1
|
Bhassu S, Shama M, Tiruvayipati S, Soo TCC, Ahmed N, Yusoff K. Microbes and pathogens associated with shrimps - implications and review of possible control strategies. FRONTIERS IN MARINE SCIENCE 2024; 11:1397708. [PMID: 39498300 PMCID: PMC11534305 DOI: 10.3389/fmars.2024.1397708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Shrimp aquaculture has been growing rapidly over the last three decades. However, high-density aquaculture together with environmental degradation has led to increased incidence of shrimp infections. Thus, devising and implementing effective strategies to predict, diagnose and control the spread of infections of shrimps are crucial, also to ensure biosecurity and sustainability of the food industry. With the recent advancements in biotechnology, more attention has been given to develop novel promising therapeutic tools with potential to prevent disease occurrence and better manage shrimp health. Furthermore, owing to the advent of the next-generation sequencing (NGS) platforms, it has become possible to analyze the genetic basis of susceptibility or resistance of different stocks of shrimps to infections and how sustainable aquaculture could be made free of shrimp diseases.
Collapse
Affiliation(s)
- Subha Bhassu
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| | - Maryam Shama
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Suma Tiruvayipati
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Chiew Christie Soo
- Animal Genetics and Genome Evolutionary Lab (AGAGEL), Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana, India
| | - Khatijah Yusoff
- Malaysian Genome Vaccine Institute, National Institute Biotechnology Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Olasard P, Suksri P, Taneerat C, Rungrassamee W, Sathapondecha P. In silico identification and functional study of long non-coding RNA involved in acute hepatopancreatic necrosis disease caused by Vibrio parahaemolyticus infection in white shrimp, Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109768. [PMID: 39013534 DOI: 10.1016/j.fsi.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) caused by toxin-producing Vibrio parahaemolyticus (VpAHPND) has severely affected shrimp production. Long non-coding RNA (lncRNA), a regulatory non-coding RNA, which can play important function in shrimp disease responses. This study aimed to identify and investigate the role of lncRNA involved in VpAHPND infection in Pacific white shrimp, Litopenaeus vannamei. From a total of 368,736 de novo assembled transcripts, 67,559 were identified as putative lncRNAs, and only 72 putative lncRNAs showed differential expression between VpAHPND-infected and normal shrimp. The six candidate lncRNAs were validated for their expression profiles during VpAHPND infection and tissue distribution using RT-qPCR. The role of lnc2088 in response to VpAHPND infection was investigated through RNA interference. The result indicated that the suppression of lnc2088 expression led to an increase in shrimp mortality after VpAHPND infection. To explore the set of genes involved in lnc2088 knockdown, RNA sequencing was performed. A total of 275 differentially expressed transcripts were identified in the hepatopancreas of lnc2088 knockdown shrimp. The expression profiles of five candidate metabolic and immune-related genes were validated in lnc2088 knockdown and VpAHPND-infected shrimp. The result showed that the expression of ChiNAG was significantly increased, while that of NCBP1, WIPF2, and NFKB1 was significantly downregulated in ds2088-injected shrimp. Additionally, the expression of NFKB1, NCBP1 and WIPF2 was significantly increased, whereas that of ChiNAG and CUL5 were significantly decreased after infection with VpAHPND. Our work identified putative lncRNA profiles in L. vannamei in response to VpAHPND infection and investigated the role of lncRNA in shrimp immunity.
Collapse
Affiliation(s)
- Praewrung Olasard
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Phassorn Suksri
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Chanikan Taneerat
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wanilada Rungrassamee
- Biosensing and Bioprospectiing Technology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
3
|
Wang T, Bachvaroff T, Chung JS. Identifying the genes involved in the egg-carrying ovigerous hair development of the female blue crab Callinectes sapidus: transcriptomic and genomic expression analyses. BMC Genomics 2023; 24:764. [PMID: 38082257 PMCID: PMC10712104 DOI: 10.1186/s12864-023-09862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Crustacean female sex hormone (CFSH) controls gradually developing adult female-specific morphological features essential for mating and brood care. Specifically, ovigerous hairs are developed during the prepuberty molt cycle of the blue crab Callinectes sapidus that are essential for carrying the eggs until they finish development. Reduced CFSH transcripts by CFSH-dsRNA injections result in fewer and shorter ovigerous hairs than the control. This study aimed to identify the specific genes responsible for ovigerous hair formation using transcriptomic, genomic and expression analyses of the ovigerous setae at three stages: prepuberty at early (OE) and late premolt (OL), and adult (AO) stages. RESULTS The de novo Trinity assembly on filtered sequence reads produced 96,684 Trinity genes and 124,128 transcripts with an N50 of 1,615 bp. About 27.3% of the assembled Trinity genes are annotated to the public protein sequence databases (i.e., NR, Swiss-Prot, COG, KEGG, and GO databases). The OE vs. OL, OL vs. AO, and OE vs. AO comparisons resulted in 6,547, 7,793, and 7,481 differentially expressed genes, respectively, at a log2-fold difference. Specifically, the genes involved in the Wnt signaling and cell cycle pathways are positively associated with ovigerous hair development. Moreover, the transcripts of ten cuticle protein genes containing chitin-binding domains are most significantly changed by transcriptomic analysis and RT-qPCR assays, which shows a molt-stage specific, down-up-down mode across the OE-OL-AO stages. Furthermore, the expression of the cuticle genes with the chitin-binding domain, Rebers and Riddiford domain (RR)-1 appears at early premolt, followed by RR-2 at late premolt stage. Mapping these 10 cuticle protein sequences to the C. sapidus genome reveals that two scaffolds with a 549.5Kb region and 35 with a 1.19 Mb region harbor 21 RR1 and 20 RR2 cuticle protein genes, respectively. With these findings, a putative mode of CFSH action in decapod crustaceans is proposed. CONCLUSIONS The present study describes a first step in understanding the mechanism underlying ovigerous hair formation in C. sapidus at the molecular level. Overall, demonstrating the first transcriptome analysis of crustacean ovigerous setae, our results may facilitate future studies into the decapod female reproduction belonging to the suborder Pleocyemata.
Collapse
Affiliation(s)
- Tao Wang
- Department of Marine Biotechnology & Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, 21202, USA
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA
| | - J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, 21202, USA.
| |
Collapse
|
4
|
Wikumpriya GC, Prabhatha MWS, Lee J, Kim CH. Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture. Genes (Basel) 2023; 14:1682. [PMID: 37761822 PMCID: PMC10531180 DOI: 10.3390/genes14091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaculture assumes a pivotal role in meeting the escalating global food demand, and shrimp farming, in particular, holds a significant role in the global economy and food security, providing a rich source of nutrients for human consumption. Nonetheless, the industry faces formidable challenges, primarily attributed to disease outbreaks and the diminishing efficacy of conventional disease management approaches, such as antibiotic usage. Consequently, there is an urgent imperative to explore alternative strategies to ensure the sustainability of the industry. In this context, the field of epigenetics emerges as a promising avenue for combating infectious diseases in shrimp aquaculture. Epigenetic modulations entail chemical alterations in DNA and proteins, orchestrating gene expression patterns without modifying the underlying DNA sequence through DNA methylation, histone modifications, and non-coding RNA molecules. Utilizing epigenetic mechanisms presents an opportunity to enhance immune gene expression and bolster disease resistance in shrimp, thereby contributing to disease management strategies and optimizing shrimp health and productivity. Additionally, the concept of epigenetic inheritability in marine animals holds immense potential for the future of the shrimp farming industry. To this end, this comprehensive review thoroughly explores the dynamics of epigenetic modulations in shrimp aquaculture, with a particular emphasis on its pivotal role in disease management. It conveys the significance of harnessing advantageous epigenetic changes to ensure the long-term viability of shrimp farming while deliberating on the potential consequences of these interventions. Overall, this appraisal highlights the promising trajectory of epigenetic applications, propelling the field toward strengthening sustainability in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | - Chan-Hee Kim
- Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea (M.W.S.P.); (J.L.)
