1
|
Carneiro BGDS, Maia TAC, Costa V, Frieddrichsdorf SP, Gondim DV, Pereira KMA, Bezerra MM, Goes P. Platelet-rich fibrin associated to bovine bone induces bone regeneration in model of critical-sized calvaria defect of rats submitted to Zoledronic Acid therapy: PRF induces bone healing. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024:102175. [PMID: 39631530 DOI: 10.1016/j.jormas.2024.102175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE Reconstruction of bone defects prior to implant installation is a challenge, especially when the patient uses bisphosphonates. Given this difficulty, many studies investigate biomaterials that can improve the bone regeneration process. In this context, this study aimed to investigate the effect of platelet-rich fibrin (PRF) and Bio-Oss (BO) on bone regeneration of rats submitted to critical-sized calvaria defects and treated with ZA. METHODS Thirty Wistar rats received a single dose of ZA (120 μg/kg) and after 7 days, were submitted to an 8 mm calvaria defect. The animals were divided into 5 groups (n = 6): ZA, BO, PRF or BO+PRF; animals from control group did not receive ZA. All animals were euthanized 12 weeks after surgical procedure and calvaria collected to histological, histomorphometric and micro-CT analyses. RESULTS BO+PRF increased the number of osteoblasts (33 %) and osteoclasts (58 %), as well as blood vessels (70 %) and Type I collagen (52 %) (p < 0.05) compared to ZA group. CONCLUSION In summary, the association of BO+PRF improved bone healing of large bone defect in rats receiving ZA and this may be an interesting approach for the treatment to be tested in patients under anti-resorptive therapy.
Collapse
Affiliation(s)
| | - Thays Allane Cordeiro Maia
- Postgraduate program in Translational Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vanessa Costa
- Postgraduate program in Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Delane Viana Gondim
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Paula Goes
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
2
|
Zhang Y, Fardous J, Zhou Y, Wu L, Doi R, Hu J, Hirota Y, Ikegami Y, Aishima S, Ijima H. Topical delivery of gel-in-oil emulsion cocktail with growth factors for the treatment of diabetic pressure ulcers. J Biosci Bioeng 2024:S1389-1723(24)00311-6. [PMID: 39603955 DOI: 10.1016/j.jbiosc.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Healing diabetic foot ulcers (DFUs) poses a serious challenge for many individuals with diabetes. The use of biomaterials applied locally for treating DFUs has recently garnered significant attention. Here, we present a gel-in-oil nanogel dispersion (G/O-NGD) capable of local delivery of six different growth factors (GFs) via the topical route, followed by an in-vivo evaluation in mice. Both macroscopic and microscopic changes in skin structure were evidented after topical application of GF-cocktail G/O-NGD, and changes in CD68 and CD31 levels and collagen content were measured. Expression and synthesis of Interleukin-6 (IL-6), transforming GF beta 1 (TGF-β1), and basic fibroblast GF (bFGF) were also analyzed. The results showed that a significant reduction in ulcer area, restoration of skin structure, increase in collagen content, angiogenesis, and suppression of inflammation were possible with GF-cocktail G/O-NGD, indicating that G/O-NGD is a prospective carrier for local delivery of GF, improving wound healing processes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Jannatul Fardous
- Department of Pharmacy, Faculty of Science, Comilla University, Cumilla 3506, Bangladesh.
| | - Yu Zhou
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Lichun Wu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Ryota Doi
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Jia Hu
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yuya Hirota
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Shinichi Aishima
- Department of Scientific Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
3
|
Coucke B, Dilissen E, Cremer J, Schrijvers R, Theys T, Van Gerven L. Leukocyte-and Platelet-Rich Fibrin for enhanced tissue repair: an in vitro study characterizing cellular composition, growth factor kinetics and transcriptomic insights. Mol Biol Rep 2024; 51:954. [PMID: 39230578 PMCID: PMC11374859 DOI: 10.1007/s11033-024-09890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Leukocyte- and platelet-rich fibrin (L-PRF) is an autologous platelet concentrate, prepared by centrifugation of blood and consisting of a dense fibrin network with incorporated leukocytes and platelets. This study aims to perform an in-depth analysis of the cells, growth factors, and transcriptome of L-PRF. METHODS AND RESULTS Fresh, 1 week and 2 weeks cultured human L-PRF membranes and liquid L-PRF glue were characterized on cellular and transcriptional level using flow cytometry (n = 4), single-cell RNA sequencing (n = 5) and RT-qPCR. Growth factor kinetics were investigated using ELISA (EGF, VEGF, PDGF-AB, TGF-β1, bFGF). L-PRF contained a large number of viable cells (fresh 97.14 ± 1.09%, 1 week cultured 93.57 ± 1.68%), mainly granulocytes in fresh samples (53.9 ± 19.86%) and T cells in cultured samples (84.7 ± 6.1%), confirmed with scRNA-seq. Monocytes differentiate to macrophages during 1 week incubation. Specifically arterial L-PRF membranes were found to release significant amounts of VEGF, EGF, PDGF-AB and TGF-β1. CONCLUSION We characterized L-PRF using in vitro experiments, to obtain an insight in the composition of the material including a possible mechanistic role for tissue healing. This was the first study characterizing L-PRF at a combined cellular, proteomic, and transcriptional level.
Collapse
Affiliation(s)
- Birgit Coucke
- Research Group Experimental Neurosurgery and Neuroanatomy and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Herestraat 49 box 811, Leuven, B-3000, Belgium.
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium.
| | - Ellen Dilissen
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium
| | - Tom Theys
- Research Group Experimental Neurosurgery and Neuroanatomy and Leuven Brain Institute, Department of Neurosciences, KU Leuven, Herestraat 49 box 811, Leuven, B-3000, Belgium
- Neurosurgery, University Hospitals Leuven, Leuven, Belgium
| | - Laura Van Gerven
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology & Transplantation, KU Leuven, Leuven, Belgium
- Laboratory of Experimental Otorhinolaryngology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Otorhinolaryngology, Head and Neck Surgery, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Melo-Ferraz A, Coelho C, Miller P, Criado MB, Monteiro MC. Comprehensive analysis of L-PRF exudate components and their impact on whole blood platelets. Clin Oral Investig 2024; 28:470. [PMID: 39110266 DOI: 10.1007/s00784-024-05868-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/31/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE This study assessed the cellular composition and effects of leukocyte-platelet-rich fibrin (L-PRF) exudate on whole blood platelets from healthy volunteers. Key objectives included evaluating leukocyte subpopulations, platelet activation markers, platelet-leukocyte interactions and quantifying inflammatory cytokines within the L-PRF exudate. MATERIALS AND METHODS L-PRF was obtained from 20 healthy donors. Flow cytometry methodologies were used to assess intracellular calcium kinetics and activated GPIIbIIIa, and P-selectin expression. Leukocyte subpopulations and platelet-leukocyte interactions were characterized using monoclonal antibodies. Inflammatory cytokines (IL-8, IL-1β, IL-6, IL-10, TNF, IL-12p70) within L-PRF exudate were quantified using a cytometric bead array. RESULTS The expression of activated GPIIbIIIa, and P-selectin exhibited a significant increase (p < 0.001) when L-PRF exudate was added to platelets of whole blood. Regarding intracellular Ca2+ mobilization, the L-PRF exudate elicited significant responses (p < 0.001). L-PRF exudate contained different leukocytes populations, being TCD4 + the most representative of T cells. It was possible to stablish a profile of cytokines produced by the L-PRF exudate, with human IL-8 cytokine exhibiting the highest average (16.90 pg/mL). CONCLUSIONS Despite the study limitations, the research yielded important insights: 1- L-PRF exudate can stimulate platelet activation, essential in healing, tissue inflammation and remodeling. 2-The presence of leukocyte subpopulations within L-PRF exudate reflexes its complexity and potential to enhance immune responses. 3-The analysis of inflammatory cytokines within L-PRF exudate revealed its immunomodulatory potential. These findings are valuable evidences for understanding the potential role of L-PRF exudate in regenerative dentistry and medicine, offering innovative therapeutic strategies. CLINICAL RELEVANCE This research highlights crucial aspects that could significantly influence the clinical use of L-PRF exudate in the oral cavity. The findings support the application of L-PRF exudate in both surgical and regenerative dentistry, facilitating the development of innovative therapeutic strategies to enhance patient outcomes.
Collapse
Grants
- PAAALPRF_PI2RL_IINFACTS_2021 UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
- PAAALPRF_PI2RL_IINFACTS_2021 UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
- PAAALPRF_PI2RL_IINFACTS_2021 UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
- PAAALPRF_PI2RL_IINFACTS_2021 UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
- PAAALPRF_PI2RL_IINFACTS_2021 UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU and 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU
Collapse
Affiliation(s)
- António Melo-Ferraz
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, 4585-116, Portugal
| | - Cristina Coelho
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, 4585-116, Portugal
| | - Paulo Miller
- UNIPRO - Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, 4585-116, Portugal.
| | - Maria Begoña Criado
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, 4585-116, Portugal
| | - Maria Céu Monteiro
- 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, 4585-116, Portugal
| |
Collapse
|
5
|
Everts PA, Lana JF, Alexander RW, Dallo I, Kon E, Ambach MA, van Zundert A, Podesta L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int J Mol Sci 2024; 25:7914. [PMID: 39063156 PMCID: PMC11277244 DOI: 10.3390/ijms25147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Autologous platelet-rich plasma (PRP) preparations are prepared at the point of care. Centrifugation cellular density separation sequesters a fresh unit of blood into three main fractions: a platelet-poor plasma (PPP) fraction, a stratum rich in platelets (platelet concentrate), and variable leukocyte bioformulation and erythrocyte fractions. The employment of autologous platelet concentrates facilitates the biological potential to accelerate and support numerous cellular activities that can lead to tissue repair, tissue regeneration, wound healing, and, ultimately, functional and structural repair. Normally, after PRP preparation, the PPP fraction is discarded. One of the less well-known but equally important features of PPP is that particular growth factors (GFs) are not abundantly present in PRP, as they reside outside of the platelet alpha granules. Precisely, insulin-like growth factor-1 (IGF-1) and hepatocyte growth factor (HGF) are mainly present in the PPP fraction. In addition to their roles as angiogenesis activators, these plasma-based GFs are also known to inhibit inflammation and fibrosis, and they promote keratinocyte migration and support tissue repair and wound healing. Additionally, PPP is known for the presence of exosomes and other macrovesicles, exerting cell-cell communication and cell signaling. Newly developed ultrafiltration technologies incorporate PPP processing methods by eliminating, in a fast and efficient manner, plasma water, cytokines, molecules, and plasma proteins with a molecular mass (weight) less than the pore size of the fibers. Consequently, a viable and viscous protein concentrate of functional total proteins, like fibrinogen, albumin, and alpha-2-macroglobulin is created. Consolidating a small volume of high platelet concentrate with a small volume of highly concentrated protein-rich PPP creates a protein-rich, platelet-rich plasma (PR-PRP) biological preparation. After the activation of proteins, mainly fibrinogen, the PR-PRP matrix retains and facilitates interactions between invading resident cells, like macrophages, fibroblast, and mesenchymal stem cells (MSCs), as well as the embedded concentrated PRP cells and molecules. The administered PR-PRP biologic will ultimately undergo fibrinolysis, leading to a sustained release of concentrated cells and molecules that have been retained in the PR-PRP matrix until the matrix is dissolved. We will discuss the unique biological and tissue reparative and regenerative properties of the PR-PRP matrix.
