1
|
Mohamed G, Ji A, Cao X, Islam MS, Hassan MF, Zhao Y, Lan X, Dong W, Wu H, Xu W. A small antimicrobial peptide derived from a Burkholderia bacterium exhibits a broad-spectrum and high inhibiting activities against crop diseases. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39539019 DOI: 10.1111/pbi.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/14/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
Crop diseases cause significant quality and yield losses to global crop products each year and are heavily controlled by chemicals along with very limited antibiotics composed of small molecules. However, these methods often result in environmental pollution and pest resistance, necessitating the development of new bio-controlling products to mitigate these hazards. To identify effective antimicrobial peptides (AMPs) considered as potential sources of future antibiotics, AMPs were screened from five bacterial strains showing antagonism against a representative phytopathogenic fungus (Rhizoctonia Solani) through the Bacillus subtilis expression system, which has been developed for identifying bacterial AMPs by displaying autolysis morphologies. A total of 5000 colonies were screened, and five displaying autolysis morphologies showed antagonism against R. solani. A novel AMP with the strongest antagonism efficiency was determined and tentatively named HR2-7, which is composed of 24 amino acids with an alpha-helical structure. HR2-7 has strong and broad-spectrum antimicrobial activity, tested against 10 g-positive and -negative bacteria and four phytopathogenic fungi by contact culture in plates with minimal lethal concentrations of 4.0 μM. When applied as purified peptide or in fermented B. subtilis culture solution, HR2-7 showed strong controlling efficiency on plants against diverse fungal and bacterial pathogens. Based on current understanding, HR2-7 is recognized as the first AMP derived from an agricultural antagonistic bacterium. It exhibits wide-ranging and notable antimicrobial efficacy, offering a supplementary approach for managing plant diseases, in addition to conventional chemical pesticides and antibiotics.
Collapse
Affiliation(s)
- Gamarelanbia Mohamed
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Ao Ji
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Xinyu Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Md Samiul Islam
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Mohamed F Hassan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yang Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Xing Lan
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Wubei Dong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Hongqu Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
2
|
Luo M, Wang M, Xu J, Qu K, Miao Y, Liu D. Comparative transcriptome analysis reveals defense responses against soft rot induced by Pectobacterium aroidearum and Pectobacterium carotovorum in Pinellia ternata. BMC Genomics 2024; 25:831. [PMID: 39227779 PMCID: PMC11373290 DOI: 10.1186/s12864-024-10746-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Pectobacterium carotovorum and Pectobacterium aroidearum represent the primary pathogens causing variable soft rot disease. However, the fundamental defense responses of Pinellia ternata to pathogens remain unclear. Our investigation demonstrated that the disease produced by P. carotovorum is more serious than P. aroidearum. RNA-seq analysis indicated that many cell wall-related genes, receptor-like kinase genes, and resistance-related genes were induced by P. aroidearum and P. carotovorum similarly. But many different regulatory pathways exert a crucial function in plant immunity against P. aroidearum and P. carotovorum, including hormone signaling, whereas more auxin-responsive genes were responsive to P. carotovorum, while more ethylene and gibberellin-responsive genes were responsive to P. aroidearum. 12 GDSL esterase/lipase genes and 3 fasciclin-like arabinogalactan protein genes were specifically upregulated by P. carotovorum, whereas 11 receptor-like kinase genes and 8 disease resistance genes were up-regulated only by P. aroidearum. Among them, a lectin gene (part1transcript/39001) was induced by P. carotovorum and P. aroidearum simultaneously. Transient expression in N. benthamiana demonstrated that the lectin gene improves plant resistance to P. carotovorum. This study offers a comprehensive perspective on P. ternata immunity produced by different soft rot pathogens and reveals the importance of lectin in anti-soft rot of P. ternata for the first time.
Collapse
Affiliation(s)
- Ming Luo
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Mingxing Wang
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jiawei Xu
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Kaili Qu
- Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yuhuan Miao
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Dahui Liu
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
3
|
Ge M, Ouyang H, Shang Y, Biu AM, Wu X, Li C, Zuo F, Zhu Y, Xue Z, Hao J, He J. Investigation of the drug-drug interaction and incompatibility mechanism between Aconitum carmichaelii Debx and Pinellia ternata (Thunb.) Breit. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118212. [PMID: 38636577 DOI: 10.1016/j.jep.2024.118212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/03/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The combination of Aconitum carmichaelii Debx (Chuanwu, CW) and Pinellia ternata (Thunb.) Breit (Banxia, BX) forms an herbal pair within the eighteen incompatible medicaments (EIM), indicating that BX and CW are incompatible. However, the scientific understanding of this incompatibility mechanism, especially the corresponding drug-drug interaction (DDI), remains complex and unclear. AIM OF THE STUDY This study aims to explain the DDI and potential incompatibility mechanism between CW and BX based on pharmacokinetics and cocktail approach. MATERIALS AND METHODS Ultraperformance liquid chromatography-tandem mass spectrometry methods were established for pharmacokinetics and cocktail studies. To explore the DDI between BX and CW, in the pharmacokinetics study, 10 compounds were determined in rat plasma after administering CW and BX-CW herbal pair extracts. In the cocktail assay, the pharmacokinetic parameters of five probe substrates were utilized to assess the influence of BX on cytochrome P450 (CYP) isoenzyme (dapsone for CYP3A4, phenacetin for CYP1A2, dextromethorphan for CYP2D6, tolbutamide for CYP2C9, and omeprazole for CYP2C19). Finally, the DDI and incompatibility mechanism of CW and BX were integrated to explain the rationality of EIM theory. RESULTS BX not only enhances the absorption of aconitine and benzoylaconine but also accelerates the metabolism of mesaconitine, benzoylmesaconine, songorine, and fuziline. Moreover, BX affects the activity of CYP enzymes, which regulate the metabolism of toxic compounds. CONCLUSIONS BX altered the activity of CYP enzymes, consequently affecting the metabolism of toxic compounds from CW. This incompatibility mechanism may be related to the increased absorption of these toxic compounds in vivo.