| |
Collapse
|
5
|
DNA double-strand break repair machinery in Penaeid crustaceans: A focus on the Non-Homologous End-Joining pathway. Comp Biochem Physiol B Biochem Mol Biol 2023; 264:110803. [DOI: 10.1016/j.cbpb.2022.110803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022]
|
6
|
Zhan F, Li Y, Shi F, Lu Z, Yang M, Li Q, Lin L, Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes reveals in-depth insights into the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108533. [PMID: 36639067 DOI: 10.1016/j.fsi.2023.108533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Macrobrachium rosenbergii as one of the common freshwater prawn species in Southeast Asia, which breeding industry is seriously threatened by vibriosis and causes high mortality. In this study, the RNA-seq was employed for assessing the M. rosenbergii hemocytes transcriptomes following Vibrio parahaemolyticus challenge. After challenge for 6 h (h), there were overall 1849 DEGs or differentially expressed genes, including 1542 up-regulated and 307 down-regulated genes, and there was a total of 1048 DEGs, including 510 up-regulated genes and 538 down-regulated genes, after challenge for 12 h. Mitogen-activated protein kinase (MAPK) immune-related pathways, Toll, immune deficiency (IMD), and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) were among the immune pathways where a lot of the DEGs were connected. The expression patterns of 18 chosen immune-related genes were examined utilizing qRT-PCR or quantitative real-time polymerase chain reaction, which revealed that the V. parahaemolyticus infection activated the M. rosenbergii's immune response. Permutational multivariate analysis of variance (PERMANOVA) showed that V. parahaemolyticus infection modulated immune regulation and apoptosis pathways. The gathered information provided new insight into M. rosenbergii's immunity and suggested a novel approach to fight against bacterial infection.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Yanan Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Zhijie Lu
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
7
|
Cruz-Flores R, Andrade TP, Mai HN, Alenton RRR, Dhar AK. Identification of a Novel Solinvivirus with Nuclear Localization Associated with Mass Mortalities in Cultured Whiteleg Shrimp ( Penaeus vannamei). Viruses 2022; 14:v14102220. [PMID: 36298775 PMCID: PMC9610163 DOI: 10.3390/v14102220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
The emergence and spread of disease-causing viruses in shrimp aquaculture is not uncommon. Since 2016, unusual mortalities have been affecting the Brazilian shrimp industry and we have associated these unusual mortalities with a novel variant of infectious myonecrosis virus (IMNV). The transcriptome analysis of these diseased shrimp showed an additional divergent viral sequence that we have assigned to the family Solinviviridae. The novel virus has been tentatively termed Penaeus vannamei solinvivirus (PvSV) (GenBank accession: OP265432). The full-length genome of the PvSV is 10.44 kb (excluding the poly A tail) and codes for a polyprotein of 3326 aa. Five conserved domains coding for a helicase, RdRp, calicivirus coat protein, G-patch and tegument protein were identified. The genome organization of the PvSV is similar to other (Nylan deria fulva virus 1) solinvivirus. A unique feature of this virus that differs from other members of the Solinviviridae is the presence of putative nuclear localization signals. The tissue tropism of this virus is wide, infecting cells of the hepatopancreas, gastrointestinal tract, lymphoid organ and muscle tissue. Another unique feature is that it is the only RNA virus of penaeid shrimp that shows a nuclear localization by in situ hybridization. The PvSV has a wide distribution in Brazil and has been found in the states of Maranhão State (Perizes de Baixo), Piaui State (Mexeriqueira), Ceará State (Camocim, Jaguaruana, Aracati and Alto Santo) and Pará State where it has been detected in coinfections with IMNV. The diagnostic methods developed here (real-time RT-PCR and in situ hybridization) are effective for the detection of the pathogen and should be employed to limit its spread. Furthermore, the identification of the PvSV shows the increasing host range of the relatively new family Solinviviridae.
Collapse
Affiliation(s)
- Roberto Cruz-Flores
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada 22860, Baja California, Mexico
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Thales P.D. Andrade
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Laboratório de Diagnóstico de Enfermidades de Crustáceos, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, 1000 Tirirical, São Luis 65055-970, MA, Brazil
| | - Hung N. Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Rod Russel R. Alenton
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
| | - Arun K. Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 85721, USA
- Correspondence:
| |
Collapse
|
8
|
Huerlimann R, Cowley JA, Wade NM, Wang Y, Kasinadhuni N, Chan CKK, Jabbari JS, Siemering K, Gordon L, Tinning M, Montenegro JD, Maes GE, Sellars MJ, Coman GJ, McWilliam S, Zenger KR, Khatkar MS, Raadsma HW, Donovan D, Krishna G, Jerry DR. Genome assembly of the Australian black tiger shrimp (Penaeus monodon) reveals a novel fragmented IHHNV EVE sequence. G3 (BETHESDA, MD.) 2022; 12:6526390. [PMID: 35143647 PMCID: PMC8982415 DOI: 10.1093/g3journal/jkac034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/02/2022] [Indexed: 01/08/2023]
Abstract
Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.
Collapse
Affiliation(s)
- Roger Huerlimann
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Jeff A Cowley
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Nicholas M Wade
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Yinan Wang
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Naga Kasinadhuni
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Chon-Kit Kenneth Chan
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Jafar S Jabbari
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kirby Siemering
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Lavinia Gordon
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Matthew Tinning
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Juan D Montenegro
- Australian Genome Research Facility Ltd, Level 13, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Laboratory of Biodiversity and Evolutionary Genomics, Biogenomics-consultancy, KU Leuven, Leuven 3000, Belgium.,Center for Human Genetics, UZ Leuven- Genomics Core, KU Leuven, Leuven 3000, Belgium
| | | | - Greg J Coman
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, Bribie Island Research Centre, Woorim, QLD 4507, Australia
| | - Sean McWilliam
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Kyall R Zenger
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Mehar S Khatkar
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Herman W Raadsma
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Dallas Donovan
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Gopala Krishna
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Seafarms Group Ltd, Darwin, NT 0800, Australia
| | - Dean R Jerry
- ARC Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
9
|
Ali Mohammadie Kojour M, Edosa TT, Jang HA, Keshavarz M, Jo YH, Han YS. Critical Roles of Spätzle5 in Antimicrobial Peptide Production Against Escherichia coli in Tenebrio molitor Malpighian Tubules. Front Immunol 2022; 12:760475. [PMID: 34975850 PMCID: PMC8717915 DOI: 10.3389/fimmu.2021.760475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022] Open
Abstract
The dimeric cytokine ligand Spätzle (Spz) is responsible for Toll pathway activation and antimicrobial peptide (AMP) production upon pathogen challenge in Tenebrio molitor. Here, we indicated that TmSpz5 has a functional role in response to bacterial infections. We showed that the highest expression of TmSpz5 is induced by Candida albicans. However, TmSpz5 knockdown reduced larval survival against Escherichia coli and Staphylococcus aureus. To evaluate the molecular mechanism underlying the observed survival differences, the role of TmSpz5 in AMP production was examined by RNA interference and microbial injection. T. molitor AMPs that are active against Gram-negative and -positive bacteria, including Tmtenecins, Tmattacins, Tmcoleoptericins, Tmtaumatin-like-proteins, and Tmcecropin-2, were significantly downregulated by TmSpz-5 RNAi in the Malpighian tubules (MTs) following a challenge with E. coli and S. aureus. However, upon infection with C. albicans the mRNA levels of most AMPs in the dsTmSpz5-injected group were similar to those in the control groups. Likewise, the expression of the transcription factors NF-κB, TmDorX2, and TmRelish were noticeably suppressed in the MTs of TmSpz5-silenced larvae. Moreover, E. coli-infected TmSpz5 knockdown larvae showed decreased antimicrobial activity in the MTs and hindgut compared with the control group. These results demonstrate that TmSpz5 has a defined role in T. molitor innate immunity by regulating AMP expression in MTs in response to E. coli.
