugrul Giray
- Department of Biology, University of Puerto Rico Rio Piedras Campus and Institute of Neurobiology, Medical Sciences Campus, San Juan, Puerto Rico
| | - Lionel Segui Gonçalves
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Dep. de Ciências Animais, Universidade Federal Rural do Semi-Arido, Mossoró, RN, Brazil
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Prêto, SP, Brazil
| | - Lucas Landi
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Departamento de Producción Animal, Universidad de Buenos Aires, Facultad de Agronomía, Buenos Aires, Argentina
- INTA, Centro de Investigación en Recursos Naturales, Instituto de Recursos Biológicos, Buenos Aires, Argentina
| | | | - Silvia Inés Martinez
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Universidad Nacional de Río Negro, Sede Andina, Escuela de Producción Agropecuaria y Tecnología Ambiental, El Bolsón, Argentina
| | - Pablo Joaquín Moja
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Estación Experimental Agropecuaria INTA Cuenca del Salado, Agencia de Extension Rural Chascomus, Buenos Aires, Argentina
| | - Ana Molineri
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria- Rafaela, Ruta 34 Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - Pablo Fernando Müller
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Director de Producción Apícola del Ministerio del Agro y de la Producción de la Provincia de Misiones. Centro de Investigación Apícola y Meliponícola del Instituto Superior del Profesorado en Ciencias Agrarias y Protección Ambiental (PROCAyPA), Misiones, Argentina
| | - Enrique Nogueira
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Unidad Académica de Animales de Granja, Facultad de Veterinaria, Universidad de la República, Montevideo, Uruguay
| | - Adriana Pacini
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Investigación de La Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria- Rafaela, Ruta 34 Km 227, 2300, Rafaela, Santa Fe, Argentina
| | - María Alejandra Palacio
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS) Balcarce (INTA-CONICET), RN 226 km 73.5,7620, Balcarce, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (FCA-UNMdP), Ruta 226km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Guiomar Nates Parra
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Laboratorio de Investigaciones en Abejas, Departamento de biología, Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá, Colombia
| | - Alejandro Parra-H
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Grupo de Investigaciones para la Gestión y Conservación de Servicios Ecosistémicos, Corporación para la Gestión de Servicios Ecosistémicos, Polinización y Abejas-SEPyA, Bogotá D.C., Colombia
| | - Kátia Peres Gramacho
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Dep. de Ciências Animais, Universidade Federal Rural do Semi-Arido, Mossoró, RN, Brazil
| | - Eleazar Pérez Castro
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Facultad de Zootecnia, Universidad Nacional del Centro del Perú, Av. Mariscal Castilla N° 3909, El Tambo, Huancayo, Perú
| | - Carmen Sílvia Soares Pires
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Avenida W5 Norte (Final), Caixa Postal 02372, Brasília, DF, 70770-917, Brazil
| | - Francisco J Reynaldi
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro de Microbiología Básica y Aplicada (CEMIBA), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata (UNLP) y Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata (CCT-CONICET, La Plata), La Plata, Buenos Aires, Argentina
| | - Anais Rodríguez Luis
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro de Investigaciones Apícolas, Havana, Cuba
| | - Carmen Rossini
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | | | - Estela Santos
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Facultad de Ciencias, Iguá 4225, 11400, Montevideo, Uruguay
| | - Alejandra Scannapieco
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Instituto de Genética E. A. Favret, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires, Argentina
| | - Yamandú Mendoza Spina
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Sección Apicultura, INIA La Estanzuela, Colonia, Uruguay
| | - José María Tapia González
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro de Investigaciones en Abejas (CIABE), Centro Universitario del Sur, Universidad de Guadalajara, Enrique Arreola Silva 883, Cd., Guzman, JAL, Mexico
| | - Andrés Marcelo Vargas Fernández
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Facultad de Ciencias Veterinarias y Pecuarias, Beeing Company, Departamento Ciencias Universidad de Chile, Avda. Santa Rosa 11315, La Pintana, 882080, Santiago, Chile
| | - Blandina Felipe Viana
- Instituto de Biologia, Universidade Federal da Bahia, Campus de Ondina, Rua Barão de Geremoabo s/n, Salvador, BA, 40170-210, Brazil
| | - Lorena Vieli
- Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco, Chile
| | - Carlos Ariel Yadró García
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Centro de Investigaciones Apícolas, Havana, Cuba
| | - Karina Antúnez
- Sociedad Latinoamericana de Investigación en Abejas (SOLATINA), Montevideo, Uruguay
- Lab. de Microbiología y Salud de las Abejas, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
5
|