Collapse
Affiliation(s)
- Minglei Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Huizi Ouyang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, 300193, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, 300193, Tianjin, China
| | - Ye Shang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Abdulmumin Muhammad Biu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiwei Wu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Caixia Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Fanjiao Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yameng Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Zixiang Xue
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jia Hao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jun He
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, 301617, Tianjin, China.
| |
Collapse
|
4
|
Zhou X, Tu Y, Xiong C, Ma C, Wang Y, Liu F, Li K. Evaluating the Efficacy of Hymexazol in Controlling Globisporangium spinosum, the Newly Identified Pathogen Causing Root Rot in Houttuynia cordata. PLANT DISEASE 2024; 108:2081-2089. [PMID: 38386301 DOI: 10.1094/pdis-10-23-2165-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Houttuynia cordata is a prevalent vegetable in several Asian countries and is commonly used as a traditional Chinese medicinal herb for treating various diseases in China. Unfortunately, its yield and quality are adversely affected by root rot. However, the pathogen responsible for the losses remains unidentified, and effective fungicides for its management have not been thoroughly explored. In this work, we demonstrate the first report of Globisporangium spinosum as the causative agent causing root rot of H. cordata. Moreover, we evaluated the efficacy of hymexazol to manage the disease, which displayed remarkable inhibitory effects against mycelial growth of G. spinosum in vitro, with EC50 values as low as 1.336 μg/ml. Furthermore, hymexazol completely inhibited sporangia in G. spinosum at a concentration of 0.3125 μg/ml. Specifically, we observed that hymexazol was highly efficacious in reducing the incidence of H. cordata root rot caused by G. spinosum in a greenhouse setting. These findings offer a potential management tool for utilization of hymexazol in controlling H. cordata root rot in field production.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yupei Tu
- EPINTEK Guiyang Ltd., Guiyang 550014, China
| | - Chunlan Xiong
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Chaoyun Ma
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang 550025, China
| | - Fengquan Liu
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Kaihuai Li
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Vegetable Industry Technology Research, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Chidike Ezeorba TP, Ezugwu AL, Chukwuma IF, Anaduaka EG, Udenigwe CC. Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum). Food Chem 2024; 435:137632. [PMID: 37801762 DOI: 10.1016/j.foodchem.2023.137632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Garlic is a popular food spice with diverse and well-established medicinal properties. Many research interests have been directed toward the biological activities of the phytochemical constituents of garlic. However, prospects of its bioactive proteins and peptides have been understudied to date. With the advances in food proteomics/peptide research, a review of studies on garlic bioactive proteins and peptides, especially on their nature, extraction, and biological activities, is timely. Garlic has been reported to express several proteins, endogenous and protein-derived peptides with interesting bioactivities, including antioxidant, anti-inflammatory, antibacterial, antifungal, anti-proliferative, antiviral, anti-hypertensive and immunomodulatory activities, suggesting their therapeutic and pharmacological potentials. Compared to legumes, the low protein contents of garlic bulbs and their low stability are possible limitations that would hinder future applications. We suggest adopting heterologous expression systems for peptide overproduction and stability enhancement. Therefore, we recommend increased scientific interest in the bioactive peptides of garlic and other spice plants.
Collapse
Affiliation(s)
- Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Molecular Biotechnology, School of Biosciences, University of Birmingham Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ifeoma Felicia Chukwuma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
6
|
Liu X, You Q, Liu M, Bo C, Zhu Y, Duan Y, Xue J, Wang D, Xue T. Assembly and comparative analysis of the complete mitochondrial genome of Pinellia ternata. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23256. [PMID: 38316513 DOI: 10.1071/fp23256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Pinellia ternata is an important natural medicinal herb in China. However, it is susceptible to withering when exposed to high temperatures during growth, which limits its tuber production. Mitochondria usually function in stress response. The P . ternata mitochondrial (mt) genome has yet to be explored. Therefore, we integrated PacBio and Illumina sequencing reads to assemble and annotate the mt genome of P . ternata . The circular mt genome of P . ternata is 876 608bp in length and contains 38 protein-coding genes (PCGs), 20 tRNA genes and three rRNA genes. Codon usage, sequence repeats, RNA editing and gene migration from chloroplast (cp) to mt were also examined. Phylogenetic analysis based on the mt genomes of P . ternata and 36 other taxa revealed the taxonomic and evolutionary status of P . ternata . Furthermore, we investigated the mt genome size and GC content by comparing P . ternata with the other 35 species. An evaluation of non-synonymous substitutions and synonymous substitutions indicated that most PCGs in the mt genome underwent negative selection. Our results provide comprehensive information on the P . ternata mt genome, which may facilitate future research on the high-temperature response of P . ternata and provide new molecular insights on the Araceae family.
Collapse
Affiliation(s)
- Xiao Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Qian You
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Mengmeng Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| | - Dexin Wang
- College of Agriculture and Engineering, Heze University, Heze, Shandong, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui 235000, China
| |
Collapse
|
7
|
Bo C, Su C, Teng J, Sheng W, Xue T, Zhu Y, Xue J. Transcriptome Profiling Reveals Differential Gene Expression during the Process of Microtuber Formation in Pinellia ternata. Int J Mol Sci 2023; 24:11604. [PMID: 37511363 PMCID: PMC10380585 DOI: 10.3390/ijms241411604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Using petiole material as explants and directly inducing the formation of microtubers without going through the callus stage is an essential way to rapidly expand scarce medical plants such as Pinellia ternata. However, the early molecular mechanism underlying the formation of the microtuber is largely elusive. Here, we conducted cytology and dynamic transcriptome analyses of inchoate microtubers in Pinellia explants and identified 1092 differentially expressed genes after their cultivation in vitro for 0, 5, and 15 days. Compared with 0 day, the number and size of the microtuber cells were larger at 5 and 15 days of culture. Detailed categorization revealed that the differentially expressed genes were mainly related to responses to stimulus, biological regulation, organelles, membranes, transcription factor activity, and protein binding. Further analysis revealed that the microtuber at different incubation days exhibited quite a difference in both hormone signaling pathway transduction and the regulation pattern of transcription factors. Therefore, this study contributes to a better understanding of the early molecular regulation during the formation of the microtuber and provides new insights for the study of the rapid expansion of P. ternata and other medical plants.