Collapse
Affiliation(s)
- Peter A. Everts
- Gulf Coast Biologics, A Non-Profit Organization, Fort Myers, FL 33916, USA
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - José Fábio Lana
- OrthoRegen Group, Max-Planck University, Indaiatuba 13334-170, SP, Brazil;
| | - Robert W. Alexander
- Regenevita Biocellular Aesthetic & Reconstructive Surgery, Cranio-Maxillofacial Surgery, Regenerative and Wound Healing, Hamilton, MT 59840, USA;
- Department of Surgery & Maxillofacial Surgery, School of Medicine & Dentistry, University of Washington, Seattle, WA 98195, USA
| | - Ignacio Dallo
- Unit of Biological Therapies and MSK Interventionism, Department of Orthopaedic Surgery and Sports Medicine, Sport Me Medical Center, 41013 Seville, Spain;
| | - Elizaveta Kon
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Mary A. Ambach
- BioEvolve, San Diego Orthobiologics and Sports Center, San Diego, CA 92024, USA
| | - André van Zundert
- Department of Anaesthesia and Perioperative Medicine, Royal Brisbane and Women’s Hospital, Brisbane and The University of Queensland, Brisbane 4072, Australia;
| | - Luga Podesta
- Bluetail Medical Group & Podesta Orthopedic Sports Medicine, Naples, FL 34109, USA;
- Physical Medicine & Rehabilitation Orlando College of Osteopathic Medicine, Orlando, FL 32806, USA
| |
Collapse
|
6
|
Blanco J, García Alonso A, Hermida-Nogueira L, Castro AB. How to explain the beneficial effects of leukocyte- and platelet-rich fibrin. Periodontol 2000 2024. [PMID: 38923566 DOI: 10.1111/prd.12570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 04/15/2024] [Indexed: 06/28/2024]
Abstract
The survival of an organism relies on its ability to repair the damage caused by trauma, toxic agents, and inflammation. This process involving cell proliferation and differentiation is driven by several growth factors and is critically dependent on the organization of the extracellular matrix. Since autologous platelet concentrates (APCs) are fibrin matrices in which cells, growth factors, and cytokines are trapped and delivered over time, they are able to influence that response at different levels. The present review thoroughly describes the molecular components present in one of these APCs, leukocyte- and platelet-rich fibrin (L-PRF), and summarizes the level of evidence regarding the influence of L-PRF on anti-inflammatory reactions, analgesia, hemostasis, antimicrobial capacity, and its biological mechanisms on bone/soft tissue regeneration.
Collapse
Affiliation(s)
- Juan Blanco
- Department of Surgery (Stomatology, Unit of Periodontology), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Angel García Alonso
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Santiago de Compostela University, Santiago de Compostela, Spain
| | - Lidia Hermida-Nogueira
- Platelet Proteomics Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Santiago de Compostela University, Santiago de Compostela, Spain
| | - Ana B Castro
- Department of Oral Health Sciences, Section of Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Mourão CF, Dohle E, Bayrak B, Winter A, Sader R, Ghanaati S. Leukocytes within Autologous Blood Concentrates Have No Impact on the Growth and Proliferation of Human Primary Osteoblasts: An In Vitro Study. Int J Mol Sci 2024; 25:4542. [PMID: 38674127 PMCID: PMC11050025 DOI: 10.3390/ijms25084542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a widely used autologous blood concentrate in regenerative medicine. This study aimed to characterize the cellular composition and distribution of different PRF matrices generated by high (710 g) and low (44 g) relative centrifugal forces (RCFs) and to analyze their bioactivity on human primary osteoblasts (pOBs). PRF was separated into upper layer (UL) and buffy coat (BC) fractions, and their cellular contents were assessed using histological and immunohistochemical staining. The release of platelet-derived growth factor (PDGF) and transforming growth factor (TGF-β) was quantified using an ELISA. Indirect PRF treatment on pOBs was performed to evaluate cell viability and morphology. A histological analysis revealed higher quantities of leukocytes and platelets in the low-RCF PRF. TGF-β release was significantly higher in the low-RCF PRF compared to the high-RCF PRF. All PRF fractions promoted pOB proliferation regardless of the centrifugation protocol used. The low-RCF PRF showed higher TGF-β levels than the high-RCF PRF. These findings contribute to understanding the cellular mechanisms of PRF and provide insights into optimizing PRF protocols for bone regeneration, advancing regenerative medicine, and improving patient outcomes.
Collapse
Affiliation(s)
- Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| | - Eva Dohle
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (B.B.); (A.W.); (R.S.)
| | - Büşra Bayrak
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (B.B.); (A.W.); (R.S.)
| | - Anne Winter
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (B.B.); (A.W.); (R.S.)
| | - Robert Sader
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (B.B.); (A.W.); (R.S.)
| | - Shahram Ghanaati
- FORM—Frankfurt Orofacial Regenerative Medicine, Department for Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Medical Center of the Johann Wolfgang Goethe University, 60590 Frankfurt, Germany; (B.B.); (A.W.); (R.S.)
| |
Collapse
|
8
|
Ríos S, González LG, Saez CG, Smith PC, Escobar LM, Martínez CE. L-PRF Secretome from Both Smokers/Nonsmokers Stimulates Angiogenesis and Osteoblast Differentiation In Vitro. Biomedicines 2024; 12:874. [PMID: 38672228 PMCID: PMC11048676 DOI: 10.3390/biomedicines12040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Leukocyte and Platelet-Rich Fibrin (L-PRF) is part of the second generation of platelet-concentrates. L-PRF derived from nonsmokers has been used in surgical procedures, with its beneficial effects in wound healing being proven to stimulate biological activities such as cell proliferation, angiogenesis, and differentiation. Cigarette smoking exerts detrimental effects on tissue healing and is associated with post-surgical complications; however, evidence about the biological effects of L-PRF derived from smokers is limited. This study evaluated the impact of L-PRF secretome (LPRFS) derived from smokers and nonsmokers on angiogenesis and osteoblast differentiation. LPRFS was obtained by submerging L-PRF membranes derived from smokers or nonsmokers in culture media and was used to treat endothelial cells (HUVEC) or SaOs-2 cells. Angiogenesis was evaluated by tubule formation assay, while osteoblast differentiation was observed by alkaline phosphatase and osterix protein levels, as well as in vitro mineralization. LPRFS treatments increased angiogenesis, alkaline phosphatase, and osterix levels. Treatment with 50% of LPRFS derived from smokers and nonsmokers in the presence of osteogenic factors stimulates in vitro mineralization significantly. Nevertheless, differences between LPRFS derived from smokers and nonsmokers were not found. Both LPRFS stimulated angiogenesis and osteoblast differentiation in vitro; however, clinical studies are required to determine the beneficial effect of LPRFS in smokers.
Collapse
Affiliation(s)
- Susana Ríos
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile; (S.R.); (P.C.S.)
| | - Lina Gabriela González
- Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá 111321, Colombia (L.M.E.)
| | - Claudia Gilda Saez
- School of Medicine, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8331150, Chile;
| | - Patricio Cristian Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile; (S.R.); (P.C.S.)
| | - Lina M. Escobar
- Faculty of Dentistry, Universidad Nacional de Colombia, Bogotá 111321, Colombia (L.M.E.)
| | - Constanza Eugenia Martínez
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Catolica de Chile, Santiago 8330024, Chile; (S.R.); (P.C.S.)
- Faculty of Dentistry, Universidad de los Andes, Santiago 7620086, Chile
| |
Collapse
|
9
|
Jia K, You J, Zhu Y, Li M, Chen S, Ren S, Chen S, Zhang J, Wang H, Zhou Y. Platelet-rich fibrin as an autologous biomaterial for bone regeneration: mechanisms, applications, optimization. Front Bioeng Biotechnol 2024; 12:1286035. [PMID: 38689760 PMCID: PMC11058865 DOI: 10.3389/fbioe.2024.1286035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024] Open
Abstract
Platelet-rich fibrin, a classical autologous-derived bioactive material, consists of a fibrin scaffold and its internal loading of growth factors, platelets, and leukocytes, with the gradual degradation of the fibrin scaffold and the slow release of physiological doses of growth factors. PRF promotes vascular regeneration, promotes the proliferation and migration of osteoblast-related cells such as mesenchymal cells, osteoblasts, and osteoclasts while having certain immunomodulatory and anti-bacterial effects. PRF has excellent osteogenic potential and has been widely used in the field of bone tissue engineering and dentistry. However, there are still some limitations of PRF, and the improvement of its biological properties is one of the most important issues to be solved. Therefore, it is often combined with bone tissue engineering scaffolds to enhance its mechanical properties and delay its degradation. In this paper, we present a systematic review of the development of platelet-rich derivatives, the structure and biological properties of PRF, osteogenic mechanisms, applications, and optimization to broaden their clinical applications and provide guidance for their clinical translation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Khanbazi MH, Bigham-Sadegh A, Oryan A, Meimandi-Parizi A, Jannesar AM. The effects of allogeneic and xenogeneic lyophilized leukocyte-and platelet-rich fibrin on bone healing in rat. Injury 2024; 55:111396. [PMID: 38341998 DOI: 10.1016/j.injury.2024.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Critical size defects are one of the challenges in the treatment of fractures in humans and animals. Blood products such as leukocyte-SAand platelet-rich fibrin (L-PRF) are one of the alternatives to bone autograft to solve this challenge. This study aims to evaluate the effects of allogeneic and xenogeneic lyophilized L-PRF on bone healing in a critical defect of radius bone in rat. METHODS A defect with a diameter of 5 mm was created in the radius bone of 60 rats in four groups. The defect was left empty in the untreated group, and it was filled with autogenous bone graft, allogeneic, and xenogeneic lyophilized L-PRF, respectively, in the other three groups. Radiographic evaluation was done every two weeks, and histopathological evaluation in the 14th, 28th, and 56th days after surgery. RESULTS The radiographic scores of allogeneic and xenogeneic lyophilized l-PRF groups were significantly higher than the untreated group in all times (P<0.05). In connection with histopathological Emery's scoring system, the score of allogeneic lyophilized L-PRF was significantly higher than the untreated group (P<0.05) in the 14th and 28th days after surgery. The score of the xenogeneic lyophilized L-PRF group was also higher than the untreated group, but the difference was not significant (P>0.05). The allogeneic and xenogeneic lyophilized L-PRF scores were significantly higher than the untreated group (P < 0.05) on the 56th day. CONCLUSION The results of the present study showed that the allogeneic and xenogeneic lyophilized L-PRF can improve bone healing in the critical radius bone defect in rat model of study.
Collapse
Affiliation(s)
- M H Khanbazi
- Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A Bigham-Sadegh
- Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - A Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A Meimandi-Parizi
- Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - A M Jannesar
- Department of Veterinary Surgery and Radiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
11
|
Moraschini V, Miron RJ, Mourão CFDAB, Louro RS, Sculean A, da Fonseca LAM, Calasans Maia MD, Shibli JA. Antimicrobial effect of platelet-rich fibrin: A systematic review of in vitro evidence-based studies. Periodontol 2000 2024; 94:131-142. [PMID: 37740425 DOI: 10.1111/prd.12529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
This systematic review (SR) aimed to evaluate the antimicrobial potential of different types of platelet-rich fibrin (PRF) often used in regenerative treatments. An electronic search was performed in four databases and in Gray literature for articles published until January, 2023. The eligibility criteria comprised in vitro studies that evaluated the antimicrobial effect of different types of PRF. For the analysis of the risk of bias within studies, the modified OHAT (Office of Health Assessment and Translation) tool was used. For the evaluation of the results, a qualitative critical analysis was carried out in the synthesis of the results of the primary studies. Sixteen studies published between 2013 and 2021 were included in this SR. The antimicrobial effects of PRF variations (PRF, injectable PRF [I-PRF], PRF with silver nanoparticles [agNP-PRF], and horizontal PRF [H-PRF]), were analyzed against 16 types of bacteria from the oral, periodontal, and endodontic environments. All types of PRF showed significant antimicrobial action, with the antibacterial efficacy being more expressive than the fungal one. The I-PRF, H-PRF, and agNP-PRF subtypes improve antimicrobial activity. According to the OHAT analysis, no study was classified as having a high risk of bias. Evidence suggests that PRF variations have significant antimicrobial activity, with bacterial action being greater than fungal. Evolutions such as I-PRF, H-PRF, and agNP-PRF improve antimicrobial activity. Future studies analyzing the clinical effect of these platelets are fundamental. This SR was registered in INPLASY under number INPLASY202340016.