Kagiali E, Kokoli M, Vardakas P, Goras G, Hatjina F, Patalano S. Four-Year Overview of Winter Colony Losses in Greece: Citizen Science Evidence That Transitioning to Organic Beekeeping Practices Reduces Colony Losses. INSECTS 2023; 14:193. [PMID: 36835762 PMCID: PMC9963079 DOI: 10.3390/insects14020193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The honey bee is one of the most important pollinators with a close relationship to humans. The questionnaire from the non-governmental association "COLOSS", answered by beekeepers around the world, is a valuable tool for monitoring and analyzing factors involved in overwintering losses, as well as for understanding the evolution of the beekeeping sector over the years. Between 2018-2021, Greece's participation in this survey involved collecting data from 752 beekeepers and 81,903 hives, from almost the whole country, with a stable balance between professional/non-professional participants and hives, providing a solid representation of the beekeeping practices and winter losses during this period. The results of this study identify a transition towards more natural beekeeping practices concomitant with a significant decrease in winter losses (average losses in 2018: 22.3% and 2019: 24%, dropped in 2020: 14.4% and 2021: 15.3%). Indeed, some factors, such as the increased use of natural landscapes for honey production (from 66.7% usage in 2018 to 76.3% in 2021) and the reduction in the exclusive use of synthetic acaricides (from 24.7% usage in 2018 to 6.7% in 2021) seem to have a significant impact on hive survival. Although these correlations remain to be confirmed experimentally, our study shows that Greek beekeepers follow recommendations and policies toward more sustainable practices. In the future, these trends could be further analyzed and integrated into training programs to strengthen the cooperation and information exchange between citizens and science.
Collapse
Affiliation(s)
- Evangelia Kagiali
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Laboratory of Sericulture and Apiculture, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Maria Kokoli
- Department of Cell Biology and Biophysics, Faculty of Biology, University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Philippos Vardakas
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Department of Apiculture, Institute of Animal Science ELGO ‘DIMITRA’, 11145 Nea Moudania, Greece
| | - Georgios Goras
- Laboratory of Sericulture and Apiculture, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science ELGO ‘DIMITRA’, 11145 Nea Moudania, Greece
| | - Solenn Patalano
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Center (BSRC) “Alexander Fleming”, 16672 Vari, Greece
- Department of Apiculture, Institute of Animal Science ELGO ‘DIMITRA’, 11145 Nea Moudania, Greece
| |
Collapse
|
6
|
Hernandez J, Varennes Y, Aebi A, Dietemann V, Kretzschmar A. Agroecological measures in meadows promote honey bee colony development and winter survival. Ecosphere 2023. [DOI: 10.1002/ecs2.4396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- Julie Hernandez
- Laboratory of Soil Biodiversity Institute of Biology, University of Neuchâtel Neuchâtel Switzerland
- Swiss Bee Research Centre Agroscope Bern Switzerland
- Fondation Rurale Interjurassienne (FRI) Courtételle Switzerland
| | | | - Alexandre Aebi
- Laboratory of Soil Biodiversity Institute of Biology, University of Neuchâtel Neuchâtel Switzerland
- Institute of Anthropology University of Neuchâtel Neuchâtel Switzerland
| | - Vincent Dietemann
- Swiss Bee Research Centre Agroscope Bern Switzerland
- Department of Ecology and Evolution Biophore, UNIL‐Sorge, University of Lausanne Lausanne Switzerland
| | - André Kretzschmar
- INRAE, Unité Biostatistique et Processus Spatiaux, Site Agroparc Avignon France
| |
Collapse
|
7
|
Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico. Sci Rep 2023; 13:1017. [PMID: 36653357 PMCID: PMC9849204 DOI: 10.1038/s41598-022-25469-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/30/2022] [Indexed: 01/19/2023] Open
Abstract
Honey bee decline is currently one of the world's most serious environmental issues, and scientists, governments, and producers have generated interest in understanding its causes and consequences in honey production and food supply. Mexico is one of the world's top honey producers, however, the honey bee population's status has not been documented to date. Based on 32 years of data from beekeeping, we make a country-level assessment of honey bee colony trends in Mexico. We use generalized additive mixed models to measure the associations between the percent change in honey bee hives and the percent change in honey yield per hive in relation to land-use, climate, and socioeconomic conditions. Despite the fact that the average annual yield per hive increased from 1980 to 2012, we detected a significant decline in the percent change in the number of honey bee hives across the time period studied. We also found a relationship between climatic conditions and agricultural land use, with agriculture increases and high temperatures producing a decrease in the percent change in honey yield. We found a relationship between a reduction in the temperature range (the difference between maximum and minimum temperatures) and a decrease in the percent change in the number of hives, while socioeconomic factors related to poverty levels have an impact on the number of hives and honey yields. Although long-term declines in hive numbers are not correlated with poverty levels, socioeconomic factors in states with high and medium poverty levels limit the increase in honey yield per hive. These results provide evidence that land-use changes, unfavorable climatic conditions, political, and socioeconomic factors are partially responsible for the reductions in the percent change in honey bee hives in Mexico.