Collapse
Affiliation(s)
- Chen Bo
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Chuandong Su
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jingtong Teng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wei Sheng
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yanfang Zhu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
8
|
Zhao L, Islam MS, Song P, Zhu L, Dong W. Isolation and Optimization of a Broad-Spectrum Synthetic Antimicrobial Peptide, Ap920-WI, from Arthrobacter sp. H5 for the Biological Control of Plant Diseases. Int J Mol Sci 2023; 24:10598. [PMID: 37445776 DOI: 10.3390/ijms241310598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Antimicrobial peptides (AMPs) are naturally occurring molecules found in various organisms that can help to defend against invading microorganisms and reduce the likelihood of drug resistance development. This study focused on the isolation of new AMPs from the genome library of a Gram-positive bacterium called Arthrobacter sp. H5. To achieve this, we used the Bacillus subtilis expression system and employed bioinformatics techniques to optimize and modify the peptides, resulting in the development of a new synthetic antimicrobial peptide (SAMP). Ap920 is expected to be a new antimicrobial peptide with a high positive charge (+12.5). Through optimization, a new synthetic antimicrobial peptide, Ap920-WI, containing only 15 amino acids, was created. Thereafter, the antimicrobial and antifungal activities of Ap920-WI were determined using minimum inhibitory concentration (MIC) and the concentration for 50% of maximal effect (EC50). The Ap920-WI peptide was observed to target the outer membrane of fungal hyphae, leading to inhibition of growth in Rhizoctonia Solani, Sclerotinia sclerotiorum, and Botrytis cinerea. In plants, Ap920-WI showed significant antifungal activity and inhibited the infestation of S. sclerotiorum on rape leaves. Importantly, Ap920-WI was found to be safe for mammalian cells since it did not show any hemolytic activity against sheep red blood cells. Overall, the study found that the new synthetic antimicrobial peptide Ap920-WI exhibits broad-spectrum activity against microorganisms and may offer a new solution for controlling plant diseases, as well as hold potential for drug development.
Collapse
Affiliation(s)
- Li Zhao
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease, Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease, Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Pei Song
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease, Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease, Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease, Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Duan X, Chen L, Liu Y, Chen H, Wang F, Hu Y. Integrated physicochemical, hormonal, and transcriptomic analysis reveals the underlying mechanism of callus formation in Pinellia ternata hydroponic cuttings. FRONTIERS IN PLANT SCIENCE 2023; 14:1189499. [PMID: 37409296 PMCID: PMC10319145 DOI: 10.3389/fpls.2023.1189499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Introduction P. ternata is a perennial herb of the family Araceae that grows in China and has various medicinal properties and applications. At present, the artificial cultivation of P. ternata is constrained by seedling propagation. To address the problems of low seedling breeding propagation efficiency and high cost, our group has developed a highly efficient cultivation technology for "hydroponic cuttings of P. ternata "for the first time. P. ternata is used as the source material and is grown in a hydroponic system, increasing the seedling production rate 10-fold compared with the traditional cultivation mode. However, the callus formation mechanism in cuttings from hydroponic cultivation is still remains unclear. Methods In order to better understand the biological process of callus formation in cuttings from hydroponic P. ternata, anatomical characterization, endogenous hormone content determination and transcriptome sequencing were performed on five callus stages from early growth to early senescence. Results Regarding the four major hormones during the callus developmental stages of P. ternata hydroponic cuttings, cytokinins showed an increasing trend during callus formation. IAA(indole-3-acetic acid) and abscisic acid contents increased at 8d and then decreased, while jasmonic acid content gradually decreased. A total of 254137 unigenes were identified by transcriptome sequencing in five callus formation stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes (DEGs) that differentially expressed unigenes were involved in various plant hormone signaling and hormone synthesis-related pathways. The expression patterns of 7 genes were validated using quantitative real-time PCR. Discussion This study presented integrated transcriptomic and metabolic analysis approach to obtain insights into the underlying biosynthetic mechanisms and function of key hormones involved in the callus formation process from hydroponic P. ternata cuttings.
Collapse
Affiliation(s)
| | | | | | - Hongping Chen
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| | - Fu Wang
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| | - Yuan Hu
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| |
Collapse
|
10
|
Chen C, Sun Y, Wang Z, Huang Z, Zou Y, Yang F, Hu J, Cheng H, Shen C, Wang S. Pinellia genus: A systematic review of active ingredients, pharmacological effects and action mechanism, toxicological evaluation, and multi-omics application. Gene 2023; 870:147426. [PMID: 37044184 DOI: 10.1016/j.gene.2023.147426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
The dried tuber of Pinellia ternata (Thunb.) Breit, Pinelliae Rhizoma (PR, also named 'Banxia' in Chinese), is widely used in traditional medicine. This review aims to provide detail summary of active ingredients, pharmacological effects, toxic ingredients, detoxification strategies, and omic researches, etc. Pharmacological ingredients from PR are mainly classified into six categories: alkaloids, amino acids, polysaccharides, phenylpropanoids, essential oils, and glucocerebrosides. Diversity of chemical composition determines the broad-spectrum efficacy and gives a foundation for the comprehensive utilization of P. ternata germplasm resources. The pharmacological compounds are involved in inhibition of cancer cells by targeting various pathways, including activation of immune system, inhibition of proliferation and cycle, induction of apoptosis, and inhibition of angiogenesis. The pharmacological components of PR act on nervous system by targeting neurotransmitters, activating immune system, decreasing apoptosis, and increasing redox system. Lectins, one major class of the toxic ingredients extracted from raw PR, possess significant toxic effects on human cells. Inflammatory factors, cytochrome P450 proteins (CYP) family enzymes, mammalian target of rapamycin (mTOR) signaling factors, transforming growth factor-β (TGF-β) signaling factors, and nervous system, are considered to be the target sites of lectins. Recently, omic analysis is widely applied in Pinellia genus studies. Plastome genome-based molecular markers are deeply used for identifying and resolving phylogeny of Pinellia genus plants. Various omic works revealed and functional identified a series of environmental stress responsive factors and active component biosynthesis-related genes. Our review summarizes the recent progress in active and toxic ingredient evaluation, pharmacological effects, detoxification strategies, and functional gene identification and accelerates efficient utilization of this traditional herb.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yunting Sun
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311121, China.
