1
|
Rupnik M, Fuks A, Janezic S. Diversity of Clostridioides difficile PCR ribotypes isolated from freshwater sediments depends on the isolation method. Appl Environ Microbiol 2024; 90:e0144224. [PMID: 39269162 PMCID: PMC11497773 DOI: 10.1128/aem.01442-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Clostridioides difficile is an intestinal pathogen of humans and animals. In community-associated infections, the environment is suggested to play a significant role in overall transmission routes. Although the prevalence of C. difficile in freshwater and soil has been widely studied, little is known about its presence in sediments. In this study, we tested 15 sediment samples collected from various freshwater sources. C. difficile was isolated from all sampled sites, yielding a total of 171 strains grouped into 26 ribotypes, with 001/072 and 014/020 being the most prevalent. Genome sequencing of 37 isolates from 17 PCR ribotypes confirmed the presence of highly related strains in the geographically distant and unlinked water samples. Eight divergent PCR ribotypes from clades C-II and C-III were found in six samples. In each sample, the unbound fraction (supernatant after sediment wash) and bound fraction (sonicated sediment sample) were subjected to enrichment. Sonication was only slightly better than washing in terms of sample positivity (14 positive samples with sonication and 11 with washing). However, sonication substantially increased the diversity of the PCR ribotypes obtained (23 in sonicated samples vs nine in washed samples). In conclusion, sediments are a rich source for investigating the diversity of environmental C. difficile, including isolates from divergent lineages. Selection of the isolation method can significantly impact the diversity of captured PCR ribotypes.IMPORTANCEClostridioides difficile, a pathogenic bacterium that can cause intestinal infections in humans and animals, thrives in the gut but also disperses widely through spores found in the environment. Clinical and environmental strains often overlap with common PCR ribotypes, which are consistently isolated worldwide. Environmental studies have mostly focused on water and soil, but sediments have been very poorly studied. In this study, we investigated the presence of C. difficile in various freshwater sediments and evaluated the effectiveness of two different isolation approaches on positivity rates and strain diversity. C. difficile was found to be highly prevalent in sediments, with an isolation rate of 100%. Sonication proved to be more effective than simple washing for capturing a greater diversity of PCR ribotypes. Overall, this study underscores the widespread presence of C. difficile in freshwater sediments and emphasizes the importance of continued surveillance and monitoring to understand its ecology and transmission dynamics.
Collapse
Affiliation(s)
- Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Alen Fuks
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
2
|
Watkin S, Yongblah F, Burton J, Hartley JC, Cloutman-Green E. Clostridioides difficile detection and infection in children: are they just small adults? J Med Microbiol 2024; 73. [PMID: 38526913 DOI: 10.1099/jmm.0.001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Clostridioides difficile is a well-recognized healthcare-associated pathogen, with its significance widely recognized in adult populations. Despite this, there is limited data on the significance of detection within paediatric populations, both for individual patient management and wider transmission risk-based considerations. High rates of colonization are understood to occur in infants, with increasing levels up to 11 months, and colonization rates similar to adults by 8 years old. Sources of C. difficile are ubiquitous, with detection in companion animals and food sources, as well as within the clinical and wider environment. Due to the close interactions that occur between children and the environment, it is understandable that increasing recognition is afforded to the community acquisition of C. difficile in children. Other risk factors for the detection of C. difficile in children are similar to those observed in adults, including prior hospitalization and underlying conditions affecting gut health and motility. Recent studies have shown rising awareness of the role of asymptomatic carriage of C. difficile in healthcare transmission. Prior to this, paediatric patient populations were less likely to be screened due to uncertainty regarding the significance of detection; however, this increased awareness has led to a review of possible carriage testing pathways. Despite this increased attention, C. difficile infection remains poorly defined in paediatric populations, with limited dedicated paediatric data sets making comparison challenging. This is further complicated by the fact that infection in children frequently self resolves without additional therapies. Due to this, C. difficile remains a management challenge in paediatric settings.
Collapse
Affiliation(s)
- Sam Watkin
- Department of Civil Environmental and Geomatic Engineering, Healthy Infrastructure Research Group, University College London, Chadwick Building, London, UK
| | - Francis Yongblah
- Great Ormond Street Hospital NHS Foundation Trust, Camelia Botnar Laboratories, Department of Microbiology, London, UK
| | - James Burton
- Great Ormond Street Hospital NHS Foundation Trust, Camelia Botnar Laboratories, Department of Microbiology, London, UK
| | - John C Hartley
- Great Ormond Street Hospital NHS Foundation Trust, Camelia Botnar Laboratories, Department of Microbiology, London, UK
| | - Elaine Cloutman-Green
- Department of Civil Environmental and Geomatic Engineering, Healthy Infrastructure Research Group, University College London, Chadwick Building, London, UK
- Great Ormond Street Hospital NHS Foundation Trust, Camelia Botnar Laboratories, Department of Microbiology, London, UK
| |
Collapse
|
3
|
Rodriguez-Diaz C, Seyboldt C, Rupnik M. Non-human Clostridioides difficile Reservoirs and Sources: Animals, Food, Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:329-350. [PMID: 38175482 DOI: 10.1007/978-3-031-42108-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile is ubiquitous and is found in humans, animals and in variety of environments. The substantial overlap of ribotypes between all three main reservoirs suggests the extensive transmissions. Here we give the overview of European studies investigating farm, companion and wild animals, food and environments including water, soil, sediment, wastewater treatment plants, biogas plants, air, and households. Studies in Europe are more numerous especially in last couple of years, but are still fragmented in terms of countries, animal species, or type of environment covered. Soil seem to be the habitat of divergent unusual lineages of C. difficile. But the most important aspect of animals and environment is their role in C. difficile transmissions and their potential as a source for human infection is discussed.