Collapse
|
8
|
Correlation of Climatic Factors with the Weight of an Apis mellifera Beehive. SUSTAINABILITY 2022. [DOI: 10.3390/su14095302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The bee Apis mellifera plays an important role in the balance of the ecosystem. New technologies are used for the evaluation of hives, and to determine the quality of the honey and the productivity of the hive. Climatic factors, management, flowering, and other factors affect the weight of a hive. The objective of this research was to explain the interrelationship between climatic variables and the weight of an Apis mellifera beehive using a vector autoregressive (VAR) model. The adjustment of a VAR model was carried out with seven climatic variables, and hive weight and its lags, by adjusting an equation that represents the studied hive considering all interrelationships. It was proven that the VAR (1) model can effectively capture the interrelationship among variables. The impulse response function and the variance decomposition show that the variable that most influences the hive weight, during the initial period, is the minimum dew point, which represents 5.33% of the variance. Among the variables analyzed, the one that most impacted the hive weight, after 20 days, was the maximum temperature, representing 7.50% of the variance. This study proves that it is possible to apply econometric statistical models to bee data and to relate them to climatic data, contributing significantly to the area of applied and bee statistics.
Collapse
|
9
|
Malagnini V, Cappellari A, Marini L, Zanotelli L, Zorer R, Angeli G, Ioriatti C, Fontana P. Seasonality and Landscape Composition Drive the Diversity of Pollen Collected by Managed Honey Bees. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.865368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The western honey bee, Apis mellifera, is the most important and widespread managed pollinator species. Honey bee diet is based on nectar and pollen, and pollen diversity and composition, in particular, affect colony health and fitness. As landscape composition is strongly linked to floral resource heterogeneity, it could influence the resource intake of honey bees. This work aimed to explore how the composition of pollen collected by honey bees was modulated by seasonality and landscape composition heterogeneity in a mountainous cultivated area of Northern Italy. We selected 13 locations, and at each location, we placed two honey bee colonies from which we collected pollen samples every month during the whole flowering season for two consecutive years. We then analyzed pollen samples in the laboratory and determined the Shannon diversity index of each pollen sample and the temporal pollen taxon replacement. We extracted the cover of the main habitat types at three spatial scales and tested the effect of landscape diversity and composition using Principal Component Analysis. Honey bees foraged on a high number of floral resources, however, they mostly collected pollen from a small number of taxa, with pollen type composition changing throughout the flowering season. In early spring and late summer, most pollen grains were collected from a few plant species, while from May to August the number of collected pollen types was significantly higher. Landscape composition affected pollen diversity only at the end of the flowering season. While honey bees were able to collect highly diverse pollen throughout spring and summer regardless of landscape composition, in late summer, when pollen collected is fundamental for the overwintering of the colony and its development in the following season, semi-natural areas became crucial for honey bee foraging activities, with pollen diversity increasing with increasing percentages of semi-natural areas. Our research highlighted the importance for honey bees of certain seasonal resources and of semi-natural habitats at the end of the flowering season, which ensure the subsistence of their colonies throughout the year.