Collapse
Affiliation(s)
- Maryam Ali Mohammadie Kojour
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Tariku Tesfaye Edosa
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea.,Ethiopian Institute of Agricultural Research, Ambo Agricultural Research Center, Ambo, Ethiopia
| | - Ho Am Jang
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Maryam Keshavarz
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea.,Department of Evolutionary Biology, Institute of Biology, Free University of Berlin, Berlin, Germany
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
10
|
Hertzler PL, Devries EJ, DeBoer RA. The Hedgehog pathway in penaeid shrimp: developmental expression and evolution of splice junctions in Pancrustacea. Genetica 2022; 150:87-96. [PMID: 35129716 DOI: 10.1007/s10709-022-00151-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022]
Abstract
Penaeid shrimp embryos undergo holoblastic division, gastrulation by invagination, and hatching as a nauplius larva. Posterior segments form and differentiate during larval development. Hedgehog (Hh) pathway genes from penaeid shrimp and other pancrustaceans were identified by in silico analysis of genomes and transcriptomes, and mapped onto a recent pancrustacean phylogeny to determine patterns of intron gains and losses. Penaeus vannamei, P. japonicus, and P. monodon Hh proteins were encoded by four exons. Amphipod, isopod, and ostracod hh were also encoded by four exons, but hh from other arthropod groups contained three conserved exons. The novel hh intron is hypothesized to have arisen independently in the malacostracan ancestor and Ostracoda by a transposon insertion. Shared patterns of ptc, smo, and ci exon structure were found for Malacostraca, Branchiopoda + Hexapoda, Hexanauplia (Thecostraca + Copepoda), Multicrustacea (Thecostraca + Copepoda + Malacostraca), and Pancrustacea minus Oligostraca. mRNA expression of P. vannamei of hh, ptc, and ci from developmental transcriptomes of zygotes through postlarvae showed low expression from zygote to gastrula, which increased at limb bud, peaked at unhatched nauplius, and declined in nauplius and later larval stages. smo expression was found in zygotes, peaked in gastrula, and declined in limb bud and later stages. These results are consistent with a role for Hh signaling during segmentation in penaeid shrimp.
Collapse
Affiliation(s)
- Philip L Hertzler
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA.
| | - Emma J Devries
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| | - Rachel A DeBoer
- Department of Biology, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
11
|
Rahi ML, Azad KN, Tabassum M, Irin HH, Hossain KS, Aziz D, Moshtaghi A, Hurwood DA. Effects of Salinity on Physiological, Biochemical and Gene Expression Parameters of Black Tiger Shrimp ( Penaeus monodon): Potential for Farming in Low-Salinity Environments. BIOLOGY 2021; 10:biology10121220. [PMID: 34943135 PMCID: PMC8698961 DOI: 10.3390/biology10121220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
Salinity is one of the most important abiotic factors affecting growth, metabolism, immunity and survival of aquatic species in farming environments. As a euryhaline species, the black tiger shrimp (Penaeus monodon) can tolerate a wide range of salinity levels and is farmed between brackish to marine water conditions. The current study tested the effects of six different salinity levels (0‱, 2.5‱, 5‱, 10‱, 20‱ and 30‱) on the selected physiological, biochemical and genetic markers (individual changes in the expression pattern of selected candidate genes) in the black tiger shrimp. Experimental salinity levels significantly affected growth and survival performance (p < 0.05); the highest levels of growth and survival performance were observed at the control (20‱) salinity. Salinity reductions significantly increased free fatty acid (FFA), but reduced free amino acid (FAA) levels. Lower salinity treatments (0-10‱) significantly reduced hemolymph osmolality levels while 30‱ significantly increased osmolality levels. The five different salinity treatments increased the expression of osmoregulatory and hemolymph regulatory genes by 1.2-8-fold. In contrast, 1.2-1.6-fold lower expression levels were observed at the five salinity treatments for growth (alpha amylase) and immunity (toll-like receptor) genes. O2 consumption, glucose and serotonin levels, and expression of osmoregulatory genes showed rapid increase initially with salinity change, followed by reducing trend and stable patterns from the 5th day to the end. Hemocyte counts, expression of growth and immunity related genes showed initial decreasing trends, followed by an increasing trend and finally stability from 20th day to the end. Results indicate the farming potential of P. monodon at low salinity environments (possibly at freshwater) by proper acclimation prior to stocking with minimal effects on production performance.
Collapse
Affiliation(s)
- Md. Lifat Rahi
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Khairun Naher Azad
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Maliha Tabassum
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Hasna Hena Irin
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Kazi Sabbir Hossain
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Dania Aziz
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang 43400, Malaysia
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
- Correspondence:
| | - Azam Moshtaghi
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
| | - David A Hurwood
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
| |
Collapse
|
12
|
Kawato S, Nishitsuji K, Arimoto A, Hisata K, Kawamitsu M, Nozaki R, Kondo H, Shinzato C, Ohira T, Satoh N, Shoguchi E, Hirono I. Genome and transcriptome assemblies of the kuruma shrimp, Marsupenaeus japonicus. G3 (BETHESDA, MD.) 2021; 11:jkab268. [PMID: 34515781 PMCID: PMC8527471 DOI: 10.1093/g3journal/jkab268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/18/2021] [Indexed: 11/25/2022]
Abstract
The kuruma shrimp Marsupenaeus japonicus (order Decapoda, family Penaeidae) is an economically important crustacean that occurs in shallow, warm seas across the Indo-Pacific. Here, using a combination of Illumina and Oxford Nanopore Technologies platforms, we produced a draft genome assembly of M. japonicus (1.70 Gbp; 18,210 scaffolds; scaffold N50 = 234.9 kbp; 34.38% GC, 93.4% BUSCO completeness) and a complete mitochondrial genome sequence (15,969 bp). As with other penaeid shrimp genomes, the M. japonicus genome is extremely rich in simple repeats, which occupies 27.4% of the assembly. A total of 26,381 protein-coding gene models (94.7% BUSCO completeness) were predicted, of which 18,005 genes (68.2%) were assigned functional description by at least one method. We also produced an Illumina-based transcriptome shotgun assembly (40,991 entries; 93.0% BUSCO completeness) and a PacBio Iso-Seq transcriptome assembly (25,415 entries; 67.5% BUSCO completeness). We envision that the M. japonicus genome and transcriptome assemblies will serve as useful resources for the basic research, fisheries management, and breeding programs of M. japonicus.