Collapse
Affiliation(s)
- Vittorio Moraschini
- Dental Research Division, Department of Periodontology, School of Dentistry, Veiga de Almeida University, Rio de Janeiro, Brazil
- Department of Oral Surgery, Dentistry School, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Carlos Fernando de Almeida Barros Mourão
- Department of Periodontology, School of Dentistry, Tufts University, Boston, USA
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos, São Paulo, Brazil
| | - Rafael Seabra Louro
- Department of Oral Surgery, Dentistry School, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | | | - Monica Diuana Calasans Maia
- Department of Oral Surgery, Dentistry School, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Jamil Awad Shibli
- Dental Research Division, Department of Periodontology and Oral Implantology, University of Guarulhos, São Paulo, Brazil
| |
Collapse
|
12
|
Nakamura M, Masuki H, Kawabata H, Watanabe T, Watanabe T, Tsujino T, Isobe K, Kitamura Y, Mourão CF, Kawase T. Plasma Gel Made of Platelet-Poor Plasma: In Vitro Verification as a Carrier of Polyphosphate. Biomedicines 2023; 11:2871. [PMID: 38001872 PMCID: PMC10669793 DOI: 10.3390/biomedicines11112871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Plasma gel (PG) is a blood-derived biomaterial that can be prepared by heating or chemical cross-linking without the aid of intrinsic coagulation activity and has gradually been applied in the field of esthetic surgery. To explore the applicability of PG in regenerative therapy or tissue engineering, in this study, we focused on the advantages of the heating method and verified the retention capacity of the resulting PG for polyphosphate (polyP), a polyanion that contributes to hemostasis and bone regeneration. Pooled platelet-poor plasma (PPP) was prepared from four healthy male adult donors, mixed with synthetic polyP, and heated at 75 °C for 10 or 30 min to prepare PG in microtubes. The PG was incubated in PBS at 37 °C, and polyP levels in the extra-matrix PBS were determined by the fluorometric method every 24 h. The microstructure of PG was examined using scanning electron microscopy. In the small PG matrices, almost all of the added polyP (~100%) was released within the initial 24 h. In contrast, in the large PG matrices, approximately 50% of the polyP was released within the initial 24 h and thereafter gradually released over time. Owing to its simple chemical structure, linear polyP cannot be theoretically retained in the gel matrices used in this study. However, these findings suggest that thermally prepared PG matrices can be applied as carriers of polyP in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Masayuki Nakamura
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Hideo Masuki
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Hideo Kawabata
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Taisuke Watanabe
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Takao Watanabe
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Tetsuhiro Tsujino
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Kazushige Isobe
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Yutaka Kitamura
- Tokyo Plastic Dental Society, Tokyo 114-0002, Japan; (M.N.); (H.M.); (H.K.); (T.W.); (T.W.); (T.T.); (K.I.); (Y.K.)
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA;
| | - Tomoyuki Kawase
- Division of Oral Bioengineering, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| |
Collapse
|
13
|
Quirynen M, Siawasch S, Temmerman A, Cortellini S, Dhondt R, Teughels W, Castro AB. Do autologous platelet concentrates (APCs) have a role in intra-oral bone regeneration? A critical review of clinical guidelines on decision-making process. Periodontol 2000 2023; 93:254-269. [PMID: 37845802 DOI: 10.1111/prd.12526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 10/18/2023]
Abstract
In the past decades, personalized regenerative medicine has gained increased attention. Autologous platelet concentrates (APCs) such as PRP, PRGF, and L-PRF, all serving as a source of a large variety of cells and growth factors that participate in hard and soft tissue healing and regeneration, could play a significant role in regenerative periodontal procedures. This narrative review evaluated the relative impact of APCs in alveolar ridge preservation, sinus floor augmentation, and the regeneration of bony craters around teeth, both as a single substitute or in combination with a xenograft. L-PRF has a significant beneficial effect on alveolar ridge preservation ( bone quality). The data for PRGF are less convincing, and PRP is controversial. L-PRF can successfully be used as a single substitute during transcrestal (≥3.5 mm bone gain) as well as 1-stage lateral window sinus floor elevation (>5 mm bone gain). For PRGF and especially PRP the data are very scarce. In the treatment of bony craters around teeth, during open flap debridement, L-PRF as a single substitute showed significant adjunctive benefits (e.g., >PPD reduction, >CAL gain, >crater depth reduction). The data for PRP and PRGF were non-conclusive. Adding PRP or L-PRF to a xenograft during OFD resulted in additional improvements (>PPD reduction, >CAL gain, >bone fill), for PRGF no data were found. Autologous platelet concentrates demonstrated to enhance bone and soft tissue healing in periodontal regenerative procedures. The data for L-PRF were most convincing. L-PRF also has the advantage of a greater simplicity of production, and its 100% autologous character.
Collapse
Affiliation(s)
- Marc Quirynen
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Sam Siawasch
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Andy Temmerman
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Simone Cortellini
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Rutger Dhondt
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Wim Teughels
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Anna B Castro
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Lambrichts I, Wolfs E, Bronckaers A, Gervois P, Vangansewinkel T. The Effect of Leukocyte- and Platelet-Rich Fibrin on Central and Peripheral Nervous System Neurons-Implications for Biomaterial Applicability. Int J Mol Sci 2023; 24:14314. [PMID: 37762617 PMCID: PMC10532231 DOI: 10.3390/ijms241814314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leukocyte- and Platelet-Rich Fibrin (L-PRF) is a second-generation platelet concentrate that is prepared directly from the patient's own blood. It is widely used in the field of regenerative medicine, and to better understand its clinical applicability we aimed to further explore the biological properties and effects of L-PRF on cells from the central and peripheral nervous system. To this end, L-PRF was prepared from healthy human donors, and confocal, transmission, and scanning electron microscopy as well as secretome analysis were performed on these clots. In addition, functional assays were completed to determine the effect of L-PRF on neural stem cells (NSCs), primary cortical neurons (pCNs), and peripheral dorsal root ganglion (DRG) neurons. We observed that L-PRF consists of a dense but porous fibrin network, containing leukocytes and aggregates of activated platelets that are distributed throughout the clot. Antibody array and ELISA confirmed that it is a reservoir for a plethora of growth factors. Key molecules that are known to have an effect on neuronal cell functions such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) were slowly released over time from the clots. Next, we found that the L-PRF secretome had no significant effect on the proliferative and metabolic activity of NSCs, but it did act as a chemoattractant and improved the migration of these CNS-derived stem cells. More importantly, L-PRF growth factors had a detrimental effect on the survival of pCNs, and consequently, also interfered with their neurite outgrowth. In contrast, we found a positive effect on peripheral DRG neurons, and L-PRF growth factors improved their survival and significantly stimulated the outgrowth and branching of their neurites. Taken together, our study demonstrates the positive effects of the L-PRF secretome on peripheral neurons and supports its use in regenerative medicine but care should be taken when using it for CNS applications.
Collapse
Affiliation(s)
- Ivo Lambrichts
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Esther Wolfs
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Annelies Bronckaers
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Pascal Gervois
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
| | - Tim Vangansewinkel
- Cardio and Organ Systems, Biomedical Research Institute, UHasselt—Hasselt University, 3590 Diepenbeek, Belgium; (E.W.); (A.B.); (P.G.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Al-Sharabi N, Gruber R, Sanz M, Mohamed-Ahmed S, Kristoffersen EK, Mustafa K, Shanbhag S. Proteomic Analysis of Mesenchymal Stromal Cells Secretome in Comparison to Leukocyte- and Platelet-Rich Fibrin. Int J Mol Sci 2023; 24:13057. [PMID: 37685865 PMCID: PMC10487446 DOI: 10.3390/ijms241713057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Secretomes of mesenchymal stromal cells (MSCs) are emerging as a novel growth factor (GF)-based strategy for periodontal and bone regeneration. The objective of this study was to compare the secretome of human bone marrow MSC (BMSC) to that of leukocyte- and platelet-rich fibrin (L-PRF), an established GF-based therapy, in the context of wound healing and regeneration. Conditioned media from human BMSCs (BMSC-CM) and L-PRF (LPRF-CM) were subjected to quantitative proteomic analysis using liquid chromatography with tandem mass spectrometry. Global profiles, gene ontology (GO) categories, differentially expressed proteins (DEPs), and gene set enrichment (GSEA) were identified using bioinformatic methods. Concentrations of selected proteins were determined using a multiplex immunoassay. Among the proteins identified in BMSC-CM (2157 proteins) and LPRF-CM (1420 proteins), 1283 proteins were common. GO analysis revealed similarities between the groups in terms of biological processes (cellular organization, protein metabolism) and molecular functions (cellular/protein-binding). Notably, more DEPs were identified in BMSC-CM (n = 550) compared to LPRF-CM (n = 118); these included several key GF, cytokines, and extracellular matrix (ECM) proteins involved in wound healing. GSEA revealed enrichment of ECM (especially bone ECM)-related processes in BMSC-CM and immune-related processes in LPRF-CM. Similar trends for intergroup differences in protein detection were observed in the multiplex analysis. Thus, the secretome of BMSC is enriched for proteins/processes relevant for periodontal and bone regeneration. The in vivo efficacy of this therapy should be evaluated in future studies.
Collapse
Affiliation(s)
- Niyaz Al-Sharabi
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
- Austrian Cluster for Tissue Regeneration, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, 28040 Madrid, Spain;
| | - Samih Mohamed-Ahmed
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Einar K. Kristoffersen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
- Department of Clinical Science, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
| | - Siddharth Shanbhag
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway; (N.A.-S.); (S.M.-A.); (K.M.)
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, 5021 Bergen, Norway;
| |
Collapse
|
16
|
Naeimi Darestani M, Asl Roosta H, Mosaddad SA, Yaghoubee S. The effect of leukocyte- and platelet-rich fibrin on the bone loss and primary stability of implants placed in posterior maxilla: a randomized clinical trial. Int J Implant Dent 2023; 9:23. [PMID: 37555894 PMCID: PMC10412516 DOI: 10.1186/s40729-023-00487-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/23/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE In this study, we investigated the effects of leukocyte- and platelet-rich fibrin (L-PRF) on implant stability and alterations in the marginal bone surrounding posterior maxillary implants. METHODS This randomized clinical trial was conducted to compare the variable of L-PRF placement around maxillary implants. Resonance frequency analysis (RFA) was used to evaluate the implant stability immediately after surgery and at 1, 2, 4, 6, 8, and 12 weeks after surgery (t0 to t6, respectively). In addition, the amount of marginal bone changes around the implant at t6 was compared with the baseline using periapical radiography. RESULTS The RFA outcomes were statistically significant within each group (P < 0.001, Eta2 = 0.322); however, in none of the follow-ups and immediately after the surgery, there was a significant difference between the two groups in terms of the implant stability quotient (ISQ) scores (P > 0.05). At t0, the test and control groups' respective mean levels of marginal bone loss around the implants were 0.4836 mm and 0.7343 mm, significantly different from the corresponding values at t6. On the other hand, marginal bone loss around the implant was not significantly different between the two groups in t0 and t6 (P = 0.532). CONCLUSIONS L-PRF did not improve the RFA outcomes of implants three months after implant placement, and changes in the ISQ values over time were the same in both groups. In addition, L-PRF had no superior effect on the marginal bone loss around the implants. TRIAL REGISTRATION NUMBER The research was registered in the Iranian Registry of Clinical Trials on 22 December 2020 (No: IRCT20200624047906N1), available at http://www.irct.ir.
