1
|
Xu N, Shi L, Pei X, Zhang W, Chen J, Han Z, Samorì P, Wang J, Wang P, Shi Y, Li S. Oxidation kinetics and non-Marcusian charge transfer in dimensionally confined semiconductors. Nat Commun 2023; 14:4074. [PMID: 37429836 DOI: 10.1038/s41467-023-39781-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
Electrochemical reactions represent essential processes in fundamental chemistry that foster a wide range of applications. Although most electrochemical reactions in bulk substances can be well described by the classical Marcus-Gerischer charge transfer theory, the realistic reaction character and mechanism in dimensionally confined systems remain unknown. Here, we report the multiparametric survey on the kinetics of lateral photooxidation in structurally identical WS2 and MoS2 monolayers, where electrochemical oxidation occurs at the atomically thin monolayer edges. The oxidation rate is correlated quantitatively with various crystallographic and environmental parameters, including the density of reactive sites, humidity, temperature, and illumination fluence. In particular, we observe distinctive reaction barriers of 1.4 and 0.9 eV for the two structurally identical semiconductors and uncover an unusual non-Marcusian charge transfer mechanism in these dimensionally confined monolayers due to the limit in reactant supplies. A scenario of band bending is proposed to explain the discrepancy in reaction barriers. These results add important knowledge into the fundamental electrochemical reaction theory in low-dimensional systems.
Collapse
Affiliation(s)
- Ning Xu
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Li Shi
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xudong Pei
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Weiyang Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Jian Chen
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zheng Han
- Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, F-67000, Strasbourg, France
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China.
- Suzhou Laboratory, Suzhou, 215125, China.
| | - Peng Wang
- Department of Physics, University of Warwick, CV4 7AL, Coventry, UK.
| | - Yi Shi
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Songlin Li
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
2
|
Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomater 2023; 157:24-48. [PMID: 36584801 DOI: 10.1016/j.actbio.2022.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Translocation of extrinsic molecules into living cells is becoming increasingly crucial in biological studies ranging from cell engineering to biomedical applications. The concerns regarding biosafety and immunogenicity for conventional vectors and physical methods yet challenge effective intracellular delivery. Here, we begin with an overview of approaches for trans-membrane delivery up to now. These methods are featured with a relatively mature application but usually encounter low cell survival. Our review then proposes an advanced application for nanomaterial-sensitized photoporation triggered with a laser. We cover the mechanisms, procedures, and outcomes of photoporation-induced intracellular delivery with a highlight on its versatility to different living cells. We hope the review discussed here encourages researchers to further improvement and applications for photoporation-induced intracellular delivery. STATEMENT OF SIGNIFICANCE.
Collapse
|
3
|
Hussain M, Ali A, Jaffery SHA, Aftab S, Abbas S, Riaz M, Bach TPA, Raza M, Iqbal J, Hussain S, Sofer Z, Jung J. Self-biased wavelength selective photodetection in an n-IGZO/p-GeSe heterostructure by polarity flipping. NANOSCALE 2022; 14:10910-10917. [PMID: 35851391 DOI: 10.1039/d2nr01013e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Transparent semiconductor oxides with two-dimensional (2D) heterostructures have been extensively studied as new materials for thin-film transistors and photosensors due to their remarkable photovoltaic characteristics, making them useful for newly developed optoelectronics. Here we demonstrate the fabrication and characterization of an ITO/n-IGZO/p-GeSe transparent selective wavelength photodetector. The wavelength-dependent photovoltaic behavior of the n-IGZO/p-GeSe heterostructure under UV-Visible laser light shifts the I-V curves down with positive Voc and negative Isc values of about 0.12 V and -49 nA and 0.09 V and -17 nA, respectively. Interestingly, when an NIR laser irradiated the device, the I-V curves shifted up with negative Voc and positive Isc values of about -0.11 V and 45 nA, respectively. This behavior is attributed to the free carrier concentration induced by photogenerated carriers across the device at different points that varied with the wavelength-dependent photon absorption. Consequently, the direction of the electric field polarity across the junction can be flipped. This study demonstrates a zero-bias near-infrared (NIR) photodetector with a high photoresponsivity of 538.9 mA W-1, a fast rise time of 25.2 ms, and a decay time of 25.08 ms. Furthermore, we observed a detectivity (D) of 8.4 × 109 Jones, a normalized photocurrent to dark current ratio (NPDR) of 2.8 × 1010 W-1, and a noise equivalent power (NEP) of 2.2 × 10-14 W Hz-1/2. Our strategy opens alternative possibilities for scalable, low-cost, multifunctional transparent near-infrared photosensors with selective wavelength photodetection.
Collapse
Affiliation(s)
- Muhammad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, Republic of Korea.
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Asif Ali
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, Republic of Korea.
| | - Syed Hassan Abbas Jaffery
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, Republic of Korea.
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, Republic of Korea
| | - Sohail Abbas
- Department of Electrical Engineering Riphah International University, Islamabad, Pakistan
| | - Muhammad Riaz
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, Republic of Korea.
| | - Thi Phuong Anh Bach
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, Republic of Korea.
| | - Muhammad Raza
- Department of Physics, Karakoram International University, Gilgit, Pakistan
| | - Javed Iqbal
- Department of Physics, Karakoram International University, Gilgit, Pakistan
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, Republic of Korea.