Collapse
Affiliation(s)
- Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Koki Nishitsuji
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Asuka Arimoto
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mayumi Kawamitsu
- DNA Sequencing Section, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Chuya Shinzato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-0882, Japan
| | - Tsuyoshi Ohira
- Faculty of Science, Department of Biological Sciences, Kanagawa University, Kanagawa 221-8686, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
13
|
Vu NTT, Zenger KR, Silva CNS, Guppy JL, Jerry DR. Population Structure, Genetic Connectivity, and Signatures of Local Adaptation of the Giant Black Tiger Shrimp (Penaeus monodon) throughout the Indo-Pacific Region. Genome Biol Evol 2021; 13:evab214. [PMID: 34529049 PMCID: PMC8495139 DOI: 10.1093/gbe/evab214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/04/2022] Open
Abstract
The giant black tiger shrimp (Penaeus monodon) is native to the Indo-Pacific and is the second most farmed penaeid shrimp species globally. Understanding genetic structure, connectivity, and local adaptation among Indo-Pacific black tiger shrimp populations is important for informing sustainable fisheries management and aquaculture breeding programs. Population genetic and outlier detection analyses were undertaken using 10,593 genome-wide single nucleotide polymorphisms (SNPs) from 16 geographically disparate Indo-Pacific P. monodon populations. Levels of genetic diversity were highest for Southeast Asian populations and were lowest for Western Indian Ocean (WIO) populations. Both neutral (n = 9,930) and outlier (n = 663) loci datasets revealed a pattern of strong genetic structure of P. monodon corresponding with broad geographical regions and clear genetic breaks among samples within regions. Neutral loci revealed seven genetic clusters and the separation of Fiji and WIO clusters from all other clusters, whereas outlier loci revealed six genetic clusters and high genetic differentiation among populations. The neutral loci dataset estimated five migration events that indicated migration to Southeast Asia from the WIO, with partial connectivity to populations in both oceans. We also identified 26 putatively adaptive SNPs that exhibited significant Pearson correlation (P < 0.05) between minor allele frequency and maximum or minimum sea surface temperature. Matched transcriptome contig annotations suggest putatively adaptive SNPs involvement in cellular and metabolic processes, pigmentation, immune response, and currently unknown functions. This study provides novel genome-level insights that have direct implications for P. monodon aquaculture and fishery management practices.
Collapse
Affiliation(s)
- Nga T T Vu
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Kyall R Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jarrod L Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Dean R Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Tropical Futures Institute, James Cook University, Singapore
| |
Collapse
|
14
|
Legrand E, Bachvaroff T, Schock TB, Chung JS. Understanding molt control switches: Transcriptomic and expression analysis of the genes involved in ecdysteroidogenesis and cholesterol uptake pathways in the Y-organ of the blue crab, Callinectes sapidus. PLoS One 2021; 16:e0256735. [PMID: 34478479 PMCID: PMC8415587 DOI: 10.1371/journal.pone.0256735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
The crustacean molting process is regulated by an interplay of hormones produced by the eyestalk ganglia and Y-organs (YO). Molt-inhibiting hormone and crustacean hyperglycemic hormone released by the sinus gland of the eyestalk ganglia (EG) inhibit the synthesis and secretion of ecdysteroid by the YO, hence regulating hemolymph levels during the molt cycle. The purpose of this study is to investigate the ecdysteroidogenesis pathway, specifically genes linked to changes in ecdysteroid levels occurring at early premolt (ePM). To this end, a reference transcriptome based on YO, EG, and hepatopancreas was de novo assembled. Two genes (cholesterol 7-desaturase Neverland and cytochrome p450 307a1-like Spook) involved in ecdysteroidogenesis were identified from the YO transcriptome using sequence comparisons and transcript abundance. Two other candidates, Hormone receptor 4 and probable cytochrome p450 49a1 potentially involved in ecdysteroidogenesis were also identified. Since cholesterol is the ecdysteroid precursor, a putative cholesterol carrier (Apolipoprotein D-like) was also examined to understand if cholesterol uptake coincided with the increase in the ecdysteroid levels at the ePM stage. The expression level changes of the five candidate genes in the YO were compared between intermolt (IM) and induced ePM (iePM) stages using transcriptomic analysis. Expression analysis using qPCR were carried out at IM, iePM, and normal ePM. The increase in Spook and Neverland expression in the YO at the ePM was accompanied by a concomitant rise in ecdysteroid levels. The data obtained from iePM stage were congruent with those obtained from the normal ePM stage of intact control animals. The present findings support the role of Halloween genes in the ecdysteroidogenesis and molt cycle in the blue crab, Callinectes sapidus.
Collapse
Affiliation(s)
- Elena Legrand
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Tsvetan Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| | - Tracey B. Schock
- Chemical Sciences Division, Hollings Marine Laboratory, National Institute of Standards and Technology, Charleston, South Carolina, United States of America
| | - J. Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, Maryland, United States of America
| |
Collapse
|
15
|
Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of Penaeus monodon. Life (Basel) 2021; 11:life11080862. [PMID: 34440606 PMCID: PMC8399832 DOI: 10.3390/life11080862] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/07/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
With the advantages that long-read sequencing platforms such as Pacific Biosciences (Menlo Park, CA, USA) (PacBio) and Oxford Nanopore Technologies (Oxford, UK) (ONT) can offer, various research fields such as genomics and transcriptomics can exploit their benefits. Selecting an appropriate sequencing platform is undoubtedly crucial for the success of the research outcome, thus there is a need to compare these long-read sequencing platforms and evaluate them for specific research questions. This study aims to compare the performance of PacBio and ONT platforms for transcriptomic analysis by utilizing transcriptome data from three different tissues (hepatopancreas, intestine, and gonads) of the juvenile black tiger shrimp, Penaeus monodon. We compared three important features: (i) main characteristics of the sequencing libraries and their alignment with the reference genome, (ii) transcript assembly features and isoform identification, and (iii) correlation of the quantification of gene expression levels for both platforms. Our analyses suggest that read-length bias and differences in sequencing throughput are highly influential factors when using long reads in transcriptome studies. These comparisons can provide a guideline when designing a transcriptome study utilizing these two long-read sequencing technologies.
Collapse
|
16
|
Thepsuwan T, Rungrassamee W, Sangket U, Whankaew S, Sathapondecha P. Long non-coding RNA profile in banana shrimp, Fenneropenaeus merguiensis and the potential role of lncPV13 in vitellogenesis. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111045. [PMID: 34358684 DOI: 10.1016/j.cbpa.2021.111045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023]
Abstract
The long non-coding RNAs (lncRNAs) have been known to play important roles in several biological processes as well as in reproduction. This study aimed to identify lncRNA in ovary female banana shrimp, Fenneropenaeus merguiensis, and investigate the potential role of lncPV13 in the vitellogenesis. After the in silico identification of the ovarian transcriptome, a total of 24,733 putative lncRNAs were obtained, and only 147 putative lncRNAs were significantly differentially expressed among the ovarian development stages. To validate the in silico identification of lncRNAs, the 16 lncRNAs with the highest differential expression in the transcriptome analysis were evaluated by RT-qPCR. The 6 lncRNAs showed higher expression levels in the mature stage than in the previtellogenic stage and were found in several tissues such as in eyestalks, brains, thoracic ganglia, gills, and muscle. Furthermore, most candidate lncRNAs were amplifiable in Litopenaeus vannamei's and Penaeus monodon's DNA but not in Macrobrachium rosenbergii's DNA, suggesting some lncRNAs are expressed in a species-specific manner among penaeid shrimp. In this study, the lncPV13 was investigated for its vitellogenin regulating function by RNA interference. The result indicates that the lncPV13 expression was suppressed in the ovary on day 7 after the injection of double-stranded RNA specific to lncPV13 (dslncPV13), while vitellogenin (Vg) expression was significantly decreased. In contrast, the gonad inhibiting hormone (GIH) expression was significantly increased in the lncPV13 knockdown shrimp. However, the oocyte proliferation was not significantly different between control and lncPV13 knockdown shrimp. This suggests that lncPV13 regulate Vg synthesis through GIH inhibition. Finally, our findings provide lncRNA information and potential lncRNAs involved in the vitellogenesis of female banana shrimp.