Collapse
Affiliation(s)
| | - Hoori Asl Roosta
- Periodontics Department, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mosaddad
- Student Research Committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Siamak Yaghoubee
- Periodontics Department, Dental Faculty, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Santos Pereira VB, Barbirato DDS, Lago CAPD, Vasconcelos BCDE. The Effect of Advanced Platelet-Rich Fibrin in Tissue Regeneration in Reconstructive and Graft Surgery: Systematic Review. J Craniofac Surg 2023; 34:1217-1221. [PMID: 37143188 DOI: 10.1097/scs.0000000000009328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 02/26/2023] [Indexed: 05/06/2023] Open
Abstract
This systematic review answered the guiding question using the PICO system: "What are the effects of advanced platelet-rich fibrin (A-PRF) on alveolar ridge preservation and tissue gain in reconstructive and jaw graft surgery?" Searches were performed in the PubMed|MEDLINE, Scopus, Embase, Web of Science, Cochrane Library, and LILACS|bvs databases. In total, 573 articles were found in the initial search, and 564 were evaluated after the removal of duplicates, of which 5 randomized controlled trials met the eligibility criteria and were included 2 studies investigated the effect of A-PRF on the preservation of the bone ridge, 1 study evaluated the tissue repair after tooth extraction with A-PRF, 1 evaluated the peri-implant gap filling with A-PRF-xenograft mixture, and other the A-PRF on the treatment of alveolar osteitis. Advanced-PRF preparation protocol varied between the included studies from 8 to 13 minutes of centrifugation, at 1300 RPM (200 g ). The use of A-PRF provided greater dimensions of height and more favorable maintenance of the ridge profile, probing depth, and gingival margin level after extraction. Advanced-PRF also increased bone density, vital bone, epithelial healing, and control of postoperative pain and swelling after tooth extraction and in the treatment of alveolar osteitis.
Collapse
|
18
|
Koyanagi M, Fujioka-Kobayashi M, Inada R, Yoneyama Y, Satomi T. Skin and Bone Regeneration of Solid Bone Marrow Aspirate Concentrate Versus Platelet-Rich Fibrin. Tissue Eng Part A 2023; 29:141-149. [PMID: 36416223 DOI: 10.1089/ten.tea.2022.0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Solid bone marrow aspirate concentrate (sBMAC) is harvested from bone marrow aspirate without anticoagulants by a centrifugation protocol similar to that for platelet-rich fibrin (PRF) prepared from peripheral blood. It was hypothesized that sBMAC could accelerate not only wound healing but also bone regeneration because of the abundant growth factor (GF) releases from enriched bone marrow cells. The purpose of the present study was to investigate skin wound healing and bone regenerative potential of sBMAC compared with arterial blood-derived PRF (Ar-PRF) and venous blood-derived PRF (Ve-PRF) in a skin defect and calvarial bone defect model in rabbits. GF release assays revealed significantly higher release of transforming growth factor-β (TGF-β), alkaline phosphatase (ALP), and osteocalcin (OCN) from sBMAC compared with PRFs for 24 h. In the skin defect animal model, sBMAC and PRFs promoted wound bed angiogenesis and re-epithelization in skin defect sites with higher collagen 1 synthesis, cytokeratin AE1/AE3, vascular endothelial growth factor (VEGF) expressions on week 1. Furthermore, a calvarial defect assay revealed that sBMAC promoted new bone formation with a sufficient bone marrow structure similar to that of intact bone in the bone defects. Ar-PRF achieved the second highest bone closure and new bone volume but yielded new bone that was thinner than the intact bone. In conclusion, sBMAC treatment might be a good option instead of PRF as an adjuvant therapy for both skin and bone tissue regeneration therapies in certain clinical situations. Impact statement Solid bone marrow aspirate concentrate (sBMAC) is new type of clot material prepared from bone marrow aspirate. The present study for the first time showed that sBMAC significantly accelerated both skin wound healing and bone formation in the defects, compared with conventional platelet-rich fibrin in rabbit experiment models.
Collapse
Affiliation(s)
- Masateru Koyanagi
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Japan
| | - Masako Fujioka-Kobayashi
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Japan
| | - Ryo Inada
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Japan
| | - Yuya Yoneyama
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Japan
| | - Takafumi Satomi
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Tokyo, The Nippon Dental University, Chiyoda-ku, Japan
| |
Collapse
|
19
|
Jasineviciute I, Hasan MN, Grigas J, Pautienius A, Stankevicius A, Zymantiene J, Miura N. microRNAs Are Abundant and Stable in Platelet-Rich Fibrin and Other Autologous Blood Products of Canines. Int J Mol Sci 2023; 24:ijms24010770. [PMID: 36614213 PMCID: PMC9821218 DOI: 10.3390/ijms24010770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Various microRNAs (miRNAs) present in autologous blood products of canines have not been studied recently. We aimed to elucidate the existence of miRNAs in platelet-rich fibrin (PRF) and the stability of canine autologous blood products under various storage conditions. Total RNAs were isolated from PRF and other autologous blood products following newly adapted protocols used in commercial kits for plasma and tissue samples. Quantitative real-time polymerase chain reaction analysis (qPCR) was used to detect miRNAs in autologous blood products. The miR-16, miR-21, miR-155, and miR-146a were abundant in PRF and other autologous blood products of canines. Furthermore, we found they could maintain stability under protracted freezing temperatures of -30 °C for at least one month. Our findings revealed that PRF might be a stable resource for various canine miRNAs.
Collapse
Affiliation(s)
- Indre Jasineviciute
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Md Nazmul Hasan
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-8580, Japan
| | - Juozas Grigas
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Arnoldas Pautienius
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Arunas Stankevicius
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Judita Zymantiene
- Department of Anatomy and Physiology, Veterinary Faculty, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania
| | - Naoki Miura
- Joint Graduate School of Veterinary Medicine, Kagoshima University, Kagoshima 890-8580, Japan
- Joint Faculty of Veterinary Medicine, Veterinary Teaching Hospital, Kagoshima University, Kagoshima 890-8580, Japan
- Correspondence:
| |
Collapse
|
20
|
Andrade Aldana C, Ugarte Amenabar F, Inostroza Silva C, Diaz Calderon P, Rosenberg Messina D, Pinto Carrasco N, Quirynen M. The impact of gender and peripheral blood parameters on the characteristics of L-PRF membranes. J Oral Biol Craniofac Res 2022; 12:753-759. [PMID: 36118143 PMCID: PMC9478449 DOI: 10.1016/j.jobcr.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 05/28/2022] [Accepted: 08/20/2022] [Indexed: 11/15/2022] Open
Abstract
Aim The purpose of this study was to evaluate the impact of gender and peripheral blood parameters on the characteristics of Leucocyte-and Platelet-Rich Fibrin (L-PRF) membranes and to describe histologically three different zones of L-PRF membranes. Methods Blood was collected from twenty healthy donors (10 men and 10 women). Peripheral blood parameters including leucocyte and platelet counts, and fibrinogen levels were recorded. L-PRF membranes were prepared to quantify the release of growth factors (PDGF, VEGF, BMP-2, and BMP-9) at 1, 2, 3 and 7 days and for histological examination. Three zones within each L-PRF membrane (face, body, and tail) were analysed separately, quantifying the area of leucocytes, platelets, and fibrin in percentage. The Young's modulus of the membranes was also considered (during tensile and compression tests). Results Women had significantly higher fibrinogen levels in their peripheral blood, and a higher release of BMP-9, whereas men showed a significantly higher Young's modulus in compression tests. The histology revealed significant differences in cellular content and fibrin concentration between the 3 areas, with the face being biologically the richest. Conclusion Several factors influenced the final characteristics of L-PRF membranes. These need to be taken into consideration when interpreting the results of research, but especially in clinical practice.
Collapse
Affiliation(s)
- Catherine Andrade Aldana
- Department of Periodontology and Oral Implantology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals, KU Leuven, Leuven, Belgium
| | - Felipe Ugarte Amenabar
- Department of Periodontology and Oral Implantology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Carolina Inostroza Silva
- Center of Biology and Oral Regeneration, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Paulo Diaz Calderon
- Biopolymer Research and Engineering Laboratory (BIOPREL), School of Nutrition and Dietetics, Faculty of Medicine, Universidad de Los Andes, Santiago, Chile
| | - David Rosenberg Messina
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Nelson Pinto Carrasco
- Department of Periodontology and Oral Implantology, Faculty of Dentistry, Universidad de Los Andes, Santiago, Chile
| | - Marc Quirynen
- Department of Oral Health Sciences, Periodontology, KU Leuven & Dentistry, University Hospitals, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Comparison of physical, mechanical and biological effects of leucocyte-PRF and advanced-PRF on polyacrylamide nanofiber wound dressings: In vitro and in vivo evaluations. BIOMATERIALS ADVANCES 2022; 141:213082. [PMID: 36067641 DOI: 10.1016/j.bioadv.2022.213082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/21/2022] [Accepted: 08/11/2022] [Indexed: 12/22/2022]
Abstract
Platelet-rich fibrin (PRF) is extracted from the blood without biochemical interference and, also, with the ability of a long-term release of growth factors that can stimulate tissue repair and regerenation. Here, leucocyte- and platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF) were extracted and utilized for the creation of nanofibers containing polyacrylamide (PAAm), PAAm / L-PRF and PAAm / A-PRP through electrospinning processing technique. The effect of the type of PRF on the physical, mechanical and biological properties of the resultant nanofiberous wound dressings are thoroughly evaluated. The results presented in the current study reveals that the fiber diameter is grealtly reduced through the utilization of L-PRF. In addition, mechanical property is also positively affected by L-PRF and the degradation rate is found to be higher compared to A-PRF group. The L929 cells proliferation and adhesion, angiogenesis potential and wound healing ability was significantly higher in PAAm/A-PRF nanofibers compared to pure PAAm and PAAm/L-PRF nanofibers owed to the release of vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). Overall, the utilization of L-PRF or A-PRF can improve the physical, mechanical and biological behavior of nanofiber making them an ideal candidate for wound dressings, with the emphasis on the skin tissue repair and regeneration applications.
Collapse
|
22
|
Arthroscopic Meniscal Repair With Second-Generation Platelet-Rich Fibrin Clot Augmentation. Arthrosc Tech 2022; 11:e1569-e1575. [PMID: 36185123 PMCID: PMC9519935 DOI: 10.1016/j.eats.2022.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 02/03/2023] Open
Abstract
Meniscal tears are among the most common injuries in the knee, and partial as well as total meniscectomy has been advocated as the treatment for meniscal injury. Over the years, the role of the meniscus as a shock absorber, load transmitter, and secondary anterior stabilizer, along with its proprioceptive and lubrication role, has been well established, and meniscal repair is recommended, especially in younger individuals. Factors such as tear location, pattern, chronicity, size, and extent; repair technique; and patient age and habits can influence meniscal repair, and to enhance meniscal healing, a variety of augmentation techniques have been introduced. These include needling, trephination, synovial abrasion, and the use of adjuvants such as platelet-rich plasma, platelet clots, fibrin clots, bone marrow clots, and stem cells. A second-generation platelet derivative called "platelet-rich fibrin" (PRF) has predictable platelet, growth factor, and cell mediator concentrations without using any anticoagulants. We describe a reproducible and simple way to harvest PRF and create and use a PRF clot, along with detailed instructions on how to integrate the clot with a meniscal repair arthroscopically.