| | - Zhijing Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhihua Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yuqing Zou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Feifei Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jing Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Huijuan Cheng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Shuling Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
11
|
Pandey C, Prabha D, Negi YK, Maheshwari DK, Dheeman S, Gupta M. Macrolactin a mediated biocontrol of Fusarium oxysporum and Rhizoctonia solani infestation on Amaranthus hypochondriacus by Bacillus subtilis BS-58. Front Microbiol 2023; 14:1105849. [PMID: 36970695 PMCID: PMC10032343 DOI: 10.3389/fmicb.2023.1105849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Plant diseases are one of the main hurdles for successful crop production and sustainable agriculture development world-wide. Though several chemical measures are available to manage crop diseases, many of them have serious side effects on humans, animals and the environment. Therefore, the use of such chemicals must be limited by using effective and eco-friendly alternatives. In view of the same, we found a Bacillus subtilis BS-58 as a good antagonist towards the two most devastating phytopathogens, i.e., Fusarium oxysporum and Rhizoctonia solani. Both the pathogens attack several agricultural crops (including amaranth) and induce a variety of infections in them. The findings of scanning electron microscopy (SEM) in this study suggested that B. subtilis BS-58 could inhibit the growth of both the pathogenic fungi by various means such as perforation, cell wall lysis, and cytoplasmic disintegration in the fungal hyphae. Thin-layer chromatography, LC–MS and FT-IR data revealed the antifungal metabolite to be macrolactin A with a molecular weight of 402 Da. Presence of the mln gene in the bacterial genome further endorsed that the antifungal metabolite produced by BS-58 was macrolactin A. Pot trial conducted in the present study showed that seed treatment by BS-58 effectively reduced seedling mortality (54.00 and 43.76%) in amaranth, when grown in pathogen infested soil (F. oxysporum and R. solani, respectively), when compared to their respective negative controls. Data also revealed that the disease suppression ability of BS-58 was almost equivalent to the recommended fungicide, carbendazim. SEM analysis of roots of the seedlings recovered from pathogenic attack substantiated the hyphal disintegration by BS-58 and prevention of amaranth crop. The findings of this study conclude that macrolactin A produced by B. subtilis BS-58 is responsible for the inhibition of both the phytopathogens and the suppression of the diseases caused by them. Being native and target specific, such strains under suitable conditions, may result in ample production of antibiotic and better suppression of the disease.
Collapse
Affiliation(s)
- Chitra Pandey
- Department of Basic Sciences, College of Forestry (VCSG UUHF), Tehri Garhwal, Uttarakhand, India
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Deepti Prabha
- Department of Seed Science and Technology, School of Agriculture and Allied Sciences, HNB Garhwal University, Srinagar, Pauri Garhwal, Uttarakhand, India
| | - Yogesh Kumar Negi
- Department of Basic Sciences, College of Forestry (VCSG UUHF), Tehri Garhwal, Uttarakhand, India
- *Correspondence: Yogesh Kumar Negi,
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Shrivardhan Dheeman
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Monika Gupta
- Amity Institute of Microbial Technology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
12
|
Bai J, Qi J, Yang L, Wang Z, Wang R, Shi Y. A comprehensive review on ethnopharmacological, phytochemical, pharmacological and toxicological evaluation, and quality control of Pinellia ternata (Thunb.) Breit. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115650. [PMID: 35988838 DOI: 10.1016/j.jep.2022.115650] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pinellia ternata tuber (PTT), the dried tuber of Pinellia ternata (Thunb.) Breit., has a long history of use in traditional Chinese medicine for drying dampness, resolving phlegm, down-bearing counterflow to check vomiting and dissipating masses. Modern pharmacology studies have revealed that PTT has diverse pharmacological effects such as antitussive and expectorant, anti-emetic, anti-tumor, and anti-inflammatory effect, etc. AIM OF THE REVIEW: This review aims to provide a critical and comprehensive evaluation on ethnopharmacological uses, chemical constituents, pharmacological and toxicological effects, analytical methods and quality control of PTT, which would provide scientific evidence for exploring future therapeutic, and formulating quality and safety criteria of PTT. MATERIALS AND METHODS Pertinent information was systematically collected from several electronic scientific databases including Web of Science, Science Direct, PubMed, Elsevier, Wiley Online Library and China national knowledge infrastructure (CNKI), as well as the classic Chinese medical books. RESULTS PTT is reported to be widely used traditionally for the treatment of cough, vomiting, infection, and inflammatory diseases in many southeast Asian countries. Phytochemical studies have revealed the presence of a total of 233 compounds belonging to alkaloids, nucleosides, organic acids, polysaccharides, volatile oils, amino acids, proteins, starches, etc. The extracts and components of PTT have possessed diverse pharmacological activities, such as antitussive, antiemetic, antitumor, antibacterial, and sedative-hypnotic activities. Raw P. ternata tuber (RPTT) with a pungent taste causes acrid irritation of the oral and laryngopharynx mucosa when taken by mistake, while its toxicity and side effects of RPTT can be dramatically reduced with proper processing. Three kinds of processed P. ternata tuber with different processing methods are available and traded in market, as well as applied in clinical treatments. Additionally, although raw or processed PTT have been recorded in several mainstream pharmacopoeias such as Chinese Pharmacopoeia, Japanese Pharmacopoeia, and Korean Pharmacopoeia, the quality items and requirements varies a lot. Therefore, a unified international standard of raw and processed PTT is urgent need to be done. CONCLUSIONS The ethnopharmacological, phytochemical, pharmacological and toxicological and quality evaluation of PTT were highlighted in this review, which provides potential reference information to future investigate and commercially explore for pharmaceutical applications. Nevertheless, an efficient method for chemical profiling is still unavailable to find potent bioactive markers for quality control, and then comprehensive pharmacological effects and mechanisms and toxicological evaluation of PTT require further detailed research to ensure their quality and safety.