Collapse
Affiliation(s)
- Timpika Thepsuwan
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Rd., Khlong Luang, Pathum Thani 12120, Thailand
| | - Unitsa Sangket
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sukhuman Whankaew
- Department of Plant Science, Faculty of Technology and Community Development, Thaksin University, Phatthalung Campus, Phatthalung 93210, Thailand
| | - Ponsit Sathapondecha
- Center for Genomics and Bioinformatics Research, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
17
|
Uengwetwanit T, Pootakham W, Nookaew I, Sonthirod C, Angthong P, Sittikankaew K, Rungrassamee W, Arayamethakorn S, Wongsurawat T, Jenjaroenpun P, Sangsrakru D, Leelatanawit R, Khudet J, Koehorst JJ, Schaap PJ, Martins dos Santos V, Tangy F, Karoonuthaisiri N. A chromosome-level assembly of the black tiger shrimp (Penaeus monodon) genome facilitates the identification of growth-associated genes. Mol Ecol Resour 2021; 21:1620-1640. [PMID: 33586292 PMCID: PMC8197738 DOI: 10.1111/1755-0998.13357] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022]
Abstract
To salvage marine ecosystems from fishery overexploitation, sustainable and efficient aquaculture must be emphasized. The knowledge obtained from available genome sequence of marine organisms has accelerated marine aquaculture in many cases. The black tiger shrimp (Penaeus monodon) is one of the most prominent cultured penaeid shrimps (Crustacean) with an average annual global production of half a million tons in the last decade. However, its currently available genome assemblies lack the contiguity and completeness required for accurate genome annotation due to the highly repetitive nature of the genome and technical difficulty in extracting high-quality, high-molecular weight DNA. Here, we report the first chromosome-level whole-genome assembly of P. monodon. The combination of long-read Pacific Biosciences (PacBio) and long-range Chicago and Hi-C technologies enabled a successful assembly of this first high-quality genome sequence. The final assembly covered 2.39 Gb (92.3% of the estimated genome size) and contained 44 pseudomolecules, corresponding to the haploid chromosome number. Repetitive elements occupied a substantial portion of the assembly (62.5%), the highest of the figures reported among crustacean species. The availability of this high-quality genome assembly enabled the identification of genes associated with rapid growth in the black tiger shrimp through the comparison of hepatopancreas transcriptome of slow-growing and fast-growing shrimps. The results highlighted several growth-associated genes. Our high-quality genome assembly provides an invaluable resource for genetic improvement and breeding penaeid shrimp in aquaculture. The availability of P. monodon genome enables analyses of ecological impact, environment adaptation and evolution, as well as the role of the genome to protect the ecological resources by promoting sustainable shrimp farming.
Collapse
Affiliation(s)
- Tanaporn Uengwetwanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Wirulda Pootakham
- National Omics CenterNational Science and Technology Development AgencyPathum ThaniThailand
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Chutima Sonthirod
- National Omics CenterNational Science and Technology Development AgencyPathum ThaniThailand
| | - Pacharaporn Angthong
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Kanchana Sittikankaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Wanilada Rungrassamee
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Sopacha Arayamethakorn
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of Bioinformatics and Data Management for ResearchDepartment of Research and DevelopmentFaculty of MedicineSiriraj HospitalMahidol UniversityBangkokThailand
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, College of MedicineUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Division of Bioinformatics and Data Management for ResearchDepartment of Research and DevelopmentFaculty of MedicineSiriraj HospitalMahidol UniversityBangkokThailand
| | - Duangjai Sangsrakru
- National Omics CenterNational Science and Technology Development AgencyPathum ThaniThailand
| | - Rungnapa Leelatanawit
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| | - Jutatip Khudet
- Shrimp Genetic Improvement CenterIntegrative Aquaculture Biotechnology Research GroupSurat ThaniThailand
| | - Jasper J. Koehorst
- Laboratory of Systems and Synthetic BiologyDepartment of Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic BiologyDepartment of Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Vitor Martins dos Santos
- Laboratory of Systems and Synthetic BiologyDepartment of Agrotechnology and Food SciencesWageningen University and ResearchWageningenThe Netherlands
| | - Frédéric Tangy
- Viral Genomics and Vaccination UnitUMR3569 CNRSVirology DepartmentInstitut PasteurParisFrance
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum Thani12120Thailand
| |
Collapse
|
18
|
Berger CA, Steinberg DK, Copley NJ, Tarrant AM. De novo transcriptome assembly of the Southern Ocean copepod Rhincalanus gigas sheds light on developmental changes in gene expression. Mar Genomics 2021; 58:100835. [PMID: 33526377 DOI: 10.1016/j.margen.2021.100835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 11/18/2022]
Abstract
Copepods are small crustaceans that dominate most zooplankton communities in terms of both abundance and biomass. In the polar oceans, a subset of large lipid-storing copepods occupy central positions in the food web because of their important role in linking phytoplankton and microzooplankton with higher trophic levels. In this paper, we generated a high-quality de novo transcriptome for Rhincalanus gigas, the largest-and among the most abundant-of the Southern Ocean copepods. We then conducted transcriptional profiling to characterize the developmental transition between late-stage juveniles and adult females. We found that juvenile R. gigas substantially upregulate lipid synthesis and glycolysis pathways relative to females, as part of a developmental gene expression program that also implicates processes such as muscle growth, chitin formation, and ion transport. This study provides the first transcriptional profile of a developmental transition within Rhincalanus gigas or any endemic Southern Ocean copepod, thereby extending our understanding of copepod molecular physiology.
Collapse
Affiliation(s)
- Cory A Berger
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States; MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge and Woods Hole, MA, USA
| | - Deborah K Steinberg
- Virginia Institute of Marine Science, William & Mary, Gloucester Pt, VA 23062, United States
| | - Nancy J Copley
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, United States.
| |
Collapse
|
19
|
Karnaneedi S, Huerlimann R, Johnston EB, Nugraha R, Ruethers T, Taki AC, Kamath SD, Wade NM, Jerry DR, Lopata AL. Novel Allergen Discovery through Comprehensive De Novo Transcriptomic Analyses of Five Shrimp Species. Int J Mol Sci 2020; 22:E32. [PMID: 33375120 PMCID: PMC7792927 DOI: 10.3390/ijms22010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Accepted: 12/19/2020] [Indexed: 12/19/2022] Open
Abstract
Shellfish allergy affects 2% of the world's population and persists for life in most patients. The diagnosis of shellfish allergy, in particular shrimp, is challenging due to the similarity of allergenic proteins from other invertebrates. Despite the clinical importance of immunological cross-reactivity among shellfish species and between allergenic invertebrates such as dust mites, the underlying molecular basis is not well understood. Here we mine the complete transcriptome of five frequently consumed shrimp species to identify and compare allergens with all known allergen sources. The transcriptomes were assembled de novo, using Trinity, from raw RNA-Seq data of the whiteleg shrimp (Litopenaeus vannamei), black tiger shrimp (Penaeus monodon), banana shrimp (Fenneropenaeus merguiensis), king shrimp (Melicertus latisulcatus), and endeavour shrimp (Metapenaeus endeavouri). BLAST searching using the two major allergen databases, WHO/IUIS Allergen Nomenclature and AllergenOnline, successfully identified all seven known crustacean allergens. The analyses revealed up to 39 unreported allergens in the different shrimp species, including heat shock protein (HSP), alpha-tubulin, chymotrypsin, cyclophilin, beta-enolase, aldolase A, and glyceraldehyde-3-phosphate dehydrogenase (G3PD). Multiple sequence alignment (Clustal Omega) demonstrated high homology with allergens from other invertebrates including mites and cockroaches. This first transcriptomic analyses of allergens in a major food source provides a valuable resource for investigating shellfish allergens, comparing invertebrate allergens and future development of improved diagnostics for food allergy.