Collapse
Affiliation(s)
- Cristina Rodriguez-Diaz
- Instituto de Investigación Biomédica de Málaga y Plataforma de Nanomedicina-IBIMA Plataforma BIONAND, UGC de Aparato Digestivo, Hospital Universitario Virgen de la Victoria, Málaga, Spain
- Laboratory of Food Microbiology, Fundamental and Applied Research for Animals and Health (FARAH), Department of Food Sciences, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Jena, Germany
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, NLZOH, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
4
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
5
|
Morales-Olvera CG, Lanz-Zubiría L, Aguilar-Zamora E, Camorlinga-Ponce M, Aparicio-Ozores G, Aguilar-Zapata D, Chávez-Tapia NC, Uribe M, Barbero-Becerra VJ, Juárez-Hernández E. Clostridioides Difficile in Latin America: An Epidemiological Overview. Curr Microbiol 2023; 80:357. [PMID: 37768473 DOI: 10.1007/s00284-023-03475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/18/2023] [Indexed: 09/29/2023]
Abstract
Clostridioides difficile infection is one of the most significant causes of nosocomial diarrhea associated with antibiotic use worldwide. In recent years, the incidence of Clostridioides difficile infection in Latin American countries has increased due to the emergence and spread of epidemic Clostridioides difficile strains, such as RT027/NAP1/ST1, RT078/ST11, and RT017/ST37; additionally, endemic multi-drug-resistant strains have recently appeared due to the lack of heterogeneous diagnostic algorithms and guidelines for antibiotic use in each country. The aim of this review is to present the latest information regarding Clostridioides difficile and emphasize the importance of epidemiological surveillance of this pathogen in Latin American countries.
Collapse
Affiliation(s)
- Claudia G Morales-Olvera
- Translational Research Unit. Medica Sur Clinic & Foundation, Mexico City, Mexico
- Geriatric Service, PEMEX North Central Hospital and Postgraduate Studies Division, School of Medicine, UNAM, Mexico City, Mexico
| | - Lorena Lanz-Zubiría
- Infectious Diseases and Hospital Epidemiology Department, Médica Sur Clinic & Foundation. Medicine School Universidad Anáhuac, Mexico City, Mexico
| | - Emmanuel Aguilar-Zamora
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Margarita Camorlinga-Ponce
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Gerardo Aparicio-Ozores
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Daniel Aguilar-Zapata
- Infectious Diseases and Hospital Epidemiology Department, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - M Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Eva Juárez-Hernández
- Translational Research Unit. Medica Sur Clinic & Foundation, Mexico City, Mexico.
| |
Collapse
|
6
|
Abad-Fau A, Sevilla E, Martín-Burriel I, Moreno B, Bolea R. Update on Commonly Used Molecular Typing Methods for Clostridioides difficile. Microorganisms 2023; 11:1752. [PMID: 37512924 PMCID: PMC10384772 DOI: 10.3390/microorganisms11071752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
This review aims to provide a comprehensive overview of the significant Clostridioides difficile molecular typing techniques currently employed in research and medical communities. The main objectives of this review are to describe the key molecular typing methods utilized in C. difficile studies and to highlight the epidemiological characteristics of the most prevalent strains on a global scale. Geographically distinct regions exhibit distinct strain types of C. difficile, with notable concordance observed among various typing methodologies. The advantages that next-generation sequencing (NGS) offers has changed epidemiology research, enabling high-resolution genomic analyses of this pathogen. NGS platforms offer an unprecedented opportunity to explore the genetic intricacies and evolutionary trajectories of C. difficile strains. It is relevant to acknowledge that novel routes of transmission are continually being unveiled and warrant further investigation, particularly in the context of zoonotic implications and environmental contamination.
Collapse
Affiliation(s)
- Ana Abad-Fau
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Eloísa Sevilla
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
| | - Bernardino Moreno
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Rosa Bolea
- Departamento de Patología Animal, Facultad de Veterinaria, Instituto Agroalimentario de Aragon-IA2-(Universidad de Zaragoza-CITA), 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
7
|
Ducarmon QR, van der Bruggen T, Harmanus C, Sanders IMJG, Daenen LGM, Fluit AC, Vossen RHAM, Kloet SL, Kuijper EJ, Smits WK. Clostridioides difficile infection with isolates of cryptic clade C-II: a genomic analysis of polymerase chain reaction ribotype 151. Clin Microbiol Infect 2022; 29:538.e1-538.e6. [PMID: 36509372 DOI: 10.1016/j.cmi.2022.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We report a patient case of pseudomembranous colitis associated with a monotoxin-producing Clostridioides difficile belonging to the very rarely diagnosed polymerase chain reaction (PCR) ribotype (RT) 151. To understand why this isolate was not identified using a routine commercial test, we performed a genomic analysis of RT151. METHODS Illumina short-read sequencing was performed on n = 11 RT151s from various geographical regions to study their genomic characteristics and relatedness. Subsequently, we used PacBio circular consensus sequencing to determine the complete genome sequence of isolates belonging to cryptic clades C-I and C-II, which includes the peatient isolate. RESULTS We found that 1) RT151s are polyphyletic with isolates falling into clades 1 and cryptic clades C-I and C-II; 2) RT151 contains both nontoxigenic and toxigenic isolates and 3) RT151 C-II isolates contained monotoxin pathogenicity loci. The isolate from our patient case report contains a novel-pathogenicity loci insertion site, lacked tcdA and had a divergent tcdB sequence that might explain the failure of the diagnostic test. DISCUSSION This study shows that RT151 encompasses both typical and cryptic clades and provides conclusive evidence for C. difficile infection due to clade C-II isolates that was hitherto lacking. Vigilance towards C. difficile infection as a result of cryptic clade isolates is warranted.