Collapse
Affiliation(s)
- Jing Bai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianbo Qi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yanhong Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
13
|
Zhang J, Islam MS, Wang J, Zhao Y, Dong W. Isolation of Potato Endophytes and Screening of Chaetomium globosum Antimicrobial Genes. Int J Mol Sci 2022; 23:ijms23094611. [PMID: 35563004 PMCID: PMC9099842 DOI: 10.3390/ijms23094611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/09/2022] [Accepted: 04/19/2022] [Indexed: 01/07/2023] Open
Abstract
Antimicrobial peptides (AMPs) have natural antibacterial activities that pathogens find difficult to overcome. As a result of this occurrence, AMPs can act as an important substitute against the microbial resistance. In this study, we used plate confrontation tests to screen out 20 potential endophytes from potato tubers. Among them, endophyte F5 was found to significantly inhibit the growth of five different pathogenic fungi. Following that, phylogenetic analysis revealed that the internal transcribed spacer (ITS) sequences were 99% identical to Chaetomium globosum corresponding sequences. Thereafter, the Bacillus subtilis expression system was used to create a C. globosum cDNA library in order to isolate the resistance genes. Using this approach, the resistance gene screening technology in the indicator bacteria built-in library was used to identify two antimicrobial peptides, CgR2150 and CgR3101, with broad-spectrum antibacterial activities. Furthermore, the results showed that CgR2150 and CgR3101 have excellent UV, thermal, and enzyme stabilities. Also, these two peptides can significantly inhibit the growth of various bacteria (Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, Clavibacter michiganensis, and Clavibacter fangii) and fungi (Fusarium graminearum, Rhizoctonia solani, and Botrytis cinerea). Scanning electron microscopy (SEM) observations revealed that CgR2150 and CgR3101 peptides act against bacteria by disrupting bacterial cell membranes. Moreover, hemolytic activity assay showed that neither of the two peptides exhibited significant hemolytic activity. To conclude, the antimicrobial peptides CgR2150 and CgR3101 are promising in the development of a new antibacterial agent and for application in plant production.
Collapse
Affiliation(s)
| | | | | | | | - Wubei Dong
- Correspondence: ; Tel.: +86-150-0710-9436
| |
Collapse
|
14
|
Xiao YG, Wu HB, Chen JS, Li X, Qiu ZK. Exploring the Potential Antidepressant Mechanisms of Pinellia by Using the Network Pharmacology and Molecular Docking. Metab Brain Dis 2022; 37:1071-1094. [PMID: 35230627 DOI: 10.1007/s11011-022-00930-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
About 350 million people worldwide suffered from depression, but less than half of the patients received effective and regular treatments. Traditional Chinese Medicine (TCM) such as pinellia has been proven effective for antidepressant treatment with fewer side effects. However, the exact mechanisms remain unclear. Herein, we use the methods of network pharmacology and molecular docking to analyze the effective monomer components of pinellia and reveal the involved signaling pathways to produce antidepressant effects. TCMSP, BATMAN-TCM, and TCMID databases were utilized to analyze the bioactive ingredients and target genes derived from pinellia via the screening the molecular weight (MW), oral bioavailability (OB), blood-brain barrier (BBB) and drug similarity (DL). OMIM, TTD, DisGeNET, GeneCards and DrugBank databases were used to obtain key genes of depression. Then, the networks of protein-protein interaction (PPI) and "medicine-ingredients-targets-pathways" were built. The target signaling pathways were enriched by GO and KEGG by using R language. Furthermore, bioactive ingredients binding of the targets were verified by molecular docking. Nine active monomer ingredients and 96 pivotal gene targets were selected from pinellia. 10,124 disease genes and 87 drug-disease intersecting genes were verified. GO analysis proposed that the receptor activity of neurotransmitter, postsynaptic neurotransmitter, G protein-coupled neurotransmitter, and acetylcholine through the postsynaptic membrane could be modulated by pinellia. KEGG pathway analysis revealed that pinellia influenced depression-related neural tissue interaction, cholinergic synapse, serotonin activated synapse and calcium signaling pathway. Besides, the reliability and accuracy of results obtained from the indirect network pharmacology were validated by molecular docking. The bioactive components of pinellia made significant antidepressant effects by regulating the key target genes/proteins in the pathophysiology of depression.
Collapse
Affiliation(s)
- Yu-Gang Xiao
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Han-Biao Wu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Ji-Sheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Xiong Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510080, People's Republic of China.
| | - Zhi-Kun Qiu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.
| |
Collapse
|
15
|
Xiaofang L, Wenhuan H, Xingfu T, Yanhong Z. Identification of the roselle root rot pathogen and its sensitivity to different fungicides. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
16
|
Liu G, Zuo DY, Yang P, He WJ, Yang Z, Zhang JB, Wu AB, Yi SY, Li HP, Huang T, Liao YC. A Novel Deoxynivalenol-Activated Wheat Arl6ip4 Gene Encodes an Antifungal Peptide with Deoxynivalenol Affinity and Protects Plants against Fusarium Pathogens and Mycotoxins. J Fungi (Basel) 2021; 7:jof7110941. [PMID: 34829228 PMCID: PMC8618893 DOI: 10.3390/jof7110941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most widespread trichothecene mycotoxins in contaminated cereal products. DON plays a vital role in the pathogenesis of Fusarium graminearum, but the molecular mechanisms of DON underlying Fusarium–wheat interactions are not yet well understood. In this study, a novel wheat ADP-ribosylation factor-like protein 6-interacting protein 4 gene, TaArl6ip4, was identified from DON-treated wheat suspension cells by suppression subtractive hybridization (SSH). The qRT-PCR result suggested that TaArl6ip4 expression is specifically activated by DON in both the Fusarium intermediate susceptible wheat cultivar Zhengmai9023 and the Fusarium resistant cultivar Sumai3. The transient expression results of the TaARL6IP4::GFP fusion protein indicate that TaArl6ip4 encodes a plasma membrane and nucleus-localized protein. Multiple sequence alignment using microscale thermophoresis showed that TaARL6IP4 comprises a conserved DON binding motif, 67HXXXG71, and exhibits DON affinity with a dissociation constant (KD) of 91 ± 2.6 µM. Moreover, TaARL6IP4 exhibited antifungal activity with IC50 values of 22 ± 1.5 µM and 25 ± 2.6 µM against Fusarium graminearum and Alternaria alternata, respectively. Furthermore, TaArl6ip4 interacted with the plasma membrane of Fusarium graminearum spores, resulting in membrane disruption and the leakage of cytoplasmic materials. The heterologous over-expression of TaArl6ip4 conferred greater DON tolerance and Fusarium resistance in Arabidopsis. Finally, we describe a novel DON-induced wheat gene, TaArl6ip4, exhibiting antifungal function and DON affinity that may play a key role in Fusarium–wheat interactions.