Collapse
Affiliation(s)
- Shaymaviswanathan Karnaneedi
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Roger Huerlimann
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Elecia B. Johnston
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Department of Aquatic Product Technology, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Thimo Ruethers
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Aya C. Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Sandip D. Kamath
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
| | - Nicholas M. Wade
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- CSIRO Agriculture and Food, Aquaculture Program, 306 Carmody Road, St Lucia, QLD 4067, Australia
| | - Dean R. Jerry
- ARC Research Hub for Advanced Prawn Breeding, Townsville, QLD 4811, Australia; (R.H.); (N.M.W.)
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
- Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Andreas L. Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; (S.K.); (E.B.J.); (R.N.); (T.R.); (A.C.T.); (S.D.K.)
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
- Centre for Food and Allergy Research, Murdoch Children’s Research Institute, The Royal Children’s Hospital, 50 Flemington Road, Parkville, VIC 3052, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
20
|
Christie AE, Rivera CD, Call CM, Dickinson PS, Stemmler EA, Hull JJ. Multiple transcriptome mining coupled with tissue specific molecular cloning and mass spectrometry provide insights into agatoxin-like peptide conservation in decapod crustaceans. Gen Comp Endocrinol 2020; 299:113609. [PMID: 32916171 PMCID: PMC7747469 DOI: 10.1016/j.ygcen.2020.113609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022]
Abstract
Over the past decade, in silico genome and transcriptome mining has led to the identification of many new crustacean peptide families, including the agatoxin-like peptides (ALPs), a group named for their structural similarity to agatoxin, a spider venom component. Here, analysis of publicly accessible transcriptomes was used to expand our understanding of crustacean ALPs. Specifically, transcriptome mining was used to investigate the phylogenetic/structural conservation, tissue localization, and putative functions of ALPs in decapod species. Transcripts encoding putative ALP precursors were identified from one or more members of the Penaeoidea (penaeid shrimp), Sergestoidea (sergestid shrimps), Caridea (caridean shrimp), Astacidea (clawed lobsters and freshwater crayfish), Achelata (spiny/slipper lobsters), and Brachyura (true crabs), suggesting a broad, and perhaps ubiquitous, conservation of ALPs in decapods. Comparison of the predicted mature structures of decapod ALPs revealed high levels of amino acid conservation, including eight identically conserved cysteine residues that presumably allow for the formation of four identically positioned disulfide bridges. All decapod ALPs are predicted to have amidated carboxyl-terminals. Two isoforms of ALP appear to be present in most decapod species, one 44 amino acids long and the other 42 amino acids in length, both likely generated by alternative splicing of a single gene. In carideans, a gene or terminal exon duplication appears to have occurred, with alternative splicing producing four ALPs, two 44 and two 42 amino acid isoforms. The identification of ALP precursor-encoding transcripts in nervous system-specific transcriptomes (e.g., Homarus americanus brain, eyestalk ganglia, and cardiac ganglion assemblies, finding confirmed using RT-PCR) suggests that members of this peptide family may serve as locally-released and/or hormonally-delivered neuromodulators in decapods. Their detection in testis- and hepatopancreas-specific transcriptomes suggests that members of the ALP family may also play roles in male reproduction and innate immunity/detoxification.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Cindy D Rivera
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Catherine M Call
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| |
Collapse
|
21
|
Cowley JA. Mourilyan virus pathogenicity in kuruma shrimp (Penaeus japonicus). JOURNAL OF FISH DISEASES 2020; 43:1401-1407. [PMID: 32929759 DOI: 10.1111/jfd.13244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
The bunyavirus Mourilyan virus (MoV) occurs commonly in Black tiger (Penaeus monodon) and kuruma shrimp (Penaeus japonicus) farmed in eastern Australia. There is circumstantial evidence of MoV causing mortalities among P. japonicus moved from farm ponds to tanks for rearing as broodstock. To directly assess its pathogenic potential, independent cohorts of pond- (n = 24) or tank-reared juvenile (n = 21) P. japonicus were challenged intramuscularly with a cephalothorax tissue homogenate of P. monodon containing high loads of MoV (1.48 ± 0.28 × 108 MoV RNA copies/µg total RNA). In each trial, mortalities accumulated gradually among the saline-injected controls. Mortality onset occurred 12-14 days earlier in the pond-reared shrimp, possibly due to them possessing low-level pre-existing MoV infections. Despite the time to onset of mortality differing, Kaplan-Meier survival analyses confirmed mortality rates to be significantly higher in both the pond- (p = .017) and tank-reared shrimp (p = .031) challenged with MoV. RT-qPCR data on shrimp sampled progressively over each trial showed high loads of MoV to establish following challenge and discounted GAV and other endemic viruses from contributing to mortality. Together, the data show that acute MoV infection can adversely compromise the survival of juvenile P. japonicus.
Collapse
Affiliation(s)
- Jeff A Cowley
- Livestock & Aquaculture, CSIRO Agriculture & Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| |
Collapse
|
22
|
Vu NTT, Zenger KR, Guppy JL, Sellars MJ, Silva CNS, Kjeldsen SR, Jerry DR. Fine-scale population structure and evidence for local adaptation in Australian giant black tiger shrimp (Penaeus monodon) using SNP analysis. BMC Genomics 2020; 21:669. [PMID: 32993495 PMCID: PMC7526253 DOI: 10.1186/s12864-020-07084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 09/18/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restrictions to gene flow, genetic drift, and divergent selection associated with different environments are significant drivers of genetic differentiation. The black tiger shrimp (Penaeus monodon), is widely distributed throughout the Indian and Pacific Oceans including along the western, northern and eastern coastline of Australia, where it is an important aquaculture and fishery species. Understanding the genetic structure and the influence of environmental factors leading to adaptive differences among populations of this species is important for farm genetic improvement programs and sustainable fisheries management. RESULTS Based on 278 individuals obtained from seven geographically disparate Australian locations, 10,624 high-quality SNP loci were used to characterize genetic diversity, population structure, genetic connectivity, and adaptive divergence. Significant population structure and differentiation were revealed among wild populations (average FST = 0.001-0.107; p < 0.05). Eighty-nine putatively outlier SNPs were identified to be potentially associated with environmental variables by using both population differentiation (BayeScan and PCAdapt) and environmental association (redundancy analysis and latent factor mixed model) analysis methods. Clear population structure with similar spatial patterns were observed in both neutral and outlier markers with three genetically distinct groups identified (north Queensland, Northern Territory, and Western Australia). Redundancy, partial redundancy, and multiple regression on distance matrices analyses revealed that both geographical distance and environmental factors interact to generate the structure observed across Australian P. monodon populations. CONCLUSION This study provides new insights on genetic population structure of Australian P. monodon in the face of environmental changes, which can be used to advance sustainable fisheries management and aquaculture breeding programs.