Collapse
|
10
|
de Graaf D, Bencsik M, De Smet L, Neumann P, Schoonman M, Sousa JP, Topping C, Verbeke W, Williams J, van Dooremalen C. B-GOOD: Giving Beekeeping Guidance by cOmputatiOnal-assisted Decision making. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e84129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A key to healthy beekeeping is the Health Status Index (HIS) inspired by EFSA’s Healthy-B toolbox which we will make fully operational, with the active collaboration of beekeepers, by facilitating the coordinated and harmonised flow of data from various sources and by testing and validating each component thoroughly. We envisage a step&#2;by-step expansion of participating apiaries, and will eventually cover all EU biogeographic regions. The key to a sustainable beekeeping is a better understanding of its socio-economics, particularly within local value chains, its relationship with bee health and the human-ecosystem equilibrium of the beekeeping sector and to implement these insights into the data processing and decision making. We will fully integrate socio-economic analyses, identify viable business models tailored to different contexts for European beekeeping and determine the carrying capacity of the landscape. In close cooperation with the EU Bee Partnership, an EU-wide bee health and management data platform and affiliated project website will be created to enable sharing of knowledge and learning between scientists and stakeholders within and outside the consortium. We will utilise and further expand the classification of the open source IT-application for digital beekeeping, BEEP, to streamline the flow of data related to beekeeping management, the beehive and its environment (landscape, agricultural practices, weather and climate) from various sources. The dynamic bee health and management data platform will allow us to identify correlative relationships among factors impacting the HSI, assess the risk of emerging pests and predators, and enable beekeepers to develop adaptive management strategies that account for local and EU-wide issues. Reinforcing and establishing, where necessary, new multi-actor networks of collaboration will engender a lasting learning and innovation system to ensure social&#2;ecological resilient and sustainable beekeeping.
Collapse
|
11
|
Becsi B, Formayer H, Brodschneider R. A biophysical approach to assess weather impacts on honey bee colony winter mortality. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210618. [PMID: 34631120 PMCID: PMC8483266 DOI: 10.1098/rsos.210618] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/02/2021] [Indexed: 06/02/2023]
Abstract
The western honey bee (Apis mellifera) is one of the most important insects kept by humans, but high colony losses are reported around the world. While the effects of general climatic conditions on colony winter mortality were already demonstrated, no study has investigated specific weather conditions linked to biophysical processes governing colony vitality. Here, we quantify the comparative relevance of four such processes that co-determine the colonies' fitness for wintering during the annual hive management cycle, using a 10-year dataset of winter colony mortality in Austria that includes 266 378 bee colonies. We formulate four process-based hypotheses for wintering success and operationalize them with weather indicators. The empirical data is used to fit simple and multiple linear regression models on different geographical scales. The results show that approximately 20% of winter mortality variability can be explained by the analysed weather conditions, and that it is most sensitive to the duration of extreme cold spells in mid and late winter. Our approach shows the potential of developing weather indicators based on biophysical processes and discusses the way forward for applying them in climate change studies.
Collapse
Affiliation(s)
- Benedikt Becsi
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Herbert Formayer
- Institute of Meteorology and Climatology, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| | - Robert Brodschneider
- Department of Sustainable Agricultural Systems, Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
- Institute of Biology, University of Graz, Universitaetsplatz 2/I, 8010 Graz, Austria
| |
Collapse
|
12
|
Galindo-Cardona A, Scannapieco AC, Russo R, Escalante K, Geria M, Lepori N, Ayup MM, Muntaabski I, Liendo MC, Landi L, Giray T, Monmany-Garzia AC. Varroa destructor Parasitism and Genetic Variability at Honey Bee (Apis mellifera) Drone Congregation Areas and Their Associations With Environmental Variables in Argentina. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.590345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
13
|
Abi‐Akar F, Schmolke A, Roy C, Galic N, Hinarejos S. Simulating Honey Bee Large-Scale Colony Feeding Studies Using the BEEHAVE Model-Part II: Analysis of Overwintering Outcomes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2286-2297. [PMID: 32776582 PMCID: PMC7702061 DOI: 10.1002/etc.4844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 07/31/2020] [Indexed: 05/30/2023]
Abstract