Collapse
Affiliation(s)
- Gang Liu
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dong-Yun Zuo
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei-Jie He
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zheng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ai-Bo Wu
- Key Laboratory of Food Safety Research Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - Shu-Yuan Yi
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430070, China
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (T.H.); (Y.-C.L.)
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (G.L.); (D.-Y.Z.); (P.Y.); (W.-J.H.); (Z.Y.); (J.-B.Z.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (T.H.); (Y.-C.L.)
| |
Collapse
|
17
|
Islam MS, Mohamed G, Polash SA, Hasan MA, Sultana R, Saiara N, Dong W. Antimicrobial Peptides from Plants: A cDNA-Library Based Isolation, Purification, Characterization Approach and Elucidating Their Modes of Action. Int J Mol Sci 2021; 22:8712. [PMID: 34445412 PMCID: PMC8395713 DOI: 10.3390/ijms22168712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 12/19/2022] Open
Abstract
Even in a natural ecosystem, plants are continuously threatened by various microbial diseases. To save themselves from these diverse infections, plants build a robust, multilayered immune system through their natural chemical compounds. Among the several crucial bioactive compounds possessed by plants' immune systems, antimicrobial peptides (AMPs) rank in the first tier. These AMPs are environmentally friendly, anti-pathogenic, and do not bring harm to humans. Antimicrobial peptides can be isolated in several ways, but recombinant protein production has become increasingly popular in recent years, with the Escherichia coli expression system being the most widely used. However, the efficacy of this expression system is compromised due to the difficulty of removing endotoxin from its system. Therefore, this review suggests a high-throughput cDNA library-based plant-derived AMP isolation technique using the Bacillus subtilis expression system. This method can be performed for large-scale screening of plant sources to classify unique or homologous AMPs for the agronomic and applied field of plant studies. Furthermore, this review also focuses on the efficacy of plant AMPs, which are dependent on their numerous modes of action and exceptional structural stability to function against a wide range of invaders. To conclude, the findings from this study will be useful in investigating how novel AMPs are distributed among plants and provide detailed guidelines for an effective screening strategy of AMPs.
Collapse
Affiliation(s)
- Md. Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | - Gamarelanbia Mohamed
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| | | | - Md. Amit Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Razia Sultana
- State Key Laboratory of Agricultural Microbiology, Department of Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Noshin Saiara
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh;
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (M.S.I.); (G.M.)
| |
Collapse
|
18
|
Prediction and Activity of a Cationic α-Helix Antimicrobial Peptide ZM-804 from Maize. Int J Mol Sci 2021; 22:ijms22052643. [PMID: 33807972 PMCID: PMC7961353 DOI: 10.3390/ijms22052643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules consisting of less than fifty residues of amino acids. Plant AMPs establish the first barrier of defense in the innate immune system in response to invading pathogens. The purpose of this study was to isolate new AMPs from the Zea mays L. inbred line B73 and investigate their antimicrobial activities and mechanisms against certain essential plant pathogenic bacteria. In silico, the Collection of Anti-Microbial Peptides (CAMPR3), a computational AMP prediction server, was used to screen a cDNA library for AMPs. A ZM-804 peptide, isolated from the Z. mays L. inbred line B73 cDNA library, was predicted as a new cationic AMP with high prediction values. ZM-804 was tested against eleven pathogens of Gram-negative and Gram-positive bacteria and exhibited high antimicrobial activities as determined by the minimal inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs). A confocal laser scanning microscope observation showed that the ZM-804 AMP targets bacterial cell membranes. SEM and TEM images revealed the disruption and damage of the cell membrane morphology of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato (Pst) DC3000 caused by ZM-804. In planta, ZM-804 demonstrated antimicrobial activity and prevented the infection of tomato plants by Pst DC3000. Moreover, four virulent phytopathogenic bacteria were prevented from inducing hypersensitive response (HR) in tobacco leaves in response to low ZM-804 concentrations. ZM-804 exhibits low hemolytic activity against mouse red blood cells (RBCs) and is relatively safe for mammalian cells. In conclusion, the ZM-804 peptide has a strong antibacterial activity and provides an alternative tool for plant disease control. Additionally, the ZM-804 peptide is considered a promising candidate for human and animal drug development.
Collapse
|
19
|
Mao R, He Z. Pinellia ternata (Thunb.) Breit: A review of its germplasm resources, genetic diversity and active components. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113252. [PMID: 32798614 DOI: 10.1016/j.jep.2020.113252] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/15/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The medicinal plant Pinellia ternata has been widely used in China, Korea, and Japan and has been demonstrated to be highly effective for treating cough, vomiting, infection, and inflammatory diseases. Modern pharmacological investigations have demonstrated its multiple activities, such as antitussive, expectorant, antiemetic, antitumor, antibacterial, and sedative-hypnotic activities. AIM OF THE REVIEW This review aims to summarize the information about the biological traits, genetic diversity, active components, and continuous cropping obstacle of P. ternata in order to improve its use. MATERIALS AND METHODS In this review, the relevant literature was gathered by using Pinellia ternata, genetic diversity, active components, and continuous cropping obstacle as the keywords from Google Scholar, PubMed, Springer Link, the Wiley online library, SciFinder, SCOPUS, Baidu Scholar, China national knowledge infrastructure (CNKI), and WANFANF DATA (up to April 2020). RESULTS P. ternata is the most widely used herb in the Pinellia genus to treat several diseases. The genetic diversity of P. ternata has been extensively studied, and its high genetic diversity level in China has been demonstrated. Modern pharmacological research has indicated that amino acids, alkaloids, and polysaccharides are the main active components supporting P. ternata's medicinal effects. However, an efficient method for determining its active components is still unavailable. The method used to evaluate Pinelliae Rhizoma (PR) quality standards should be further optimized. The continuous cropping obstacle has a significant effect on the quantity and quality of P. ternata. The underlying mechanism of the continuous cropping obstacle needs to be further explored. CONCLUSIONS P. ternata has emerged as a valuable source of traditional medicine. Some uses of P. ternata in medicine have been validated by pharmacological investigations. However, a more efficient analytical method should be established to evaluate the quality of PR based on multiple quality markers. Furthermore, high-performance liquid chromatography (HPLC) and DNA barcoding should be introduced to identify the authenticity of PR. In addition, the genes involved in the metabolic synthesis pathways of the main active components, population genetic relationships, the quality control of processed PR, and the continuous cropping obstacle need to be further elucidated. We hope this review will allow for better utilization of this valuable herb.