Collapse
Affiliation(s)
- Nga T T Vu
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia. .,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Kyall R Zenger
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Jarrod L Guppy
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Melony J Sellars
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,CSIRO Agriculture & Food, Integrated Sustainable Aquaculture Production Program, Queensland Bioscience Precinct, St Lucia, 4067, Australia.,Present address: Genics Pty Ltd, Level 5, Gehrmann Building. 60 Research Road, St Lucia, QLD, 4067, Australia
| | - Catarina N S Silva
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Shannon R Kjeldsen
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Dean R Jerry
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD, 4811, Australia.,Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Tropical Futures Institute, James Cook University, Singapore, Singapore
| |
Collapse
|
23
|
Huerlimann R, Maes GE, Maxwell MJ, Mobli M, Launikonis BS, Jerry DR, Wade NM. Multi-species transcriptomics reveals evolutionary diversity in the mechanisms regulating shrimp tail muscle excitation-contraction coupling. Gene 2020; 752:144765. [PMID: 32413480 DOI: 10.1016/j.gene.2020.144765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
The natural flight response in shrimp is powered by rapid contractions of the abdominal muscle fibres to propel themselves backwards away from perceived danger. This muscle contraction is dependent on repetitive depolarization of muscle plasma membrane, triggering tightly spaced cytoplasmic [Ca2+] transients and rapidly rising tetanic force responses. To achieve such high amplitude and high frequency of Ca2+ transients requires a high abundance of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) to rapidly clear cytoplasmic Ca2+ between each transient and an efficient Ca2+ release system consisting of the Ryanodine Receptor (RyR), and voltage gated Ca2+ channels (CaVs). With the aim to expand our knowledge of muscle gene function and identify orthologous genes regulating muscle excitation-contraction (EC) coupling, this study assembled nine Penaeid shrimp muscle transcriptomes. On average, the nine transcriptomes contained 27,000 contigs, with an annotation rate of 36% and a BUSCO completeness of 70%. Despite maintaining their function, the crustacean RyR and CaV proteins showed evidence of significant diversification from mammalian orthologs, while SERCA remained more conserved. Several key components of protein interaction were conserved, while others showed distinct crustacean specific evolutionary adaptations. Lastly, this study revealed approximately 1,000 orthologous genes involved in muscle specific processes present across all nine species.
Collapse
Affiliation(s)
- Roger Huerlimann
- ARC Research Hub for Advanced Prawn Breeding, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, QLD 4811, Australia.
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Laboratory of Biodiversity and Evolutionary Genomics, KU Leuven, Leuven 3000, Belgium; Centre for Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Michael J Maxwell
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Mobli
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dean R Jerry
- ARC Research Hub for Advanced Prawn Breeding, Australia; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Tropical Futures Institute, James Cook University, 149 Sims Drive, Singapore 387380, Singapore
| | - Nicholas M Wade
- ARC Research Hub for Advanced Prawn Breeding, Australia; CSIRO Agriculture and Food, Aquaculture Program, 306 Carmody Road, St Lucia, QLD 4067
| |
Collapse
|
24
|
Mendoza-Porras O, Kamath S, Harris JO, Colgrave ML, Huerlimann R, Lopata AL, Wade NM. Resolving hemocyanin isoform complexity in haemolymph of black tiger shrimp Penaeus monodon - implications in aquaculture, medicine and food safety. J Proteomics 2020; 218:103689. [PMID: 32088355 DOI: 10.1016/j.jprot.2020.103689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 01/21/2023]
Abstract
Hemocyanin (Hc) is a multifunctional macromolecule involved in oxygen transport and non-specific immunity in shrimp. Hc is crucial in physiology and nutrition linked with optimal performance in aquaculture production systems. In medicine, Hc has been approved for clinical use in humans as adjuvant and anticancer therapeutic. In contrast, Hc has also been identified as one of the proteins causing anaphylaxis following shrimp consumption. The role of individual Hc isoforms remains unknown due to a lack of resolved Hc isoforms. We successfully identified eleven different Penaeus monodon hemocyanin (PmoHc) γ isoforms including two truncated isoforms (50 and 20 kDa) and one PmoHc β isoform in haemolymph using proteomics informed by transcriptomics. Amino acid sequence homology ranged from 24 to 97% between putative PmoHc gene isoforms. Hc isoforms showed specific patterns of transcript expression in shrimp larval stages and adult hepatopancreas. These findings enable isoform level investigations aiming to define molecular mechanisms underpinning Hc functionality in shrimp physiology and immunity, as well as their individual immunogenic role in human allergy. Our research demonstrates the power of proteomics informed by transcriptomics to resolve isoform complexity in non-model organisms and lay the foundations for improved performance within the aquaculture industry and advance allergenic applications in medicine. SIGNIFICANCE: The roles of hemocyanin (Hc) in shrimp homeostasis and immunity as well as in human allergy are not well understood because the complexity of Hc isoforms has remained unresolved. Our results have confirmed the existence of at least 12 individual Hc isoforms in shrimp haemolymph and validated putative Hc gene assemblies from transcriptomics. Our findings will enable monitoring the expression of specific Hc isoforms in shrimp haemolymph during different environmental, nutritional and pathogenic conditions, thus providing insights into isoform specific functional roles. In medicine, the potential allergenicity of each Hc isoform could be determined and advance allergenic applications. Lastly, since Hc comprises up to 95% of the total protein in haemolymph, these isoforms become ideal targets for prawn provenance, traceability and food contamination studies.
Collapse
Affiliation(s)
- Omar Mendoza-Porras
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia.
| | - Sandip Kamath
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - James O Harris
- Flinders University, College of Science and Engineering, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Michelle L Colgrave
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia
| | - Roger Huerlimann
- James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| | - Andreas L Lopata
- James Cook University, Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook Drive, Townsville, QLD 4811, Australia; James Cook University, Australian Institute of Tropical Health and Medicine, James Cook Drive, Townsville, QLD 4811, Australia
| | - Nicholas M Wade
- CSIRO Livestock and Aquaculture, Queensland Bioscience Precinct, 306 Carmody Rd, St Lucia, QLD, Australia; James Cook University, College of Science and Engineering, James Cook Drive, Townsville, QLD 4811, Australia; Australian Research Council Industrial Transformation Research Hub for Advanced Shrimp Breeding, Australia
| |
Collapse
|
25
|
Van Quyen D, Gan HM, Lee YP, Nguyen DD, Nguyen TH, Tran XT, Nguyen VS, Khang DD, Austin CM. Improved genomic resources for the black tiger prawn (Penaeus monodon). Mar Genomics 2020; 52:100751. [PMID: 32033920 DOI: 10.1016/j.margen.2020.100751] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/24/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
World production of farmed crustaceans was 7.8 million tons in 2016. While only making up approximately 10% of world aquaculture production, crustaceans are generally high-value species and can earn significant export income for producing countries. Viet Nam is a major seafood producing country earning USD 7.3 billion in 2016 in export income with shrimp as a major commodity. However, there is a general lack of genomic resources available for shrimp species, which is challenging to obtain due to the need to deal with large repetitive genomes, which characterize many decapod crustaceans. The first tiger prawn (P. monodon) genome assembly was assembled in 2016 using the standard Illumina PCR-based pair-end reads and a computationally-efficient but relatively suboptimal assembler, SOAPdenovo v2. As a result, the current P. monodon draft genome is highly fragmented (> 2 million scaffolds with N50 length of <1000 bp), exhibiting only moderate genome completeness (< 35% BUSCO complete single-copy genes). We sought to improve upon the recently published P. monodon genome assembly and completeness by generating Illumina PCR-free pair-end sequencing reads to eliminate genomic gaps associated with PCR-bias and performing de novo assembly using the updated MaSurCA de novo assembler. Furthermore, we scaffolded the assembly with low coverage Nanopore long reads and several recently published deep Illumina transcriptome paired-end sequencing data, producing a final genome assembly of 1.6 Gbp (1,211,364 scaffolds; N50 length of 1982 bp) with an Arthropod BUSCO completeness of 96.8%. Compared to the previously published P. monodon genome assembly from China (NCBI Accession Code: NIUS01), this represents an almost 20% increase in the overall BUSCO genome completeness that now consists of more than 90% of Arthropod BUSCO single-copy genes. The revised P. monodon genome assembly (NCBI Accession Code: VIGR01) will be a valuable resource to support ongoing functional genomics and molecular-based breeding studies in Vietnam.