Collapse
Affiliation(s)
- Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, the Netherlands
| | - Tjomme van der Bruggen
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Céline Harmanus
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ingrid M J G Sanders
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura G M Daenen
- Department of Haematology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Ad C Fluit
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Rolf H A M Vossen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Susan L Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, the Netherlands; Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands; Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, the Netherlands; Centre for Microbial Cell Biology, Leiden, the Netherlands.
| |
Collapse
|
8
|
Make It Less difficile: Understanding Genetic Evolution and Global Spread of Clostridioides difficile. Genes (Basel) 2022; 13:genes13122200. [PMID: 36553467 PMCID: PMC9778335 DOI: 10.3390/genes13122200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Clostridioides difficile is an obligate anaerobic pathogen among the most common causes of healthcare-associated infections. It poses a global threat due to the clinical outcomes of infection and resistance to antibiotics recommended by international guidelines for its eradication. In particular, C. difficile infection can lead to fulminant colitis associated with shock, hypotension, megacolon, and, in severe cases, death. It is therefore of the utmost urgency to fully characterize this pathogen and better understand its spread, in order to reduce infection rates and improve therapy success. This review aims to provide a state-of-the-art overview of the genetic variation of C. difficile, with particular regard to pathogenic genes and the correlation with clinical issues of its infection. We also summarize the current typing techniques and, based on them, the global distribution of the most common ribotypes. Finally, we discuss genomic surveillance actions and new genetic engineering strategies as future perspectives to make it less difficile.
Collapse
|
9
|
Tian S, Xiong X, Zeng J, Wang S, Tremblay BJM, Chen P, Chen B, Liu M, Chen P, Sheng K, Zeve D, Qi W, Breault DT, Rodríguez C, Gerhard R, Jin R, Doxey AC, Dong M. Identification of TFPI as a receptor reveals recombination-driven receptor switching in Clostridioides difficile toxin B variants. Nat Commun 2022; 13:6786. [PMID: 36351897 PMCID: PMC9646764 DOI: 10.1038/s41467-022-33964-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Toxin B (TcdB) is a major exotoxin responsible for diseases associated with Clostridioides difficile infection. Its sequence variations among clinical isolates may contribute to the difficulty in developing effective therapeutics. Here, we investigate receptor-binding specificity of major TcdB subtypes (TcdB1 to TcdB12). We find that representative members of subtypes 2, 4, 7, 10, 11, and 12 do not recognize the established host receptor, frizzled proteins (FZDs). Using a genome-wide CRISPR-Cas9-mediated screen, we identify tissue factor pathway inhibitor (TFPI) as a host receptor for TcdB4. TFPI is recognized by a region in TcdB4 that is homologous to the FZD-binding site in TcdB1. Analysis of 206 TcdB variant sequences reveals a set of six residues within this receptor-binding site that defines a TFPI binding-associated haplotype (designated B4/B7) that is present in all TcdB4 members, a subset of TcdB7, and one member of TcdB2. Intragenic micro-recombination (IR) events have occurred around this receptor-binding region in TcdB7 and TcdB2 members, resulting in either TFPI- or FZD-binding capabilities. Introduction of B4/B7-haplotype residues into TcdB1 enables dual recognition of TFPI and FZDs. Finally, TcdB10 also recognizes TFPI, although it does not belong to the B4/B7 haplotype, and shows species selectivity: it recognizes TFPI of chicken and to a lesser degree mouse, but not human, dog, or cattle versions. These findings identify TFPI as a TcdB receptor and reveal IR-driven changes on receptor-specificity among TcdB variants.
Collapse
Affiliation(s)
- Songhai Tian
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| | - Xiaozhe Xiong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siyu Wang
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Benjamin Jean-Marie Tremblay
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Peng Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Baohua Chen
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Min Liu
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Pengsheng Chen
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kuanwei Sheng
- Wyss Institute for Bioinspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Daniel Zeve
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Wanshu Qi
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA
| | - César Rodríguez
- Faculty of Microbiology & CIET, University of Costa Rica, San José, Costa Rica
| | - Ralf Gerhard
- Institute of Toxicology, Hannover Medical School, 30625, Hannover, Germany
| | - Rongsheng Jin
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Andrew C Doxey
- Department of Biology, Cheriton School of Computer Science, and Waterloo Centre for Microbial Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Min Dong
- Department of Urology, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
10
|
Characterization of the virulence of three novel clade 2 Clostridioides (Clostridium) difficile strains and a two-year screening in animals and humans in Brazil. PLoS One 2022; 17:e0273013. [PMID: 36026500 PMCID: PMC9416996 DOI: 10.1371/journal.pone.0273013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/29/2022] [Indexed: 11/19/2022] Open
Abstract
Clostridioides (Clostridium) difficile infection (CDI) is an evolving global healthcare problem, and owing to the diverse and dynamic molecular epidemiology of C. difficile, new strains continue to emerge. In Brazil, only two cases of CDI due to the so called hypervirulent PCR ribotype (RT) 027 belonging to clade 2 have ever been reported, whereas incidence of CDI due to another “hypervirulent” RT078 (clade 5) has not yet been reported. In contrast, novel clade 2 strains have been identified in different hospitals. To better understand the epidemiology of CDIs in Brazil, this study aimed to genotypically and phenotypically characterize three novel Brazilian clade 2 strains (RT883, 884, and 885) isolated from patients with confirmed CDI. In addition, to better understand the circulating RTs, a two-year sampling was conducted in patients from the same hospital and in several domestic and wild animal species. The three strains examined showed lower production of A/B toxins than the control RT027, although two of these strains harbored a truncated tcdC gene. All strains showed swimming motility similar to that of RT027, while RT883 showed higher spore production than the reference strain. In the in vivo hamster model, the lethality of all strains was found to be similar to that of RT027. Both cgMLST and cgMLSA analyses revealed a high genetic similarity among the three-novel clade 2 isolates. In the two-year survey in animals and humans, RT883, 884, and 885 were not detected; however, three new RTs (RT988, RT989, and RT990) were isolated, two of which were genetically related to the three previously reported clade 2 strains. RT106 and RT126 were most frequently detected in humans (47.9%) and animals (57.9%), respectively. Furthermore, RT027 and RT078 were not detected in humans. The results of this study suggest that these novel clade 2 strains have virulence potential and that new strains from clade 2 continue to emerge in our setting, indicating the need for long-term local surveillance.