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jongwan Jung
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, 05006, Republic of Korea.
| |
Collapse
|
4
|
Brown PA, Kołacz J, Fischer SA, Spillmann CM, Gunlycke D. Insertion of the Liquid Crystal 5CB into Monovacancy Graphene. Molecules 2022; 27:1664. [PMID: 35268764 PMCID: PMC8911687 DOI: 10.3390/molecules27051664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/04/2022] Open
Abstract
Interfacial interactions between liquid crystal (LC) and two-dimensional (2D) materials provide a platform to facilitate novel optical and electronic material properties. These interactions are uniquely sensitive to the local energy landscape of the atomically thick 2D surface, which can be strongly influenced by defects that are introduced, either by design or as a byproduct of fabrication processes. Herein, we present density functional theory (DFT) calculations of the LC mesogen 4-cyan-4'-pentylbiphenyl (5CB) on graphene in the presence of a monovacancy (MV-G). We find that the monovacancy strengthens the binding of 5CB in the planar alignment and that the structure is lower in energy than the corresponding homeotropic structure. However, if the molecule is able to approach the monovacancy homeotropically, 5CB undergoes a chemical reaction, releasing 4.5 eV in the process. This reaction follows a step-by-step process gradually adding bonds, inserting the 5CB cyano group into MV-G. We conclude that this irreversible insertion reaction is likely spontaneous, potentially providing a new avenue for controlling both LC behavior and graphene properties.
Collapse
Affiliation(s)
- Paul A. Brown
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| | - Jakub Kołacz
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA; (J.K.); (C.M.S.)
| | - Sean A. Fischer
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| | - Christopher M. Spillmann
- Center for Bio/Molecular Science and Engineering, United States Naval Research Laboratory, Washington, DC 20375, USA; (J.K.); (C.M.S.)
| | - Daniel Gunlycke
- Chemistry Division, United States Naval Research Laboratory, Washington, DC 20375, USA; (P.A.B.); (S.A.F.)
| |
Collapse
|
5
|
Hussain M, Jaffery SHA, Ali A, Nguyen CD, Aftab S, Riaz M, Abbas S, Hussain S, Seo Y, Jung J. NIR self-powered photodetection and gate tunable rectification behavior in 2D GeSe/MoSe 2 heterojunction diode. Sci Rep 2021; 11:3688. [PMID: 33574562 PMCID: PMC7878902 DOI: 10.1038/s41598-021-83187-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Two-dimensional (2D) heterostructure with atomically sharp interface holds promise for future electronics and optoelectronics because of their multi-functionalities. Here we demonstrate gate-tunable rectifying behavior and self-powered photovoltaic characteristics of novel p-GeSe/n-MoSe2 van der waal heterojunction (vdW HJ). A substantial increase in rectification behavior was observed when the devices were subjected to gate bias. The highest rectification of ~ 1 × 104 was obtained at Vg = - 40 V. Remarkable rectification behavior of the p-n diode is solely attributed to the sharp interface between metal and GeSe/MoSe2. The device exhibits a high photoresponse towards NIR (850 nm). A high photoresponsivity of 465 mAW-1, an excellent EQE of 670%, a fast rise time of 180 ms, and a decay time of 360 ms were obtained. Furthermore, the diode exhibits detectivity (D) of 7.3 × 109 Jones, the normalized photocurrent to the dark current ratio (NPDR) of 1.9 × 1010 W-1, and the noise equivalent power (NEP) of 1.22 × 10-13 WHz-1/2. The strong light-matter interaction stipulates that the GeSe/MoSe2 diode may open new realms in multi-functional electronics and optoelectronics applications.
Collapse
Grants
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- 20172010106080 The Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry and Energy of the Republic of Korea
- This research was supported by the Nano Material Technology Development Program, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, and the Ministry of science, ICT
Collapse
Affiliation(s)
- Muhammad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea
| | - Syed Hassan Abbas Jaffery
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea
| | - Asif Ali
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea
| | - Cong Dinh Nguyen
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea
| | - Sikandar Aftab
- Department of Engineering, Simon Faster University, Burnaby, Canada
| | - Muhammad Riaz
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea
| | - Sohail Abbas
- Faculty of Engineering and Applied Sciences, Ripah International University, Islamabad, Pakistan
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea
| | - Yongho Seo
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea
| | - Jongwan Jung
- Department of Nanotechnology and Advanced Materials Engineering, and HMC, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
6
|
Brown PA, Fischer SA, Kołacz J, Spillmann C, Gunlycke D. Thermotropic liquid crystal (5CB) on two-dimensional materials. Phys Rev E 2020; 100:062701. [PMID: 31962509 DOI: 10.1103/physreve.100.062701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 11/07/2022]
Abstract
We present ground-state electronic properties of the liquid crystal 4-cyano-4^{'}-pentylbiphenyl (5CB) on the two-dimensional materials monolayer graphene, hexagonal boron nitride, and phosphorene. Our density functional theory results show that the physisorption is robust on all surfaces with the strongest binding of 5CB on phosphorene. All surfaces exhibit flexural distortion, especially monolayer graphene and hexagonal boron nitride. While we find type-I alignment for all three substrates, meaning the Fermi level of the system is in the HOMO-LUMO gap of 5CB, the band structures are qualitatively different. Unlike for graphene and phosphorene, the HOMO-LUMO of 5CB appear as localized states within the band gap of boron nitride. In addition, we find that the valence band for boron nitride is sensitive to the orientation of 5CB relative to the surface. The qualitatively different band structures demonstrate the importance of substrate selection for tailoring the electronic and optoelectronic properties of nematic liquid crystals on two-dimensional materials.
Collapse
Affiliation(s)
- Paul A Brown
- ASEE Post-Doctoral Fellow at the U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Sean A Fischer
- U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Jakub Kołacz
- U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | | | | |
Collapse
|