Collapse
Affiliation(s)
- Dong Van Quyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam; University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Han Ming Gan
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia; Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Yin Peng Lee
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia; Deakin Genomics Centre, Deakin University, Geelong, Australia
| | - Dinh Duy Nguyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Thi Hoa Nguyen
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Xuan Thach Tran
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam
| | - Van Sang Nguyen
- Institute for Aquaculture No.2 (RIA2), 116 Nguyen Dinh Chieu St., Dist. 1, Ho Chi Minh City, Viet Nam
| | - Dinh Duy Khang
- Laboratory of Molecular Microbiology, Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Viet Nam.
| | - Christopher M Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences Deakin University, Geelong, Australia; Deakin Genomics Centre, Deakin University, Geelong, Australia.
| |
Collapse
|
26
|
Transcriptomic analysis of Macrobrachium rosenbergii (giant fresh water prawn) post-larvae in response to M. rosenbergii nodavirus (MrNV) infection: de novo assembly and functional annotation. BMC Genomics 2019; 20:762. [PMID: 31640560 PMCID: PMC6805343 DOI: 10.1186/s12864-019-6102-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022] Open
Abstract
Background Macrobrachium rosenbergii, is one of a major freshwater prawn species cultured in Southeast Asia. White tail disease (WTD), caused by Macrobrachium rosenbergii nodavirus (MrNV), is a serious problem in farm cultivation and is responsible for up to 100% mortality in the post larvae stage. Molecular data on how M. rosenbergii post-larvae launches an immune response to an infection with MrNV is not currently available. We therefore compared the whole transcriptomic sequence of M. rosenbergii post-larvae before and after MrNV infection. Results Transcriptome for M. rosenbergii post-larvae demonstrated high completeness (BUSCO Complete: 83.4%, fragmentation: 13%, missing:3.3%, duplication:16.2%; highest ExN50 value: 94%). The assembled transcriptome consists of 96,362 unigenes with N50 of 1308 bp. The assembled transcriptome was successfully annotated against the NCBI non-redundant arthropod database (33.75%), UniProt database (26.73%), Gene Ontology (GO) (18.98%), Evolutionary Genealogy of Genes: Non-supervised Orthologous Groups (EggNOG) (20.88%), and Kyoto Encyclopedia of Genes and Genome pathway (KEGG) (20.46%). GO annotations included immune system process, signaling, response to stimulus, and antioxidant activity. Differential abundance analysis using EdgeR showed 2413 significantly up-regulated genes and 3125 significantly down-regulated genes during the infection of MrNV. Conclusions This study reported a highly complete transcriptome from the post-larvae stage of giant river prawn, M. rosenbergii. Differential abundant transcripts during MrNV infection were identified and validated by qPCR, many of these differentially abundant transcripts as key players in antiviral immunity. These include known members of the innate immune response with the largest expression change occurring in the M. rosenbergii post-larvae after MrNV infection such as antiviral protein, C-type lectin, prophenol oxidase, caspase, ADP ribosylation factors, and dicer.
Collapse
|
27
|
Bioinformatics for Marine Products: An Overview of Resources, Bottlenecks, and Perspectives. Mar Drugs 2019; 17:md17100576. [PMID: 31614509 PMCID: PMC6835618 DOI: 10.3390/md17100576] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 12/13/2022] Open
Abstract
The sea represents a major source of biodiversity. It exhibits many different ecosystems in a huge variety of environmental conditions where marine organisms have evolved with extensive diversification of structures and functions, making the marine environment a treasure trove of molecules with potential for biotechnological applications and innovation in many different areas. Rapid progress of the omics sciences has revealed novel opportunities to advance the knowledge of biological systems, paving the way for an unprecedented revolution in the field and expanding marine research from model organisms to an increasing number of marine species. Multi-level approaches based on molecular investigations at genomic, metagenomic, transcriptomic, metatranscriptomic, proteomic, and metabolomic levels are essential to discover marine resources and further explore key molecular processes involved in their production and action. As a consequence, omics approaches, accompanied by the associated bioinformatic resources and computational tools for molecular analyses and modeling, are boosting the rapid advancement of biotechnologies. In this review, we provide an overview of the most relevant bioinformatic resources and major approaches, highlighting perspectives and bottlenecks for an appropriate exploitation of these opportunities for biotechnology applications from marine resources.
Collapse
|
28
|
Patnaik BB, Chung JM, Hwang HJ, Sang MK, Park JE, Min HR, Cho HC, Dewangan N, Baliarsingh S, Kang SW, Park SY, Jo YH, Park HS, Kim WJ, Han YS, Lee JS, Lee YS. Transcriptome analysis of air-breathing land slug, Incilaria fruhstorferi reveals functional insights into growth, immunity, and reproduction. BMC Genomics 2019; 20:154. [PMID: 30808280 PMCID: PMC6390351 DOI: 10.1186/s12864-019-5526-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 02/11/2019] [Indexed: 01/27/2023] Open
Abstract
Background Incilaria (= Meghimatium) fruhstorferi is an air-breathing land slug found in restricted habitats of Japan, Taiwan and selected provinces of South Korea (Jeju, Chuncheon, Busan, and Deokjeokdo). The species is on a decline due to depletion of forest cover, predation by natural enemies, and collection. To facilitate the conservation of the species, it is important to decide on a number of traits related to growth, immunity and reproduction addressing fitness advantage of the species. Results The visceral mass transcriptome of I. fruhstorferi was enabled using the Illumina HiSeq 4000 sequencing platform. According to BUSCO (Benchmarking Universal Single-Copy Orthologs) method, the transcriptome was considered complete with 91.8% of ortholog genes present (Single: 70.7%; Duplicated: 21.1%). A total of 96.79% of the raw read sequences were processed as clean reads. TransDecoder identified 197,271 contigs that contained candidate-coding regions. Of a total of 50,230 unigenes, 34,470 (68.62% of the total unigenes) annotated to homologous proteins in the Protostome database (PANM-DB). The GO term and KEGG pathway analysis indicated genes involved in metabolism, phosphatidylinositol signalling system, aminobenzoate degradation, and T-cell receptor signalling pathway. Many genes associated with molluscan innate immunity were categorized under pathogen recognition receptor, TLR signalling pathway, MyD88 dependent pathway, endogenous ligands, immune effectors, antimicrobial peptides, apoptosis, and adaptation-related. The reproduction-associated unigenes showed homology to protein fem-1, spermatogenesis-associated protein, sperm associated antigen, and testis expressed sequences, among others. In addition, we identified key growth-related genes categorized under somatotrophic axis, muscle growth, chitinases and collagens. A total of 4822 Simple Sequence Repeats (SSRs) were also identified from the unigene sequences of I. fruhstorferi. Conclusions This is the first available genomic information for non-model land slug, I. fruhstorferi focusing on genes related to growth, immunity, and reproduction, with additional focus on microsatellites and repeating elements. The transcriptome provides access to greater number of traits of unknown relevance in the species that could be exploited for in-depth analyses of evolutionary plasticity and making informed choices during conservation planning. This would be appropriate for understanding the dynamics of the species on a priority basis considering the ecological, health, and social benefits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5526-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bharat Bhusan Patnaik
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hee Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Min Kyu Sang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Jie Eun Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hye Rin Min
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Hang Chul Cho
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Neha Dewangan
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Snigdha Baliarsingh
- School of Biotech Sciences, Trident Academy of Creative Technology (TACT), F2-B, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha, 751024, India
| | - Se Won Kang
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181, Ipsin-gil, Jungeup-si, Jeollabuk-do, 56212, South Korea
| | - So Young Park
- Nakdonggang National Institute of Biological Resources, Biodiversity Conservation and Change Research Division, 137, Donam-2-gil, Sangju-si, Gyeongsangbuk-do, 37242, South Korea
| | - Yong Hun Jo
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD, 621-6 Banseok-dong, Yuseong-gu, Daejeon, 34069, Republic of Korea
| | - Wan Jong Kim
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, South Korea
| | - Jun Sang Lee
- Institute of Basic Science, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungchungnam-do, 31538, South Korea.
| |
Collapse
|