Collapse
|
23
|
Recent Developments and Current Applications of Organic Nanomaterials in Cartilage Repair. Bioengineering (Basel) 2022; 9:bioengineering9080390. [PMID: 36004915 PMCID: PMC9405275 DOI: 10.3390/bioengineering9080390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Regeneration of cartilage is difficult due to the unique microstructure, unique multizone organization, and avascular nature of cartilage tissue. The development of nanomaterials and nanofabrication technologies holds great promise for the repair and regeneration of injured or degenerated cartilage tissue. Nanomaterials have structural components smaller than 100 nm in at least one dimension and exhibit unique properties due to their nanoscale structure and high specific surface area. The unique properties of nanomaterials include, but are not limited to, increased chemical reactivity, mechanical strength, degradability, and biocompatibility. As an emerging nanomaterial, organic nanocomposites can mimic natural cartilage in terms of microstructure, physicochemical, mechanical, and biological properties. The integration of organic nanomaterials is expected to develop scaffolds that better mimic the extracellular matrix (ECM) environment of cartilage to enhance scaffold-cell interactions and improve the functionality of engineered tissue constructs. Next-generation hydrogel technology and bioprinting can be used not only for healing cartilage injury areas but also for extensive osteoarthritic degenerative changes within the joint. Although more challenges need to be solved before they can be translated into full-fledged commercial products, nano-organic composites remain very promising candidates for the future development of cartilage tissue engineering.
Collapse
|
24
|
Mogharehabed A, Torabinia N, Sharifi Darani S, Afshari Z, Yaghini J. Effect of leukocyte and platelet-rich fibrin on free gingival graft healing: A clinical and histological study in rabbits. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2022; 14:89-96. [PMID: 36714079 PMCID: PMC9871186 DOI: 10.34172/japid.2022.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023]
Abstract
Background. Recently, the use of leukocyte- and platelet-rich fibrin (L-PRF) has been recommended due to the presence of various growth factors to increase the success of free gingival grafts (FGG). This study evaluated the effect of using L-PRF in the healing of FGG in rabbits. Methods. Twenty rabbits were randomly divided into two groups. In each group, FGG was performed in two separate sites with or without L-PRF. One of these groups was sacrificed on the 7th day and the other on the 28th day and analyzed in terms of clinical indices, including wound healing, gingi-val thickness (GT), and keratinized tissue width (KTW). Then histologic sections were obtained and stained for type and degree of inflammation and rate of vascular formation analysis. SPSS 22 was used for statistical analysis. Results. The extent of changes in GT, KTW, wound healing index, and vascular formation between the test and control groups was not statistically significant. The difference in the type of inflammation was significant only between the -7day and -28day control groups (P=0.003). The degree of inflammation between the -7day test group and the -28day control group, as well as the -7day and -28day control groups, were statistically significant (P=0.011 and P=0.002, respectively). Conclusion. Using L-PRF with FGG could improve FGG healing compared to using FGG alone, but the results were not statistically significant.
Collapse
Affiliation(s)
- Ahmad Mogharehabed
- Department of Periodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nakisa Torabinia
- Department of Oral and Maxillofacial Pathology, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zohreh Afshari
- Department of Periodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaber Yaghini
- Department of Periodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran,Corresponding author: Jaber Yaghini, E-mail:
| |
Collapse
|
25
|
Duan DH, Wang EB, Zhang JY, Yuan Q, Wang HL. A three-in-one alveolar process reconstruction protocol for maxillary molar sites with severe residual bone height deficiency: A proof-of-concept pilot study. Clin Implant Dent Relat Res 2022; 24:414-423. [PMID: 35557025 DOI: 10.1111/cid.13096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Implant placement in maxillary molar sites with severe height deficiency often requires multiple surgeries, which was time-consuming, invasive, and subject to serious postoperative complications. PURPOSE To introduce and assess a three-in-one technique (extraction, alveolar ridge preservation [ARP], and sinus elevation) for augmenting deficiency maxillary molar alveolar ridges. MATERIAL AND METHODS Fourteen patients with severe posterior maxillary ridge height deficiency underwent extraction, sinus elevation via an intrasocket window and ARP using sticky bone and then covered with acellular dermal matrix (ADM). Primary closure was intentionally not obtained. Cone-beam computed tomography and periapical radiography were used to measure dimensional ridge changes over time. Bone biopsies were taken at implant placement 7-21 months after surgery, which proceeded without additional grafting. Peri-implant soft tissue was assessed after 8-12 months of functional loading. RESULTS Maxillary molar sites (13 first molars, 1 second molar) with a mean sinus floor height of 1.73 ± 0.86 mm and mean buccal plate thickness of 1.62 ± 1.15 mm were elevated and grafted. Immediately after surgery, the mean sinus floor height was 14.03 ± 1.97 mm and the alveolar thickness at virtual implant platform level was 12.99 ± 1.88 mm. After 5-9 months healing, those measurements decreased by 2.45 ± 1.73 mm (p = 0.000) and 3.88 ± 3.95 mm (p = 0.006), respectively. Healed ridges were composed of 18.74% ± 4.34% mean vital bone and 19.08% ± 9.10% mean residual graft. After 8-12 months of functional loading, the peri-implant tissue appeared healthy, and there was a mean marginal bone loss of 0.12 ± 0.11 mm. CONCLUSIONS For maxillary first molar sites with severe sinus floor height deficiency, this minimally invasive three-in-one treatment allows for uncomplicated implant placement and short-term functional stability.
Collapse
Affiliation(s)
- Deng-Hui Duan
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - En-Bo Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jian-Yun Zhang
- Department of Oral and Maxillofacial Pathology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qiao Yuan
- Department of Periodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Biofunctionalization of Xenogeneic Collagen Membranes with Autologous Platelet Concentrate-Influence on Rehydration Protocol and Angiogenesis. Biomedicines 2022; 10:biomedicines10030706. [PMID: 35327506 PMCID: PMC8945896 DOI: 10.3390/biomedicines10030706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background: The aim of this study was to analyze possible interactions of different xenogeneic collagen membranes (CM) and platelet-rich fibrin (PRF). PH values were evaluated in the CM rehydration process with PRF, and their influence on angiogenesis was analyzed in vivo. Materials and Methods: Porcine (Bio-Gide®, Geistlich)- and bovine-derived collagen membranes (Symbios®, Dentsply Sirona) were biofunctionalized with PRF by plotting process. PRF in comparison to blood, saline and a puffer pH7 solution was analysed for pH-value changes in CM rehydration process in vitro. The yolk sac membrane (YSM) model was used to investigate pro-angiogenic effects of the combination of PRF and the respective CM in comparison to native pendant by vessel in-growth and branching points after 24, 48 and 72 h evaluated light-microscopically and by immunohistochemical staining (CD105, αSMA) in vivo. Results: Significantly higher pH values were found at all points in time in PRF alone and its combined variants with Bio-Gide® and Symbios® compared with pure native saline solution and pH 7 solution, as well as saline with Symbios® and Bio-Gide® (each p < 0.01). In the YSM, vessel number and branching points showed no significant differences at 24 and 48 h between all groups (each p > 0.05). For PRF alone, a significantly increased vessel number and branching points between 24 and 48 h (each p < 0.05) and between 24 and 72 h (each p < 0.05) was shown. After 72 h, CM in combination with PRF induced a statistically significant addition to vessels and branching points in comparison with native YSM (p < 0.01) but not vs. its native pendants (p > 0.05). Summary: PRF represents a promising alternative for CM rehydration to enhance CM vascularization.
Collapse
|
27
|
Van Cleemput T, Hendrikx S, Politis C, Spaey Y. Leukocyte- and Platelet-Rich Fibrin: A New Method for Scalp Defect Reconstruction. Dermatol Surg 2022; 48:261-262. [PMID: 34935755 PMCID: PMC8806035 DOI: 10.1097/dss.0000000000003325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Tim Van Cleemput
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, Noorderhart Hospital, Pelt, Belgium
| | - Sylvie Hendrikx
- Department of Oral and Maxillofacial Surgery, Noorderhart Hospital, Pelt, Belgium
| | - Constantinus Politis
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Yannick Spaey
- Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Oral and Maxillofacial Surgery, Noorderhart Hospital, Pelt, Belgium
| |
Collapse
|
28
|
From Blood to Bone-The Osteogenic Activity of L-PRF Membranes on the Ex Vivo Embryonic Chick Femur Development Model. MATERIALS 2021; 14:ma14247830. [PMID: 34947427 PMCID: PMC8707053 DOI: 10.3390/ma14247830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: To evaluate the effects of the direct and indirect contact of leukocyte and platelet-rich fibrin (L-PRF) on bone development, in an ex vivo embryonic chick femur model. (2) Methods: Both sections of L-PRF membranes (red and yellow portions) were evaluated with scanning electron microscopy and histochemical staining. The in vivo angiogenic activity was evaluated using a chorioallantoic membrane model. The osteogenic activity was assessed with an organotypic culture of embryonic chick femora through direct and indirect contact, and assessment was conducted by microtomographic and histological analysis. Descriptive statistics, One-Way ANOVA and Tukey’s multiple comparisons tests were performed for datasets that presented a normal distribution, and Kruskal-Wallis tests were performed for non-parametric datasets. A significance level of 0.05 was considered. (3) Results: The L-PRF induced angiogenesis reflected by a higher number and a larger and more complex gauge in the vessels that invaded the membrane. The physical presence of the membrane over the bone (direct contact) unleashes the full potential of the L-PRF effects on bone growth enhancement. The greatest increase in mineral content was observed in the diaphysis region. (4) Conclusion: The L-PRF direct contact group presented higher values on mineral content for bone volume, bone surface and bone mineral density than the indirect contact and control groups.
Collapse
|
29
|
Mirhaj M, Tavakoli M, Varshosaz J, Labbaf S, Jafarpour F, Ahmaditabar P, Salehi S, Kazemi N. Platelet rich fibrin containing nanofibrous dressing for wound healing application: Fabrication, characterization and biological evaluations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 134:112541. [DOI: 10.1016/j.msec.2021.112541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/25/2021] [Accepted: 11/06/2021] [Indexed: 12/27/2022]
|
30
|
Bagio DA, Julianto I, Margono A, Suprastiwi E. Increased VEGF-A Expression of Human Dental Pulp Stem Cells (hDPSCs) Cultured with Advanced Platelet Rich Fibrin (A-PRF). Open Dent J 2021. [DOI: 10.2174/1874210602115010569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background:
VEGF-A expression of human dental pulp stem cells (hDPSCs) can induce the angiogenesis process of dental pulp regeneration. This in vitro study aimed to analyze the effect of various concentrations of Advanced Platelet Rich Fibrin (A-PRF) conditioned media (CM) on the increased expression of vascular endothelial growth factor-A (VEGF-A) of hDPSCs.
Methods:
hDPSCs were collected from ten third molars extracted from nine healthy donors, cultured, and then harvested at the end of the third passage. The hDPSCs were seeded in four different CM (control group: hDPSCs + DMEM; 1% A-PRF CM group: hDPSCs + 1% A-PRF CM; 5% A-PRF CM group: hDPSCs + 5% A-PRF CM; 10% A-PRF CM group: hDPSCs + 10% A-PRF CM). All of the groups were cultured in biological triplicates (Triplo) and observed for 5, 12, and 24 hours. The VEGF-A protein expression of hDPSCs was measured using human VEGF-A ELISA at a wavelength of 405 nm. Data was analyzed with Kruskal Wallis and post hoc Mann Whitney test with p<0.05.