Collapse
|
11
|
Acuña-Amador L, Quesada-Gómez C, Rodríguez C. Clostridioides difficile in Latin America: A comprehensive review of literature (1984-2021). Anaerobe 2022; 74:102547. [PMID: 35337973 DOI: 10.1016/j.anaerobe.2022.102547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023]
Abstract
This narrative review summarizes literature on C. difficile and C. difficile infections (CDI) that emerged from Latin America (LA) between 1984 and 2021. The revised information includes papers in English, Spanish, or Portuguese that were retrieved from the databases Pubmed, Scopus, Web of Science, Google Scholar, Scielo, and Lilacs. Information is presented chronologically and segregated in subregions, focusing on clinical presentation, risk factors, detection and typing methods, prevalence and incidence rates, circulating strains, and, when available, phenotypic traits, such as antimicrobial susceptibility patterns. Studies dealing with cases, clinical aspects of CDI, and performance evaluations of diagnostic methods predominated. However, they showed substantial differences in case definitions, measuring units, populations, and experimental designs. Although a handful of autochthonous strains were identified, predominantly in Brazil and Costa Rica, the presentation and epidemiology of CDI in LA were highly comparable to what has been reported in other regions of the world. Few laboratories isolate and type this bacterium and even less generate whole genome sequences or perform basic science on C. difficile. Less than ten countries lead academic productivity on C. difficile or CDI-related topics, and information from various countries in Central America and the Caribbean is still lacking. The review ends with a global interpretation of the data and recommendations to further develop and consolidate this discipline in LA.
Collapse
Affiliation(s)
- Luis Acuña-Amador
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - Carlos Quesada-Gómez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| | - César Rodríguez
- Facultad de Microbiología, Universidad de Costa Rica, Costa Rica; Laboratorio de Investigación en Bacteriología Anaerobia (LIBA), Universidad de Costa Rica, Costa Rica; Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, Costa Rica.
| |
Collapse
|
12
|
Williamson CHD, Stone NE, Nunnally AE, Roe CC, Vazquez AJ, Lucero SA, Hornstra H, Wagner DM, Keim P, Rupnik M, Janezic S, Sahl JW. Identification of novel, cryptic Clostridioides species isolates from environmental samples collected from diverse geographical locations. Microb Genom 2022; 8. [PMID: 35166655 PMCID: PMC8942030 DOI: 10.1099/mgen.0.000742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is a pathogen often associated with hospital-acquired infection or antimicrobial-induced disease; however, increasing evidence indicates infections can result from community or environmental sources. Most genomic sequencing of C. difficile has focused on clinical strains, although evidence is growing that C. difficile spores are widespread in soil and water in the environment. In this study, we sequenced 38 genomes collected from soil and water isolates in Flagstaff (AZ, USA) and Slovenia in an effort targeted towards environmental surveillance of C. difficile. At the average nucleotide identity (ANI) level, the genomes were divergent to C. difficile at a threshold consistent with different species. A phylogenetic analysis of these divergent genomes together with Clostridioides genomes available in public repositories confirmed the presence of three previously described, cryptic Clostridioides species and added two additional clades. One of the cryptic species (C-III) was almost entirely composed of Arizona and Slovenia genomes, and contained distinct sub-groups from each region (evidenced by SNP and gene-content differences). A comparative genomics analysis identified multiple unique coding sequences per clade, which can serve as markers for subsequent environmental surveys of these cryptic species. Homologues to the C. difficile toxin genes, tcdA and tcdB, were found in cryptic species genomes, although they were not part of the typical pathogenicity locus observed in C. difficile, and in silico PCR suggested that some would not amplify with widely used PCR diagnostic tests. We also identified gene homologues in the binary toxin cluster, including some present on phage and, for what is believed to be the first time, on a plasmid. All isolates were obtained from environmental samples, so the function and disease potential of these toxin homologues is currently unknown. Enzymatic profiles of a subset of cryptic isolates (n=5) demonstrated differences, suggesting that these isolates contain substantial metabolic diversity. Antimicrobial resistance (AMR) was observed across a subset of isolates (n=4), suggesting that AMR mechanisms are intrinsic to the genus, perhaps originating from a shared environmental origin. This study greatly expands our understanding of the genomic diversity of Clostridioides. These results have implications for C. difficile One Health research, for more sensitive C. difficile diagnostics, as well as for understanding the evolutionary history of C. difficile and the development of pathogenesis.
Collapse
Affiliation(s)
| | - Nathan E Stone
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Amalee E Nunnally
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Chandler C Roe
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Adam J Vazquez
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Samantha A Lucero
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Heidie Hornstra
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - David M Wagner
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Prvomajska Ulica 1, 2000 Maribor, Slovenia
| | - Sandra Janezic
- Faculty of Medicine, University of Maribor, Taborska 8, 2000 Maribor, Slovenia
| | - Jason William Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, PO Box 4073, Flagstaff, AZ 86011, USA
| |
Collapse
|
13
|
Smits WK, Roseboom AM, Corver J. Plasmids of Clostridioides difficile. Curr Opin Microbiol 2021; 65:87-94. [PMID: 34775173 DOI: 10.1016/j.mib.2021.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Plasmids are ubiquitous in the bacterial world. In many microorganisms, plasmids have been implicated in important aspects of bacterial physiology and contribute to horizontal gene transfer. In contrast, knowledge on plasmids of the enteropathogen Clostridioides difficile is limited, and there appears to be no phenotypic consequence to carriage of many of the identified plasmids. Emerging evidence suggests, however, that plasmids are common in C. difficile and may encode functions relevant to pathogenesis, such as antimicrobial resistance and toxin production. Here, we review our current knowledge about the abundance, functions and clinical relevance of plasmids in C. difficile.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Experimental Bacteriology Group, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden, The Netherlands; Leiden University Center for Infectious Diseases (LU-CID), Leiden, The Netherlands.