Large-scale colony feeding studies (LSCFSs) aim to assess potential pesticide exposure to and effects on honey bees at the colony level. However, these studies are sometimes affected by high losses of control colonies, indicating that other stressors may impact colonies and confound the analysis of potential pesticide impacts. We assessed the study design and environmental conditions experienced by the untreated control colonies across 7 LSCFSs conducted in North Carolina (USA). Overwintering success differed considerably among the studies, as did their initial colony conditions, amount and timing of sugar feeding, landscape composition, and weather. To assess the effects of these drivers on control colonies' overwintering success, we applied the mechanistic colony model BEEHAVE. Sugar feedings and initial status of the simulated colonies were more important for fall colony condition than were landscape and weather. Colonies that had larger colony sizes and honey stores in the fall were those that began with larger honey stores, were provided more sugar, and had supplemental feedings before the fall. This information can be used to inform the standardization of a study design, which can increase the likelihood of overwintering survival of controls and help ensure that LSCFSs are comparable. Our study demonstrates how a mechanistic model can be used to inform study designs for higher tier effects studies. Environ Toxicol Chem 2020;39:2286-2297. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | | | - Nika Galic
- Syngenta Crop Protection, GreensboroNorth CarolinaUSA
| | | |
Collapse
|
14
|
Austrian COLOSS Survey of Honey Bee Colony Winter Losses 2018/19 and Analysis of Hive Management Practices. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030099] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We conducted a citizen science survey on overwinter honey bee colony losses in Austria. A total of 1534 beekeepers with 33,651 colonies reported valid loss rates. The total winter loss rate for Austria was 15.2% (95% confidence interval: 14.4–16.1%). Young queens showed a positive effect on colony survival and queen-related losses. Observed queen problems during the season increased the probability of losing colonies to unsolvable queen problems. A notable number of bees with crippled wings during the foraging season resulted in high losses and could serve as an alarm signal for beekeepers. Migratory beekeepers and large operations had lower loss rates than smaller ones. Additionally, we investigated the impact of several hive management practices. Most of them had no significant effect on winter mortality, but purchasing wax from outside the own operation was associated with higher loss rates. Colonies that reported foraging on maize and late catch crop fields or collecting melezitose exhibited higher loss rates. The most common Varroa destructor control methods were a combination of long-term formic acid treatment in summer and oxalic acid trickling in winter. Biotechnical methods in summer had a favourable effect on colony survival.
Collapse
|
15
|
Morawetz L, Köglberger H, Griesbacher A, Derakhshifar I, Crailsheim K, Brodschneider R, Moosbeckhofer R. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PLoS One 2019; 14:e0219293. [PMID: 31287830 PMCID: PMC6615611 DOI: 10.1371/journal.pone.0219293] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Austrian beekeepers frequently suffered severe colony losses during the last decade similar to trends all over Europe. This first surveillance study aimed to describe the health status of Austrian bee colonies and to analyze the reasons for losses for both the summer and winter season in Austria. In this study 189 apiaries all over Austria were selected using a stratified random sampling approach and inspected three times between July 2015 and spring 2016 by trained bee inspectors. The inspectors made interviews with the beekeepers about their beekeeping practice and the history of the involved colonies. They inspected a total of 1596 colonies for symptoms of nine bee pests and diseases (four of them notifiable diseases) and took bee samples for varroa mite infestation analysis. The most frequently detected diseases were three brood diseases: Varroosis, Chalkbrood and Sacbrood. The notifiable bee pests Aethina tumida and Tropilaelaps spp. were not detected. During the study period 10.8% of the 1596 observed colonies died. Winter proved to be the most critical season, in which 75% of the reported colony losses happened. Risks for suffering summer losses increased significantly, when colonies were weak in July, had queen problems or a high varroa mite infestation level on bees in July. Risks for suffering winter losses increased significantly, when the colonies had a high varroa mite infestation level on bees in September, were weak in September, had a queen older than one year or the beekeeper had few years of beekeeping experience. However, the effect of a high varroa mite infestation level in September had by far the greatest potential to raise the winter losses compared to the other significant factors.
Collapse
Affiliation(s)
- Linde Morawetz
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
- * E-mail:
| | - Hemma Köglberger
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
| | - Antonia Griesbacher
- Department for Statistics and Analytical Epidemiology, Division for Data, Statistics & Risk Assessment, Austrian Agency for Health and Food Safety Ltd., Graz, Styria, Austria
| | - Irmgard Derakhshifar
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
| | - Karl Crailsheim
- Institute of Biology, University of Graz, Graz, Styria, Austria
| | | | - Rudolf Moosbeckhofer
- Department for Apiculture and Bee Protection, Institute for Seed and Propagating Material, Phytosanitary Service and Apiculture, Division for Food Security, Austrian Agency for Health and Food Safety Ltd., Vienna, Vienna, Austria
| |
Collapse
|