Results:
The VEGF-A expression rate of hDPSCs among all groups was statistically significantly different at 5, 12 and 24 hours of observations (p<0.05). Post hoc analysis test showed a statistically significant difference of hDPSCs’s VEGF-A expression between 5% A-PRF groups compared to other groups at 5 and 12 hours of observation (p<0.05). However, there were no statistically significant differences observed of hDPSCs’ VEGF-A expression at 24 hours of observation between 1%, 5% and 10% A-PRF groups (p>0.05).
Conclusion:
5% A-PRF CM was superior in increasing VEGF-A expression of hDPSCs at 5, 12 and 24 hours of observations.
Collapse
|
31
|
Nowak JM, Surma S, Romańczyk M, Wojtowicz A, Filipiak KJ, Czerniuk MR. Assessment of the Effect of A-PRF Application during the Surgical Extraction of Third Molars on Healing and the Concentration of C-Reactive Protein. Pharmaceutics 2021; 13:1471. [PMID: 34575547 PMCID: PMC8469162 DOI: 10.3390/pharmaceutics13091471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Extraction procedures for mandibular third molars are performed all over the world every day. Local inflammation resulting from surgery, and the pain that patients experience, often make it impossible to take up daily life activities, such as work or sports. Growth and anti-inflammatory factors, located in the fibrin network, have a positive effect on tissue-healing processes and should also reduce local inflammation. Advanced platelet-rich fibrin (A-PRF) applied locally influences such processes as: angiogenesis, osteogenesis and collagenogenesis. It also affects mesenchymal cell lines and anti- and pro-inflammatory mediators. Due to the autologous origin of the material, their use in guide bone regeneration (GBR) is more and more widespread in dentistry. The results of previous studies indicate that the use of A-PRF in the treatment area significantly reduces postoperative pain, while the formation of edema is not affected. C-reactive protein (CRP), which is an acute phase protein, appears in the blood as a consequence of inflammation. Due to the dynamics of changes in concentration of CRP, it is a protein that is sufficiently sensitive and is used in studies to monitor the tissue healing process. The effect of A-PRF application on CRP concentrations, before and after surgery, has not been investigated yet. The study was conducted on 60 generally healthy patients. A faster decrease of CRP levels was shown in patients who used A-PRF after the procedure. Additionally, it accelerated healing and reduced the occurrence of a dry socket close to 0.
Collapse
Affiliation(s)
- Jacek M. Nowak
- Department of Dental Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (M.R.C.)
| | - Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (S.S.); (M.R.)
| | - Monika Romańczyk
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (S.S.); (M.R.)
| | - Andrzej Wojtowicz
- Department of Dental Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (M.R.C.)
| | - Krzysztof J. Filipiak
- Maria Sklodowska-Curie Medical Academy in Warsaw, Pałac Lubomirskich, 00-136 Warsaw, Poland;
| | - Maciej R. Czerniuk
- Department of Dental Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.W.); (M.R.C.)
| |
Collapse
|
32
|
Tovar N, Benalcázar Jalkh EB, Ramalho IS, Rodriguez Colon R, Kim H, Bonfante EA, Torroni A, Coelho PG, Witek L. Effects of relative centrifugation force on L-PRF: An in vivo submandibular boney defect regeneration study. J Biomed Mater Res B Appl Biomater 2021; 109:2237-2245. [PMID: 34080775 DOI: 10.1002/jbm.b.34885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022]
Abstract
Properties and composition of leukocyte- and platelet-rich fibrin (L-PRF) clots may be largely affected by centrifugation protocols (function of relative centrifugal force [RCF]), which may impact biological potential repair in bone regeneration. The present in vivo study sought to assess the effect of the RCF on the composition of L-PRF clots, as well as to compare the repair potential of L-PRF clots obtained with different RCF protocols in submandibular boney defects using PLGA scaffolds for bone regeneration. Complete blood count and volumetric evaluations were performed on L-PRF clots obtained through centrifugation for 12 min at 200, 400, and 600 RCF-clot centrifugation speeds. These evaluations were completed from blood collected immediately prior to any surgical procedures. The in vivo portion comprised of three submandibular unilateral, full thickness, osteotomies (~0.40cm3 ) which were created in the submandibular region of six sheep, using rotary instrumentation under continuous irrigation. Subsequently, poly(lactic-co-glycolic acid) (PLGA) scaffolds were enveloped in a L-PRF membrane from one of the three spinning speeds (n = 6/RCF) and inserted into the defect (sites were interpolated to avoid site bias). Six-weeks after surgery, the mandibles were harvested en bloc and prepared for volumetric and histomorphometric evaluations. Membranes harvested from 600 RCF produced significantly larger L-PRF clots (6.97g ± 0.95) in comparison to the lower 200 RCF (5.7g ± 0.95), with no significant differences between 600 and 400, and from 400 and 200 RCF. The three tested RCFs did not alter the platelet count of the L-PRF clot. For the in vivo component, quantitative bone regeneration analyses demonstrated significantly higher values obtained with L-PRF membranes extracted post 600 RCF (27.01 ± 8%) versus 200 RCF (17.54 ± 8%), with no significant differences regarding 400 RCF (~23 ± 8%). At the qualitative histological analyses, L-PRF membranes obtained at 600 and 400 RCFs yielded improved healing throughout the defect, where the L-PRF sourced from the lowest speed, 200 RCF, presented healing primarily at the margins along with the presence of connective tissue at the central aspect of the surgical defect. Higher 600 RCF yielded larger L-PRF clots/membranes, resulting in enhanced bone repair potential in association with PLGA scaffolds for the treatment of critical size bone defects.
Collapse
Affiliation(s)
- Nick Tovar
- Department of Biomaterials and Biomimetics, NYU College of Dentistry, New York, New York, USA.,Department of Oral and Maxillofacial Surgery, NYU Langone Medical Center and Bellevue Hospital Center, New York, New York, USA
| | - Ernesto B Benalcázar Jalkh
- Department of Biomaterials and Biomimetics, NYU College of Dentistry, New York, New York, USA.,Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Ilana S Ramalho
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | | | - Heoijin Kim
- Department of Biomaterials and Biomimetics, NYU College of Dentistry, New York, New York, USA
| | - Estevam A Bonfante
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, New York, USA
| | - Paulo G Coelho
- Department of Biomaterials and Biomimetics, NYU College of Dentistry, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, NYU Langone Medical Center, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| | - Lukasz Witek
- Department of Biomaterials and Biomimetics, NYU College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
33
|
Responses of canine periodontal ligament cells to bubaline blood derived platelet rich fibrin in vitro. Sci Rep 2021; 11:11409. [PMID: 34075114 PMCID: PMC8169705 DOI: 10.1038/s41598-021-90906-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/07/2021] [Indexed: 12/18/2022] Open
Abstract
Platelet-rich fibrin (PRF) promotes wound healing by providing the release of growth factors. Here, the influence of Thai and Murrah bubaline blood derived PRF on canine periodontal ligament cells (cPDLs) was investigated. PRF was prepared from Thai and Murrah buffaloes with single centrifugation. Results demonstrated that Thai bubaline blood derived PRF exhibited fiber-mesh like morphology and contained more platelet entrapment than Murrah bubaline blood derived PRF. Both bubaline PRFs were able to degrade in vitro under condition with trypsin. Thai but not Murrah bubaline blood derived PRF promoted cPDLs proliferation in serum free and 2% serum culture conditions. Correspondingly, the significant upregulation of KI67 mRNA expression was observed in those cells treated with Thai bubaline blood derived PRF. However, both Thai and Murrah bubaline blood derived PRF accelerated cell migration in an in vitro wound healing assay and facilitated cell spreading. Further, cPDLs cultured in osteogenic induction medium supplemented with Thai bubaline blood derived PRF exhibited the increased mineral deposition in vitro. Frozen Thai bubaline blood derived PRF also promoted cell proliferation, KI67 mRNA expression, cell migration, and cell spreading in cPDLs. Taken these evidence together, bubaline blood derived PRF could provide potential benefits for canine periodontal tissue healing.
Collapse
|
34
|
Castro AB, Van Dessel J, Temmerman A, Jacobs R, Quirynen M. Effect of different platelet-rich fibrin matrices for ridge preservation in multiple tooth extractions: A split-mouth randomized controlled clinical trial. J Clin Periodontol 2021; 48:984-995. [PMID: 33847018 DOI: 10.1111/jcpe.13463] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022]
Abstract
AIM To evaluate dimensional changes in the alveolar ridge and bone structure after tooth extraction when L-PRF or A-PRF+ was used in comparison to unassisted socket healing. MATERIALS AND METHODS Twenty patients in need of at least three tooth extractions in the aesthetic zone were included. L-PRF, A-PRF+ or control was randomly assigned, leaving one empty socket/edentulous site between conditions. CBCT scans were obtained immediately after tooth extraction and after 3 months of healing. Horizontal and vertical dimensional changes of the ridge and socket fill were calculated. Histological and micro-CT analysis of bone biopsies were used to evaluate post-surgical bone structural healing. RESULTS Mean horizontal and vertical changes at 1-mm below the crest (buccal and palatal side) were similar for the three sites (p > 0.05). For the socket fill, L-PRF (85.2%) and A-PRF+ (83.8%) showed superior values than the control (67.9%). The histological and radiological analysis reported more newly formed bone for the PRF groups, without any significant differences between both. CONCLUSIONS PRF matrices failed to reduce the dimensional changes after multiple tooth extractions in the premaxilla. After 3-month healing, both PRF matrices showed radiographically a significant superiority for the socket fill. Histologically, they seemed to accelerate new bone formation.
Collapse
Affiliation(s)
- Ana B Castro
- Department of Oral Health Sciences, Section of Periodontology and Oral Microbiology, KU Leuven, University Hospitals Leuven Dentistry, Leuven, Belgium
| | - Jeroen Van Dessel
- Department of Imaging and Pathology, OmfsImpath Research Group, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Andy Temmerman
- Department of Oral Health Sciences, Section of Periodontology and Oral Microbiology, KU Leuven, University Hospitals Leuven Dentistry, Leuven, Belgium
| | - Reinhilde Jacobs
- Department of Imaging and Pathology, OmfsImpath Research Group, KU Leuven, Leuven, Belgium.,Department of Oral and Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marc Quirynen
- Department of Oral Health Sciences, Section of Periodontology and Oral Microbiology, KU Leuven, University Hospitals Leuven Dentistry, Leuven, Belgium
| |
Collapse
|
35
|
Castro AB, Andrade C, Li X, Pinto N, Teughels W, Quirynen M. Impact of g force and timing on the characteristics of platelet-rich fibrin matrices. Sci Rep 2021; 11:6038. [PMID: 33727689 PMCID: PMC7971031 DOI: 10.1038/s41598-021-85736-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/04/2021] [Indexed: 02/08/2023] Open
Abstract
Recently, new centrifugation protocols for the preparation of platelet-rich fibrin (PRF) have been introduced in an attempt to further improve the beneficial impact of these 2nd generation platelet concentrate membranes. This in-vitro study aimed to compare the biological and physical characteristics of three types of PRF membranes using two different centrifuges with adapted relative centrifugal forces (RCF): leucocyte- and platelet-rich fibrin, advanced platelet-rich fibrin, and advanced platelet-rich fibrin+. Release of growth factors, macroscopic dimensions, cellular content and mechanical properties of the respective membranes, prepared from blood of the same individual were explored. Furthermore, the impact of timing (blood draw-centrifugation and centrifugation-membrane preparation) was assessed morphologically as well as by electron microscopy scanning. No statistically significant differences amongst the three PRF modifications could be observed, neither in their release of growth factors or the cellular content, nor in clot/membrane dimensions. The difference between both centrifuges were negligible when the same g-force was used. A lower g-force, however, reduced membrane tensile strength. Timing in the preparation process had a significant impact. Adaptation of RCF only had a minimal impact on the final characteristics of PRF membranes.