| | - Anna Maria Roseboom
- Experimental Bacteriology Group, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Corver
- Experimental Bacteriology Group, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands; Centre for Microbial Cell Biology, Leiden, The Netherlands; Leiden University Center for Infectious Diseases (LU-CID), Leiden, The Netherlands
| |
Collapse
|
14
|
Liu Z, Zhang S, Chen P, Tian S, Zeng J, Perry K, Dong M, Jin R. Structural basis for selective modification of Rho and Ras GTPases by Clostridioides difficile toxin B. SCIENCE ADVANCES 2021; 7:eabi4582. [PMID: 34678063 PMCID: PMC8535798 DOI: 10.1126/sciadv.abi4582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/02/2021] [Indexed: 05/15/2023]
Abstract
Toxin B (TcdB) is a primary cause of Clostridioides difficile infection (CDI). This toxin acts by glucosylating small GTPases in the Rho/Ras families, but the structural basis for TcdB recognition and selectivity of specific GTPase substrates remain unsolved. Here, we report the cocrystal structures of the glucosyltransferase domain (GTD) of two distinct TcdB variants in complex with human Cdc42 and R-Ras, respectively. These structures reveal a common structural mechanism by which TcdB recognizes Rho and R-Ras. Furthermore, we find selective clustering of adaptive residue changes in GTDs that determine their substrate preferences, which helps partition all known TcdB variants into two groups that display distinct specificities toward Rho or R-Ras. Mutations that selectively disrupt GTPases binding reduce the glucosyltransferase activity of the GTD and the toxicity of TcdB holotoxin. These findings establish the structural basis for TcdB recognition of small GTPases and reveal strategies for therapeutic interventions for CDI.
Collapse
Affiliation(s)
- Zheng Liu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Sicai Zhang
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Peng Chen
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Ji Zeng
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Kay Perry
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, and Departments of Microbiology and Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Rongsheng Jin
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2021; 12:566-577. [PMID: 32302381 PMCID: PMC7250501 DOI: 10.1093/gbe/evaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
During the last decades, hypervirulent strains of Clostridioides difficile with frequent disease recurrence and increased mortality appeared. Clostridioides difficile DSM 101085 was isolated from a patient who suffered from several recurrent infections and colonizations, likely contributing to a fatal outcome. Analysis of the toxin repertoire revealed the presence of a complete binary toxin locus and an atypical pathogenicity locus consisting of only a tcdA pseudogene and a disrupted tcdC gene sequence. The pathogenicity locus shows upstream a transposon and has been subject to homologous recombination or lateral gene transfer events. Matching the results of the genome analysis, neither TcdA nor TcdB production but the expression of cdtA and cdtB was detected. This highlights a potential role of the binary toxin C. difficile toxin in this recurrent colonization and possibly further in a host-dependent virulence. Compared with the C. difficile metabolic model strains DSM 28645 (630Δerm) and DSM 27147 (R20291), strain DSM 101085 showed a specific metabolic profile, featuring changes in the threonine degradation pathways and alterations in the central carbon metabolism. Moreover, products originating from Stickland pathways processing leucine, aromatic amino acids, and methionine were more abundant in strain DSM 101085, indicating a more efficient use of these substrates. The particular characteristics of strain C. difficile DSM 101085 may represent an adaptation to a low-protein diet in a patient with recurrent infections.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Antonia Dannheim
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany.,Göttingen International Health Network, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technical University of Braunschweig, Germany
| |
Collapse
|
16
|
Ramírez-Vargas G, Rodríguez C. Putative Conjugative Plasmids with tcdB and cdtAB Genes in Clostridioides difficile. Emerg Infect Dis 2021; 26:2287-2290. [PMID: 32818425 PMCID: PMC7454092 DOI: 10.3201/eid2609.191447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The major toxins of Clostridioides difficile (TcdA, TcdB, CDT) are chromosomally encoded in nearly all known strains. Following up on previous findings, we identified 5 examples of a family of putative conjugative plasmids with tcdB and cdtAB in clinical C. difficile isolates from multilocus sequence typing clades C-I, 2, and 4.
Collapse
|
17
|
Knight DR, Imwattana K, Kullin B, Guerrero-Araya E, Paredes-Sabja D, Didelot X, Dingle KE, Eyre DW, Rodríguez C, Riley TV. Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. eLife 2021; 10:64325. [PMID: 34114561 PMCID: PMC8241443 DOI: 10.7554/elife.64325] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/08/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile infection (CDI) remains an urgent global One Health threat. The genetic heterogeneity seen across C. difficile underscores its wide ecological versatility and has driven the significant changes in CDI epidemiology seen in the last 20 years. We analysed an international collection of over 12,000 C. difficile genomes spanning the eight currently defined phylogenetic clades. Through whole-genome average nucleotide identity, and pangenomic and Bayesian analyses, we identified major taxonomic incoherence with clear species boundaries for each of the recently described cryptic clades CI–III. The emergence of these three novel genomospecies predates clades C1–5 by millions of years, rewriting the global population structure of C. difficile specifically and taxonomy of the Peptostreptococcaceae in general. These genomospecies all show unique and highly divergent toxin gene architecture, advancing our understanding of the evolution of C. difficile and close relatives. Beyond the taxonomic ramifications, this work may impact the diagnosis of CDI.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia
| | - Korakrit Imwattana
- School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Brian Kullin
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Enzo Guerrero-Araya
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millenium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millenium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile.,Department of Biology, Texas A&M University, College Station, United States
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Kate E Dingle
- Nuffield Department of Clinical Medicine, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - David W Eyre
- Big Data Institute, Nuffield Department of Population Health, University of Oxford, National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - César Rodríguez
- Facultad de Microbiología & Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Thomas V Riley
- Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Biomedical Sciences, the University of Western Australia, Nedlands, Australia.,Department of Microbiology, PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
18
|
Abstract
Large clostridial toxins (LCTs) are a family of bacterial exotoxins that infiltrate and destroy target cells. Members of the LCT family include Clostridioides difficile toxins TcdA and TcdB, Paeniclostridium sordellii toxins TcsL and TcsH, Clostridium novyi toxin TcnA, and Clostridium perfringens toxin TpeL. Since the 19th century, LCT-secreting bacteria have been isolated from the blood, organs, and wounds of diseased individuals, and LCTs have been implicated as the primary virulence factors in a variety of infections, including C. difficile infection and some cases of wound-associated gas gangrene. Clostridia express and secrete LCTs in response to various physiological signals. LCTs invade host cells by binding specific cell surface receptors, ultimately leading to internalization into acidified vesicles. Acidic pH promotes conformational changes within LCTs, which culminates in translocation of the N-terminal glycosyltransferase and cysteine protease domain across the endosomal membrane and into the cytosol, leading first to cytopathic effects and later to cytotoxic effects. The focus of this review is on the role of LCTs in infection and disease, the mechanism of LCT intoxication, with emphasis on recent structural work and toxin subtyping analysis, and the genomic discovery and characterization of LCT homologues. We provide a comprehensive review of these topics and offer our perspective on emerging questions and future research directions for this enigmatic family of toxins.