Collapse
Affiliation(s)
- Renjun Mao
- College of Life Sciences & Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, 716000, Shaanxi, China.
| | - Zhigui He
- School of Leisure and Health, Guilin Tourism University, Guilin, 541006, Guangxi, China.
| |
Collapse
|
20
|
Islam MS, Mahmud S, Sultana R, Dong W. Identification and in silico molecular modelling study of newly isolated Bacillus subtilis SI-18 strain against S9 protein of Rhizoctonia solani. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
21
|
Li J, Islam S, Guo P, Hu X, Dong W. Isolation of Antimicrobial Genes from Oryza rufipogon Griff by Using a Bacillus subtilis Expression System with Potential Antimicrobial Activities. Int J Mol Sci 2020; 21:E8722. [PMID: 33218175 PMCID: PMC7698926 DOI: 10.3390/ijms21228722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/27/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial genes are distributed in all forms of life and provide a primary defensive shield due to their unique broad-spectrum resistance activities. To better isolate these genes, we used the Bacillus subtilis expression system as the host cells to build Oryza rufipogon Griff cDNA libraries and screen potential candidate genes from the library at higher flux using built-in indicator bacteria. We observed that the antimicrobial peptides OrR214 and OrR935 have strong antimicrobial activity against a variety of Gram-positive and Gram-negative bacteria, as well as several fungal pathogens. Owing to their high thermal and enzymatic stabilities, these two peptides can also be used as field biocontrol agents. Furthermore, we also found that the peptide OrR214 (MIC 7.7-10.7 μM) can strongly inhibit bacterial growth compared to polymyxin B (MIC 5-25 μM) and OrR935 (MIC 33-44 μM). The cell flow analysis, reactive oxygen burst, and electron microscopy (scanning and transmission electron microscopy) observations showed that the cell membranes were targeted by peptides OrR214 and OrR935, which revealed the mode of action of bacteriostasis. Moreover, the hemolytic activity, toxicity, and salt sensitivity experiments demonstrated that these two peptides might have the potential to be used for clinical applications. Overall, OrR214 and OrR935 antimicrobial peptides have a high-throughput bacteriostatic activity that acts as a new form of antimicrobial agent and can be used as a raw material in the field of drug development.
Collapse
Affiliation(s)
| | | | | | | | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; (J.L.); (S.I.); (P.G.); (X.H.)
| |
Collapse
|
22
|
Fulano AM, Shen D, Zhang EH, Shen X, Chou SH, Minamino T, Puopolo G, Qian G. Functional divergence of flagellar type III secretion system: A case study in a non-flagellated, predatory bacterium. Comput Struct Biotechnol J 2020; 18:3368-3376. [PMID: 33294133 PMCID: PMC7688988 DOI: 10.1016/j.csbj.2020.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/19/2023] Open
Abstract
The lack of functional flagella and the ability to prey upon other microorganisms are well-known traits of Lysobacter enzymogenes, a plant beneficial bacterial species. Here, we report a possible link between these two traits in the model strain L. enzymogenes OH11 (OH11). The genome of OH11 encompasses several homologous genes involved in the flagellum formation but it lacks a functional fliC, encoding the flagellin. Despite the lack of the main component of the flagellum, OH11 genome includes genes involved in the flagellar type III secretion system (FT3SS), which is commonly deployed by flagellated bacteria to transport flagellar subunit proteins. To understand the role played by FT3SS in OH11, we showed that the remaining FT3SS genes were expressed under laboratory conditions. Subsequently, we showed that the identified FT3SS genes involved in the secretion of the hook-capping protein FlgD, suggesting OH11 likely possessed a functional FT3SS system. Blocking FT3SS in OH11 via inactivation of the ATPase FliI impaired the secretion of the proteins Le3970 (protease), Le4493 (ß-1,3-glucanase A) and Le1659 (halo acid dehalogenase family), that showed a toxic activity against the yeast Saccharomyces cerevisiae. The possible link between FT3SS and OH11 antagonism towards S. cerevisiae was also confirmed by loss of toxicity in both mutants of ΔfliI and ΔflhB that lacks the FT3SS structural gene flhB when co-cultured with the yeast strain. The design of synthetic proteins toxic against the Gram-negative bacterium Ralstonia solanacearum further supported the involvement of FT3SS in the ability of OH11 to parasitize other microorganisms. Overall, these results revealed a possible cooption of components of FT3SS system in the competition with other microorganisms in the plant beneficial bacterium OH11 and highlighted a functional divergence of FT3SS between flagellated and non-flagellated bacteria.