Collapse
Affiliation(s)
- Ana B Castro
- Department of Oral Health Sciences, Periodontology, KU Leuven and Dentistry, University Hospitals Leuven, Kapucijnenvoer 7, blok a - bus 07001, 3000, Leuven, Belgium.
| | - C Andrade
- Department of Periodontology and Oral Implantology, Faculty of Dentistry, School of Dentistry, University of Los Andes, Santiago, Chile
| | - X Li
- Department of Oral Health Sciences, KU Leuven, BIOMAT and University Hospitals Leuven Dentistry, Leuven, Belgium
| | - N Pinto
- Department of Periodontology and Oral Implantology, Faculty of Dentistry, School of Dentistry, University of Los Andes, Santiago, Chile
| | - W Teughels
- Department of Oral Health Sciences, Periodontology, KU Leuven and Dentistry, University Hospitals Leuven, Kapucijnenvoer 7, blok a - bus 07001, 3000, Leuven, Belgium
| | - M Quirynen
- Department of Oral Health Sciences, Periodontology, KU Leuven and Dentistry, University Hospitals Leuven, Kapucijnenvoer 7, blok a - bus 07001, 3000, Leuven, Belgium
| |
Collapse
|
36
|
Berndt S, Carpentier G, Turzi A, Borlat F, Cuendet M, Modarressi A. Angiogenesis Is Differentially Modulated by Platelet-Derived Products. Biomedicines 2021; 9:biomedicines9030251. [PMID: 33806471 PMCID: PMC8000116 DOI: 10.3390/biomedicines9030251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 01/15/2023] Open
Abstract
Platelet-derived preparations are being used in clinic for their role in tissue repair and regenerative processes. The release of platelet-derived products such as autologous growth factors, cytokines and chemokines can trigger therapeutic angiogenesis. In this in vitro study, we evaluated and compared the ability of three platelet-derived preparations: platelet-rich-plasma (PRP), PRP-hyaluronic acid (PRP-HA) and platelet lysates (PL) at various concentrations (5–40%) to modulate human umbilical vein endothelial cells (HUVEC) biological effects on metabolism, viability, senescence, angiogenic factors secretion and angiogenic capacities in 2D (endothelial tube formation assay or EFTA) and in 3D (fibrin bead assay or FBA). HUVEC exocytosis was stimulated with PRP and PRP-HA. Cell viability was strongly increased by PRP and PRP-HA but mildly by PL. The three preparations inhibit HUVEC tube formation on Matrigel, while PRP enhanced the complexity of the network. In the fibrin bead assay (FBA), PRP and PRP-HA stimulated all steps of the angiogenic process resulting in massive sprouting of a branched microvessel network, while PL showed a weaker angiogenic response. Secretome profiling revealed modulation of 26 human angiogenic proteins upon treatment with the platelet derived preparations. These in vitro experiments suggest that PRP and PRP-HA are effective biological therapeutic tools when sustained therapeutic angiogenesis is needed.
Collapse
Affiliation(s)
- Sarah Berndt
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Faculty of Medicine, 1205 Geneva, Switzerland;
- Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland;
- Correspondence:
| | - Gilles Carpentier
- Gly-CRRET Research Unit 4397, Paris-Est Créteil University, 94000 Créteil, France;
| | - Antoine Turzi
- Regen Lab SA, 1052 Le Mont-sur-Lausanne, Switzerland;
| | - Frédéric Borlat
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (F.B.); (M.C.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
| | - Muriel Cuendet
- School of Pharmaceutical Sciences, University of Geneva, 1205 Geneva, Switzerland; (F.B.); (M.C.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1205 Geneva, Switzerland
| | - Ali Modarressi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Geneva University Hospitals, Faculty of Medicine, 1205 Geneva, Switzerland;
- Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| |
Collapse
|
37
|
Wang Y, Zheng Y, Li W. Compression loading of osteoclasts attenuated microRNA-146a-5p expression, which promotes angiogenesis by targeting adiponectin. SCIENCE CHINA-LIFE SCIENCES 2021; 65:151-166. [PMID: 33677819 DOI: 10.1007/s11427-020-1869-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/06/2021] [Indexed: 11/24/2022]
Abstract
Osteoclastogenesis in alveolar bone induced by compression stress triggers orthodontic tooth movement. Compression stress also stimulates angiogenesis, which is essential for osteoclastogenesis. However, the effects of osteoclastogenesis induced by compression on angiogenesis are poorly understood. In vivo, we found the markers of angiogenesis increased during orthodontic bone remodeling. In vitro, osteoclast-derived exosomes increased proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs), as well as expression of vascular endothelial growth factor and CD31. The promotive effects of exosomes derived from compressed osteoclasts were greater than those derived from osteoclasts without compression. Next, we analyzed changes in the microRNA transcriptome after compression stress and focused on microRNA146a-5p (miR-146a), which was significantly decreased by compression. Transfection of an inhibitor of miR-146a stimulated angiogenesis of HUVECs while miR-146a mimics repressed angiogenesis. Adiponectin (ADP) was confirmed to be a target of miR-146a by dual luciferase reporter assay. In HUVECs treated with exosomes, we detected increased ADP which promoted angiogenesis. Knockdown of ADP in HUVECs reduced the promotive effects of exosomes. Our results demonstrate that the decreased miR-146a observed in osteoclasts after compression promotes angiogenesis by targeting ADP, suggesting a novel method to interfere with bone remodeling induced by compression stress.
Collapse
Affiliation(s)
- Yue Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
38
|
Does Platelet-Rich Fibrin Enhance the Early Angiogenetic Potential of Different Bone Substitute Materials? An In Vitro and In Vivo Analysis. Biomedicines 2021; 9:biomedicines9010061. [PMID: 33435244 PMCID: PMC7827266 DOI: 10.3390/biomedicines9010061] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
The impaired angiogenic potential of bone substitute materials (BSMs) may limit regenerative processes. Therefore, changes in the angiogenetic properties of different BSMs in combination with platelet-rich fibrin (PRF) in comparison to PRF alone, as well as to native BSMs, were analyzed in vitro and in vivo to evaluate possible clinical application. In vitro, four BSMs of different origins (allogeneic, alloplastic, and xenogeneic) were biofunctionalized with PRF and compared to PRF in terms of platelet interaction and growth factor release (vascular endothelial growth factor (VEGF), tissue growth factor ß (TGFß) and platelet-derived growth factor (PDGF)) after 15 min. To visualize initial cell–cell interactions, SEM was performed. In vivo, all BSMs (±PRF) were analyzed after 24 h for new-formed vessels using a chorioallantoic membrane (CAM) assay. Especially for alloplastic BSMs, the addition of PRF led to a significant consumption of platelets (p = 0.05). PDGF expression significantly decreased in comparison to PRF alone (all BSMs: p < 0.013). SEM showed the close spatial relation of each BSM and PRF. In vivo, PRF had a significant positive pro-angiogenic influence in combination with alloplastic (p = 0.007) and xenogeneic materials (p = 0.015) in comparison to the native BSMs. For bio-activated xenogeneic BSMs, the branching points were also significantly increased (p = 0.005). Finally, vessel formation was increased for BSMs and PRF in comparison to the native control (allogeneic: p = 0.046; alloplastic: p = 0.046; and xenogeneic: p = 0.050). An early enhancement of angiogenetic properties was demonstrated when combining BSMs with PRF in vitro and led to upregulated vessel formation in vivo. Thus, the use of BSMs in combination with PRF may trigger bony regeneration in clinical approaches.
Collapse
|
39
|
Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. J Biomed Mater Res A 2020; 109:453-478. [PMID: 32985051 DOI: 10.1002/jbm.a.37105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
Skin injuries and in particular, chronic wounds, are one of the major prevalent medical problems, worldwide. Due to the pivotal role of angiogenesis in tissue regeneration, impaired angiogenesis can cause several complications during the wound healing process and skin regeneration. Therefore, induction or promotion of angiogenesis can be considered as a promising approach to accelerate wound healing. This article presents a comprehensive overview of current and emerging angiogenesis induction methods applied in several studies for skin regeneration, which are classified into the cell, growth factor, scaffold, and biological/chemical compound-based strategies. In addition, the advantages and disadvantages of these angiogenic strategies along with related research examples are discussed in order to demonstrate their potential in the treatment of wounds.
Collapse
Affiliation(s)
- Shirin Nour
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
de Oliveira LA, Borges TK, Soares RO, Buzzi M, Kückelhaus SAS. Methodological variations affect the release of VEGF in vitro and fibrinolysis' time from platelet concentrates. PLoS One 2020; 15:e0240134. [PMID: 33027285 PMCID: PMC7540869 DOI: 10.1371/journal.pone.0240134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/19/2020] [Indexed: 11/26/2022] Open
Abstract
Blood Concentrates (BCs) are autologous non-transfusional therapeutical preparations with biological properties applied in tissue regeneration. These BCs differ in the preparation method, in fibrin network architecture, growth factors release as well as in platelet/cell content. Methodological changes result in distinct matrices that can compromise their clinical effectiveness. The present study evaluated the influence of different g-forces and types of tubes in the release of vascular endothelial growth factor (VEGF) from platelet-rich fibrin (PRF) as a function of time. The PRF-like samples were obtained with three g-forces (200, 400, and 800 x g) for 10 minutes in pure glass tubes or in polystyrene-clot activator tubes. Scanning and Transmission electron microscopy was used to morphometric analyzes of PRF’s specimens and flow cytometry was used to quantify VEGF slow release until 7 days. Our results showed that platelets were intact and adhered to the fibrin network, emitting pseudopods and in degranulation. The fibrin network was rough and twisted with exosomic granulations impregnated on its surface. An increase in the concentration of VEGF in the PRF supernatant was observed until 7 days for all g forces (200, 400 or 800 xg), with the highest concentrations observed with 200 x g, in both tubes, glass or plastic. Morphological analyzes showed a reduction in the diameter of the PRF fibers after 7 days. Our results showed that g-force interferes with the shape of the fibrin network in the PRF, as well as affect the release of VEGF stored into platelets. This finding may be useful in applying PRF to skin lesions, in which the rapid release of growth factors can favor the tissue repair process. Our observations point to a greater clarification on the methodological variations related to obtaining PRF matrices, as they can generate products with different characteristics and degrees of effectiveness in specific applications.
Collapse
Affiliation(s)
- Leonel Alves de Oliveira
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
| | - Tatiana Karla Borges
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
| | - Renata Oliveira Soares
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
| | - Marcelo Buzzi
- Innovacorium Inc., Gainesville, Florida, United States of America
| | - Selma Aparecida Souza Kückelhaus
- Nucleus of Research in Applied Morphology and Immunology, Faculty of Medicine, University of Brasilia, Federal District, Brasilia, Brazil
- * E-mail:
| |
Collapse
|
41
|
Türsen Ü, Türsen B, Lotti T. Aesthetic dermatology procedures in coronavirus days. J Cosmet Dermatol 2020; 19:1822-1825. [PMID: 32460391 PMCID: PMC7283731 DOI: 10.1111/jocd.13509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2; COVID-19), which causes coronavirus disease 2019, is highly contagious and a particularly popular problem in all around the world and also in all departments of every hospital. AIMS Protecting the well-being of the aesthetic dermatologists while providing a sufficient workforce is vital for pandemic planning. RESULTS AND CONCLUSIONS In this article, we will discuss this problem from an aesthetic dermatology aspect and we will review whether these procedures are safe or not.