Collapse
|
19
|
Imwattana K, Knight DR, Riley TV. Can sequencing improve the diagnosis and management of Clostridioides difficile infection? Expert Rev Mol Diagn 2021; 21:429-431. [PMID: 33843381 DOI: 10.1080/14737159.2021.1915774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Daniel R Knight
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia
| | - Thomas V Riley
- School of Biomedical Sciences, The University of Western Australia, Crawley, Australia.,Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia.,PathWest Laboratory Medicine, Queen Elizabeth II Medical Centre, Nedlands, Australia
| |
Collapse
|
20
|
Phylogenomics of 8,839 Clostridioides difficile genomes reveals recombination-driven evolution and diversification of toxin A and B. PLoS Pathog 2020; 16:e1009181. [PMID: 33370413 PMCID: PMC7853461 DOI: 10.1371/journal.ppat.1009181] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/02/2021] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is the major worldwide cause of antibiotic-associated gastrointestinal infection. A pathogenicity locus (PaLoc) encoding one or two homologous toxins, toxin A (TcdA) and toxin B (TcdB), is essential for C. difficile pathogenicity. However, toxin sequence variation poses major challenges for the development of diagnostic assays, therapeutics, and vaccines. Here, we present a comprehensive phylogenomic analysis of 8,839 C. difficile strains and their toxins including 6,492 genomes that we assembled from the NCBI short read archive. A total of 5,175 tcdA and 8,022 tcdB genes clustered into 7 (A1-A7) and 12 (B1-B12) distinct subtypes, which form the basis of a new method for toxin-based subtyping of C. difficile. We developed a haplotype coloring algorithm to visualize amino acid variation across all toxin sequences, which revealed that TcdB has diversified through extensive homologous recombination throughout its entire sequence, and formed new subtypes through distinct recombination events. In contrast, TcdA varies mainly in the number of repeats in its C-terminal repetitive region, suggesting that recombination-mediated diversification of TcdB provides a selective advantage in C. difficile evolution. The application of toxin subtyping is then validated by classifying 351 C. difficile clinical isolates from Brigham and Women's Hospital in Boston, demonstrating its clinical utility. Subtyping partitions TcdB into binary functional and antigenic groups generated by intragenic recombinations, including two distinct cell-rounding phenotypes, whether recognizing frizzled proteins as receptors, and whether it can be efficiently neutralized by monoclonal antibody bezlotoxumab, the only FDA-approved therapeutic antibody. Our analysis also identifies eight universally conserved surface patches across the TcdB structure, representing ideal targets for developing broad-spectrum therapeutics. Finally, we established an open online database (DiffBase) as a central hub for collection and classification of C. difficile toxins, which will help clinicians decide on therapeutic strategies targeting specific toxin variants, and allow researchers to monitor the ongoing evolution and diversification of C. difficile.
Collapse
|
21
|
Maslanka JR, Gu CH, Zarin I, Denny JE, Broadaway S, Fett B, Mattei LM, Walk ST, Abt MC. Detection and elimination of a novel non-toxigenic Clostridioides difficile strain from the microbiota of a mouse colony. Gut Microbes 2020; 12:1-15. [PMID: 33305657 PMCID: PMC7734020 DOI: 10.1080/19490976.2020.1851999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Clostridioides difficile is an enteric bacterial pathogen that can a cause nosocomial infection leading to debilitating colitis. The development of a murine model of C. difficile infection has led to fundamental discoveries in disease pathogenesis and the host immune response to infection. Recently, C. difficile endogenously present in the microbiota of mice has been reported and was found to complicate interpretation of mouse studies. Here, we report a novel C. difficile strain, named NTCD-035, isolated from the microbiota of our mouse colony. The presence of NTCD-035 in mice prior to challenge with a highly pathogenic C. difficile strain (VPI10463) led to significantly reduced disease severity. Phylogenetic characterization derived from whole genome sequencing and PCR ribotyping identified the isolate as a novel clade 1, ribotype 035 strain that lacks the pathogenicity locus required to produce toxins. Deficiency in toxin production along with sporulation capacity and secondary bile acid sensitivity was confirmed using in vitro assays. Inoculation of germ-free mice with NTCD-035 did not cause morbidity despite the strain readily colonizing the large intestine. Implementation of a culture-based screening procedure enabled the identification of mice harboring C. difficile in their microbiota, the establishment of a C. difficile-free mouse colony, and a monitoring system to prevent future contamination. Taken together, these data provide a framework for screening mice for endogenously harbored C. difficile and support clinical findings that demonstrate the therapeutic potential of non-toxigenic strains in preventing C. difficile associated disease. Abbreviations: PaLoc - Pathogenicity locus, CFUs - Colony forming units, TcdA - toxin-A, TcdB - toxin-B, CdtA - binary toxin A, CdtB - binary toxin B, CdtR - binary toxin R, NTCD - non-toxigenic C. difficile.