Collapse
Affiliation(s)
- Alex M. Fulano
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, PR China
| | - Danyu Shen
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, PR China
| | - En-Hui Zhang
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xi Shen
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Gerardo Puopolo
- Department of Sustainable Agro-ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all'Adige, Italy
- Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38010 San Michele all'Adige, Italy
| | - Guoliang Qian
- College of Plant Protection (Laboratory of Plant Immunity; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
23
|
Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020; 10:13346. [PMID: 32770019 PMCID: PMC7414872 DOI: 10.1038/s41598-020-70314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mohsin Ali
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
24
|
Qutb AM, Wei F, Dong W. Prediction and Characterization of Cationic Arginine-Rich Plant Antimicrobial Peptide SM-985 From Teosinte ( Zea mays ssp. mexicana). Front Microbiol 2020; 11:1353. [PMID: 32636825 PMCID: PMC7318549 DOI: 10.3389/fmicb.2020.01353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 05/26/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are effective against different plant pathogens and newly considered as part of plant defense systems. From prokaryotes to eukaryotes, AMPs can exist in all forms of life. SM-985 is a cationic AMP (CAMP) isolated from the cDNA library of Mexican teosinte (Zea mays ssp. mexicana). A computational prediction server running with different algorithms was used to screen the teosinte cDNA library for AMPs, and the SM-985 peptide was predicted as an AMP with high probability prediction values. SM-985 is an arginine-rich peptide and composed of 21 amino acids (MW: 2671.06 Da). The physicochemical properties of SM-985 are very promising as an AMP, including the net charge (+8), hydrophobicity ratio of 23%, Boman index of 5.19 kcal/mol, and isoelectric point of 12.95. The SM-985 peptide has amphipathic α-helix conformations. The antimicrobial activity of SM-985 was confirmed against six bacterial plant pathogens, and the MIC of SM-985 against Gram-positive indicators was 8 μM, while the MIC of SM-985 against Gram-negative indicators was 4 μM. The SM-985 interacting with the bacterial membrane and this interaction were examined by treatment of the bacterial indicators with FITC-SM-985 peptide, which showed a high binding affinity of SM-985 to the bacterial membrane (whether Gram-positive or Gram-negative). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of the treated bacteria with SM-985 demonstrated cell membrane damage and cell lysis. In vivo antimicrobial activity was examined, and SM-985 prevented leaf spot disease infection caused by Pst DC3000 on Solanum lycopersicum. Moreover, SM-985 showed sensitivity to calcium chloride salt, which is a common feature of CAMPs.
Collapse
Affiliation(s)
- Abdelrahman M. Qutb
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Feng Wei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
25
|
Wu J, Abbas HMK, Li J, Yuan Y, Liu Y, Wang G, Dong W. Cell Membrane-Interrupting Antimicrobial Peptides from Isatis indigotica Fortune Isolated by a Bacillus subtilis Expression System. Biomolecules 2019; 10:E30. [PMID: 31878275 PMCID: PMC7023251 DOI: 10.3390/biom10010030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
The situation of drug resistance has become more complicated due to the scarcity of plant resistance genes, and overcoming this challenge is imperative. Isatis indigotica has been used for the treatment of wounds, viral infections, and inflammation for centuries. Antimicrobial peptides (AMPs) are found in all classes of life ranging from prokaryotes to eukaryotes. To identify AMPs, I. indigotica was explored using a novel, sensitive, and high-throughput Bacillus subtilis screening system. We found that IiR515 and IiR915 exhibited significant antimicrobial activities against a variety of bacterial (Xanthomonas oryzae, Ralstonia solanacearum, Clavibacter michiganensis, and C. fangii) and fungal (Phytophthora capsici and Botrytis cinerea) pathogens. Scanning electron microscope and cytometric analysis revealed the possible mechanism of these peptides, which was to target and disrupt the bacterial cell membrane. This model was also supported by membrane fluidity and electrical potential analyses. Hemolytic activity assays revealed that these peptides may act as a potential source for clinical medicine development. In conclusion, the plant-derived novel AMPs IiR515 and IiR915 are effective biocontrol agents and can be used as raw materials in the drug discovery field.
Collapse
Affiliation(s)
- Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| | - Hafiz Muhammad Khalid Abbas
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jiale Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| | - Yuan Yuan
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing 100081, China; (Y.L.); (G.W.)
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing 100081, China; (Y.L.); (G.W.)
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China; (J.W.); (J.L.)
| |
Collapse
|
26
|
Abbas HMK, Xiang J, Ahmad Z, Wang L, Dong W. Enhanced Nicotiana benthamiana immune responses caused by heterologous plant genes from Pinellia ternata. BMC PLANT BIOLOGY 2018; 18:357. [PMID: 30558544 PMCID: PMC6296014 DOI: 10.1186/s12870-018-1598-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pinellia ternata is a Chinese traditional medicinal herb, used to cure diseases including insomnia, eclampsia and cervical carcinoma, for hundreds of years. Non-self-recognition in multicellular organisms can initiate the innate immunity to avoid the invasion of pathogens. A design for pathogen independent, heterosis based, fresh resistance can be generated in F1 hybrid was proposed. RESULTS By library functional screening, we found that P. ternata genes, named as ptHR375 and ptHR941, were identified with the potential to trigger a hypersensitive response in Nicotiana benthamiana. Significant induction of ROS and Callose deposition in N. benthamiana leaves along with activation of pathogenesis-related genes viz.; PR-1a, PR-5, PDF1.2, NPR1, PAL, RBOHB and ERF1 and antioxidant enzymes was observed. After transformation into N. benthamiana, expression of pathogenesis related genes was significantly up-regulated to generate high level of resistance against Phytophthora capsici without affecting the normal seed germination and morphological characters of the transformed N. benthamiana. UPLC-QTOF-MS analysis of ptHR375 transformed N. benthamiana revealed the induction of Oxytetracycline, Cuelure, Allantoin, Diethylstilbestrol and 1,2-Benzisothiazol-3(2H)-one as bioactive compounds. Here we also proved that F1 hybrids, produced by crossing of the ptHR375 and ptHR941 transformed and non-transformed N. benthamiana, show significant high levels of PR-gene expressions and pathogen resistance. CONCLUSIONS Heterologous plant genes can activate disease resistance in another plant species and furthermore, by generating F1 hybrids, fresh pathogen independent plant immunity can be obtained. It is also concluded that ptHR375 and ptHR941 play their role in SA and JA/ET defense pathways to activate the resistance against invading pathogens.
Collapse
Affiliation(s)
- Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jingshu Xiang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zahoor Ahmad
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Lilin Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|