Collapse
Affiliation(s)
- Jeffrey R. Maslanka
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher H. Gu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Isma Zarin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua E. Denny
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Broadaway
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Bryton Fett
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa M. Mattei
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seth T. Walk
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA
| | - Michael C. Abt
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,CONTACT Michael C Abt Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Janezic S, Dingle K, Alvin J, Accetto T, Didelot X, Crook DW, Lacy DB, Rupnik M. Comparative genomics of Clostridioides difficile toxinotypes identifies module-based toxin gene evolution. Microb Genom 2020; 6:mgen000449. [PMID: 33030421 PMCID: PMC7660249 DOI: 10.1099/mgen.0.000449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022] Open
Abstract
Clostridioides difficile is a common cause of nosocomial diarrhoea. Toxins TcdA and TcdB are considered to be the main virulence factors and are encoded by the PaLoc region, while the binary toxin encoded in the CdtLoc region also contributes to pathogenicity. Variant toxinotypes reflect the genetic diversity of a key toxin-encoding 19 kb genetic element (the PaLoc). Here, we present analysis of a comprehensive collection of all known major C. difficile toxinotypes to address the evolutionary relationships of the toxin gene variants, the mechanisms underlying the origin and development of variability in toxin genes and the PaLoc, and the relationship between structure and function in TcdB variants. The structure of both toxin genes is modular, composed of interspersed blocks of sequences corresponding to functional domains and having different evolutionary histories, as shown by the distribution of mutations along the toxin genes and by incongruences of domain phylogenies compared to overall C. difficile cluster organization. In TcdB protein, four mutation patterns could be differentiated, which correlated very well with the type of TcdB cytopathic effect (CPE) on cultured cells. Mapping these mutations to the three-dimensional structure of the TcdB showed that the majority of the variation occurs in surface residues and that point mutation at residue 449 in alpha helix 16 differentiated strains with different types of CPE. In contrast to the PaLoc, phylogenetic trees of the CdtLoc were more consistent with the core genome phylogenies, but there were clues that CdtLoc can also be exchanged between strains.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| | - Kate Dingle
- Oxford University, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | - Joseph Alvin
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Tomaž Accetto
- Biotechnical Faculty, Animal Science Department, University of Ljubljana, Domzale, Slovenia
| | - Xavier Didelot
- School of Life Sciences and Department of Statistics, University of Warwick, Coventry, UK
| | - Derrick W. Crook
- Oxford University, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, Oxford, UK
| | - D. Borden Lacy
- Vanderbilt University School of Medicine, Nashville, TN, USA
- The Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Maja Rupnik
- National Laboratory for Health, Environment and Food, Maribor, Slovenia
- University of Maribor, Faculty of Medicine, Maribor, Slovenia
| |
Collapse
|
23
|
Orozco-Aguilar J, Alfaro-Alarcón A, Acuña-Amador L, Chaves-Olarte E, Rodríguez C, Quesada-Gómez C. In vivo animal models confirm an increased virulence potential and pathogenicity of the NAP1/RT027/ST01 genotype within the Clostridium difficile MLST Clade 2. Gut Pathog 2020; 12:45. [PMID: 32983262 PMCID: PMC7510272 DOI: 10.1186/s13099-020-00383-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/18/2020] [Indexed: 01/05/2023] Open
Abstract
Background Based on MLST analyses the global population of C. difficile is distributed in eight clades, of which Clade 2 includes the “hypervirulent” NAP1/RT027/ST01 strain along with various unexplored sequence types (STs). Methods To clarify whether this clinically relevant phenotype is a widespread feature of C. difficile Clade 2, we used the murine ileal loop model to compare the in vivo pro-inflammatory (TNF-α, IL-1β, IL-6) and oxidative stress activities (MPO) of five Clade 2 clinical C. difficile isolates from sequence types (STs) 01, 41, 67, and 252. Besides, we infected Golden Syrian hamsters with spores from these strains to determine their lethality, and obtain a histological evaluation of tissue damage, WBC counts, and serum injury biomarkers (LDH, ALT, AST, albumin, BUN, creatinine, Na+, and Cl−). Genomic distances were calculated using Mash and FastANI to explore whether the responses were dictated by phylogeny. Results The ST01 isolate tested ranked first in all assays, as it induced the highest overall levels of pro-inflammatory cytokines, MPO activity, epithelial damage, biochemical markers, and mortality measured in both animal models. Statistically indistinguishable or rather similar outputs were obtained for a ST67 isolate in tests such as tissue damage, neutrophils count, and lethal activity. The results recorded for the two ST41 isolates tested were of intermediate magnitude and the ST252 isolate displayed the lowest pathogenic potential in all animal experiments. This ordering matched the genomic distance of the ST01 isolate to the non-ST01 isolates. Conclusions Despite their close phylogenic relatedness, our results demonstrate differences in pathogenicity and virulence levels in Clade 2 C. difficile strains, confirm the high severity of infections caused by the NAP1/RT027/ST01 strain, and highlight the importance of C. difficile typing.
Collapse
Affiliation(s)
- Josué Orozco-Aguilar
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica.,Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica.,Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica
| | - Alejandro Alfaro-Alarcón
- Departamento de Patología, Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
| | - Luis Acuña-Amador
- Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Esteban Chaves-Olarte
- Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Laboratorio de Ensayos Biológicos (LEBi), Universidad de Costa Rica, San José, Costa Rica.,Programa de Posgrado en Microbiología, Parasitología, Química Clínica e Inmunología, Universidad de Costa Rica, San José, Costa Rica.,Centro de Investigación en Enfermedades Tropicales and Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
24
|
Shen E, Zhu K, Li D, Pan Z, Luo Y, Bian Q, He L, Song X, Zhen Y, Jin D, Tao L. Subtyping analysis reveals new variants and accelerated evolution of Clostridioides difficile toxin B. Commun Biol 2020; 3:347. [PMID: 32620855 PMCID: PMC7335066 DOI: 10.1038/s42003-020-1078-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile toxins (TcdA and TcdB) are major exotoxins responsible for C. difficile infection (CDI) associated diseases. The previously reported TcdB variants showed distinct biological features, immunoactivities, and potential pathogenicity in disease progression. Here, we performed global comparisons of amino acid sequences of both TcdA and TcdB from 3,269 C. difficile genomes and clustered them according to the evolutionary relatedness. We found that TcdB was much diverse and could be divided into eight subtypes, of which four were first described. Further analysis indicates that the tcdB gene undergoes accelerated evolution to maximize diversity. By tracing TcdB subtypes back to their original isolates, we found that the distribution of TcdB subtypes was not completely aligned with the phylogeny of C. difficile. These findings suggest that the tcdB genes not only frequently mutate, but also continuously transfer and exchange among C. difficile strains. Shen et al. compare the amino acid sequences of bacterial toxins TcdA and TcdB from 3,269 Clostridioides difficile genomes to identify four new TcdB subtypes. They find that TcdB was more diverse in amino acid sequence than TcdA. This study suggests that the tcdB genes not only frequently mutate, but they also continuously transfer and exchange among C. difficile strains.
Collapse
Affiliation(s)
- Enhui Shen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Kangli Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Danyang Li
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zhenrui Pan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Yun Luo
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310051, China.,School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qiao Bian
- School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Liuqing He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Xiaojun Song
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Ying Zhen
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China.,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Dazhi Jin
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China.,School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, 310053, China
| | - Liang Tao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China.
| |
Collapse
|
25
|
Okada Y, Okugawa S, Ikeda M, Kobayashi T, Saito R, Higurashi Y, Moriya K. Genetic diversity and epidemiology of accessory gene regulator loci in Clostridioides difficile. Access Microbiol 2020; 2:acmi000134. [PMID: 32974597 PMCID: PMC7497831 DOI: 10.1099/acmi.0.000134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/25/2020] [Indexed: 02/04/2023] Open
Abstract
Quorum sensing is known to regulate bacterial virulence, and the accessory gene regulator (agr) loci is one of the genetic loci responsible for its regulation. Recent reports examining Clostridioides difficile show that two agr loci, agr1 and agr2, regulate toxin production, but the diversity of agr loci and their epidemiology is unknown. In our study, in silico analysis was performed to research genetic diversity of agr, and C. difficile isolates from clinical samples underwent multilocus sequence typing (MLST) and PCR analysis of agr loci. To reveal the distribution of agr among different strains, phylogenetic analysis was also performed. In our in silico analysis, two different subtypes, named agr2R and agr2M, were found in agr2, which were previously reported. PCR analysis of 133 C . difficile isolates showed that 131 strains had agr1, 61 strains had agr2R, and 26 strains had agr2M; agr2R was mainly found in clade 1 or clade 2 organisms, whereas agr2M was only found in clade 4. With rare exception, agr1-negative sequence types (STs) belonged to clade C-Ⅰ and C-Ⅲ, and one clade 4 strain had agr2R. Our study revealed subtypes of agr2 not previously recognized, and the distribution of several agr loci in C. difficile . These findings provide a foundation for further functional and clinical research of the agr loci.
Collapse
Affiliation(s)
- Yuta Okada
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Shu Okugawa
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Mahoko Ikeda
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Tatsuya Kobayashi
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Ryoichi Saito
- Department of Molecular Microbiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Yoshimi Higurashi
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Kyoji Moriya
- Department of Infectious Diseases, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
- Department of Infection Control and Prevention, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
26
|
Muñoz M, Restrepo-Montoya D, Kumar N, Iraola G, Camargo M, Díaz-Arévalo D, Roa-Molina NS, Tellez MA, Herrera G, Ríos-Chaparro DI, Birchenall C, Pinilla D, Pardo-Oviedo JM, Rodríguez-Leguizamón G, Josa DF, Lawley TD, Patarroyo MA, Ramírez JD. Integrated genomic epidemiology and phenotypic profiling of Clostridium difficile across intra-hospital and community populations in Colombia. Sci Rep 2019; 9:11293. [PMID: 31383872 PMCID: PMC6683185 DOI: 10.1038/s41598-019-47688-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile, the causal agent of antibiotic-associated diarrhea, has a complex epidemiology poorly studied in Latin America. We performed a robust genomic and phenotypic profiling of 53 C. difficile clinical isolates established from diarrheal samples from either intrahospital (IH) or community (CO) populations in central Colombia. In vitro tests were conducted to evaluate the cytopathic effect, the minimum inhibitory concentration of ten antimicrobial agents, the sporulation efficiency and the colony forming ability. Eleven different sequence types (STs) were found, the majority present individually in each sample, however in three samples two different STs were isolated. Interestingly, CO patients were infected with STs associated with hypervirulent strains (ST-1 in Clade-2). Three coexistence events (two STs simultaneously detected in the same sample) were observed always involving ST-8 from Clade-1. A total of 2,502 genes were present in 99% of the isolates with 95% of identity or more, it represents a core genome of 28.6% of the 8,735 total genes identified in the set of genomes. A high cytopathic effect was observed for the isolates positive for the two main toxins but negative for binary toxin (TcdA+/TcdB+/CDT- toxin production type), found only in Clade-1. Molecular markers conferring resistance to fluoroquinolones (cdeA and gyrA) and to sulfonamides (folP) were the most frequent in the analyzed genomes. In addition, 15 other markers were found mostly in Clade-2 isolates. These results highlight the regional differences that C. difficile isolates display, being in this case the CO isolates the ones having a greater number of accessory genes and virulence-associated factors.
Collapse
Affiliation(s)
- Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Posgrado Interfacultades Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Daniel Restrepo-Montoya
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- Genomics and Bioinformatics Department, North Dakota State University, Fargo, North Dakota, USA
| | - Nitin Kumar
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur Montevideo, Montevideo, Uruguay
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- Faculty of Animal Sciences, Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá, Colombia
- Hygea group, Faculty of Health Sciences, Universidad de Boyacá, Tunja, Colombia
| | - Nelly S Roa-Molina
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mayra A Tellez
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
- PhD Programme in Biomedical and Biological Sciences, Faculty of Natural Sciences and Mathematics/School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Dora I Ríos-Chaparro
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Birchenall
- Hospital Universitario Mayor - Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Darío Pinilla
- Hospital Universitario Mayor - Méderi, Universidad del Rosario, Bogotá, Colombia
| | - Juan M Pardo-Oviedo
- Hospital Universitario Mayor - Méderi, Universidad del Rosario, Bogotá, Colombia
| | | | | | - Trevor D Lawley
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia.
| |
Collapse
|