Collapse
Affiliation(s)
- Ümit Türsen
- Department of Dermatology, School of Medicine, Mersin University, Mersin, Turkey
| | | | - Torello Lotti
- Department of Dermatology, Marconi University, Rome, Italy
| |
Collapse
|
42
|
Merckx G, Tay H, Lo Monaco M, van Zandvoort M, De Spiegelaere W, Lambrichts I, Bronckaers A. Chorioallantoic Membrane Assay as Model for Angiogenesis in Tissue Engineering: Focus on Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:519-539. [PMID: 32220219 DOI: 10.1089/ten.teb.2020.0048] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering aims to structurally and functionally regenerate damaged tissues, which requires the formation of new blood vessels that supply oxygen and nutrients by the process of angiogenesis. Stem cells are a promising tool in regenerative medicine due to their combined differentiation and paracrine angiogenic capacities. The study of their proangiogenic properties and associated potential for tissue regeneration requires complex in vivo models comprising all steps of the angiogenic process. The highly vascularized extraembryonic chorioallantoic membrane (CAM) of fertilized chicken eggs offers a simple, easy accessible, and cheap angiogenic screening tool compared to other animal models. Although the CAM assay was initially primarily performed for evaluation of tumor growth and metastasis, stem cell studies using this model are increasing. In this review, a detailed summary of angiogenic observations of different mesenchymal, cardiac, and endothelial stem cell types and derivatives in the CAM model is presented. Moreover, we focus on the variation in experimental setup, including the benefits and limitations of in ovo and ex ovo protocols, diverse biological and synthetic scaffolds, imaging techniques, and outcome measures of neovascularization. Finally, advantages and disadvantages of the CAM assay as a model for angiogenesis in tissue engineering in comparison with alternative in vivo animal models are described. Impact statement The chorioallantoic membrane (CAM) assay is an easy and cheap screening tool for the angiogenic properties of stem cells and their associated potential in the tissue engineering field. This review offers an overview of all published angiogenic studies of stem cells using this model, with emphasis on the variation in used experimental timeline, culture protocol (in ovo vs. ex ovo), stem cell type (derivatives), scaffolds, and outcome measures of vascularization. The purpose of this overview is to aid tissue engineering researchers to determine the ideal CAM experimental setup based on their specific study goals.
Collapse
Affiliation(s)
- Greet Merckx
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Hanna Tay
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Melissa Lo Monaco
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium.,Department of Veterinary Medicine, Faculty of Sciences, Integrated Veterinary Research Unit-Namur Research Institute for Life Science (IVRU-NARILIS), University of Namur, Namur, Belgium
| | - Marc van Zandvoort
- Department of Genetics and Cell Biology, School for Cardiovascular Diseases CARIM and School for Oncology and Development GROW, Maastricht University, Maastricht, the Netherlands
| | - Ward De Spiegelaere
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
43
|
Lo Monaco M, Gervois P, Beaumont J, Clegg P, Bronckaers A, Vandeweerd JM, Lambrichts I. Therapeutic Potential of Dental Pulp Stem Cells and Leukocyte- and Platelet-Rich Fibrin for Osteoarthritis. Cells 2020; 9:cells9040980. [PMID: 32326610 PMCID: PMC7227024 DOI: 10.3390/cells9040980] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative and inflammatory joint disorder with cartilage loss. Dental pulp stem cells (DPSCs) can undergo chondrogenic differentiation and secrete growth factors associated with tissue repair and immunomodulation. Leukocyte- and platelet-rich fibrin (L-PRF) emerges in regenerative medicine because of its growth factor content and fibrin matrix. This study evaluates the therapeutic application of DPSCs and L-PRF in OA via immunomodulation and cartilage regeneration. Chondrogenic differentiation of DPSCs, with or without L-PRF exudate (ex) and conditioned medium (CM), and of bone marrow-mesenchymal stem cells was compared. These cells showed differential chondrogenesis. L-PRF was unable to increase cartilage-associated components. Immature murine articular chondrocytes (iMACs) were cultured with L-PRF ex, L-PRF CM, or DPSC CM. L-PRF CM had pro-survival and proliferative effects on unstimulated and cytokine-stimulated iMACs. L-PRF CM stimulated the release of IL-6 and PGE2, and increased MMP-13, TIMP-1 and IL-6 mRNA levels in cytokine-stimulated iMACs. DPSC CM increased the survival and proliferation of unstimulated iMACs. In cytokine-stimulated iMACs, DPSC CM increased TIMP-1 gene expression, whereas it inhibited nitrite release in 3D culture. We showed promising effects of DPSCs in an in vitro OA model, as they undergo chondrogenesis in vitro, stimulate the survival of chondrocytes and have immunomodulatory effects.
Collapse
Affiliation(s)
- Melissa Lo Monaco
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
- Department of Veterinary Medicine, Integrated Veterinary Research Unit (IVRU) - Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium;
- Correspondence: ; Tel.: +32-(0)-26-92-09
| | - Pascal Gervois
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| | - Joel Beaumont
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
- Maastricht Radiation Oncology (MaastRO) Lab, GROW—School for Oncology and Developmental Biology, Maastricht University, 6229ER Maastricht, The Netherlands
| | - Peter Clegg
- Department of Musculoskeletal and Ageing Sciences, Institute of Lifecourse and Medical Sciences, University of Liverpool, L7 8TX Liverpool, UK;
| | - Annelies Bronckaers
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| | - Jean-Michel Vandeweerd
- Department of Veterinary Medicine, Integrated Veterinary Research Unit (IVRU) - Namur Research Institute for Life Science (NARILIS), University of Namur, 5000 Namur, Belgium;
| | - Ivo Lambrichts
- Cardio & Organ Systems (COST), Biomedical Research Institute (BIOMED), Hasselt University, 3590 Diepenbeek, Belgium; (P.G.); (J.B.); (A.B.); (I.L.)
| |
Collapse
|
44
|
Biofunctionalization of porcine-derived collagen matrices with platelet rich fibrin: influence on angiogenesis in vitro and in vivo. Clin Oral Investig 2020; 24:3425-3436. [DOI: 10.1007/s00784-020-03213-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023]
Abstract
Abstract
Objectives
Porcine-derived collagen matrices (CM) can be used for oral tissue regeneration, but sufficient revascularization is crucial. The aim of this study was to analyze the influence of platelet-rich fibrin (PRF) on angiogenesis of different CM in vitro and in vivo.
Materials and methods
Three different CM (mucoderm, jason, collprotect) were combined with PRF in a plotting process. Growth factor release (VEGF, TGF-β) was measured in vitro via ELISA quantification after 1,4 and 7 days in comparison to PRF alone. In ovo yolk sac (YSM) and chorion allantois membrane (CAM) model, angiogenic potential were analyzed in vivo with light- and intravital fluorescence microscopy after 24 h, then verified with immunohistochemical staining for CD105 and αSMA.
Results
Highest growth factor release was seen after 24 h for all three activated membranes in comparison to the native CM (VEGF 24 h: each p < 0.05; TGF-β: each p < 0.001) and the PRF (no significant difference). All activated membranes revealed a significantly increased angiogenic potential in vivo after 24 h (vessels per mm2: each p < 0.05; branching points per mm2: each p < 0.01; vessel density: each p < 0.05) and with immunohistochemical staining for CD105 (each p < 0.01) and αSMA (each p < 0.05).
Conclusions
PRF improved the angiogenesis of CM in vitro and in vivo.
Clinical relevance
Bio-functionalization of CM with PRF could easily implemented in the clinical pathway and may lead to advanced soft tissue healing.
Collapse
|
45
|
Miao L, Liu Y, Luo P, Mao S, Liu J, Lu S. Association between platelet count and the risk and progression of hand, foot, and mouth disease among children. Clinics (Sao Paulo) 2020; 75:e1619. [PMID: 32428116 PMCID: PMC7213664 DOI: 10.6061/clinics/2020/e1619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE We aimed to evaluate the association between platelet (PLT) count and the risk and progression of hand, foot, and mouth disease (HFMD). METHODS In total, 122 HFMD patients and 40 healthy controls were enrolled in the study. The differences between variables among the different subgroups were compared. Logistic regression analyses were performed to assess the relationship between various parameters and HFMD risk/progression. Sensitivity analysis was conducted by detecting the trend of the association between PLT count quartiles and HFMD risk/progression. A generalized additive model was used to identify the nonlinear relationship between PLT count and HFMD risk/progression. The relationship between gender and PLT count as well as the risk/progression of HFMD was detected using a stratified logistic regression model. RESULTS Significant differences were observed in terms of age, male/female ratio, white blood cell (WBC) count, and PLT count between patients with stage I-II, III-IV HFMD and healthy controls. Moreover, the alanine aminotransferase and magnesium levels between patients with stage I-II and III-IV HFMD significantly differed. Moreover, a significant difference was noted in the male/female ratio among the different PLT groups. The group with a low PLT count had a lower risk of HFMD progression than the group with a high PLT count (Q4) (p=0.039). Lower age, male gender, and WBC count were found to be associated with HFMD risk. Meanwhile, PLT count was correlated to HFMD progression. The sensitivity analysis yielded a similar result using the minimally adjusted model (p for trend=0.037), and minimal changes were observed using the crude and fully adjusted model (p for trend=0.054; 0.090). A significant nonlinear relationship was observed between PLT count and HFMD progression after adjusting for age, gender, and WBC (p=0.039). CONCLUSIONS PLT was independently associated with HFMD progression in a nonlinear manner.
Collapse
Affiliation(s)
- Li Miao
- Department of Pediatrics, The First Affiliated Hospital of Kangda College of Nanjing Medical University /, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pediatric Nephrology, Lianyungang Children's Hospital, Lianyungang, China
| | - Yongjuan Liu
- Department of Central Laboratory, The First Affiliated Hospital of Kangda College of Nanjing Medical University /, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Peiliang Luo
- Department of Pediatrics, The First Affiliated Hospital of Kangda College of Nanjing Medical University /, The First People's Hospital of Lianyungang, Lianyungang, China
| | - Song Mao
- Department of Pediatrics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiansheng Liu
- Department of Pediatrics, The First Affiliated Hospital of Kangda College of Nanjing Medical University /, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pediatric Nephrology, Lianyungang Children's Hospital, Lianyungang, China
- Corresponding author. E-mail:
| | - Siguang Lu
- Department of Pediatrics, The First Affiliated Hospital of Kangda College of Nanjing Medical University /, The First People's Hospital of Lianyungang, Lianyungang, China
- Department of Pediatric Nephrology, Lianyungang Children's Hospital, Lianyungang, China
| |
Collapse
|
46
|
Strauss FJ, Nasirzade J, Kargarpoor Z, Stähli A, Gruber R. Effect of platelet-rich fibrin on cell proliferation, migration, differentiation, inflammation, and osteoclastogenesis: a systematic review of in vitro studies. Clin Oral Investig 2019; 24:569-584. [PMID: 31879804 PMCID: PMC6988133 DOI: 10.1007/s00784-019-03156-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
Objective To systematically assess the effects of platelet-rich fibrin (PRF) on in vitro cellular behavior. Methods A systematic electronic search using MEDLINE database was performed. In vitro studies using PRF were considered and articles published up to June 31, 2018 were screened. Eligible studies were selected based on the use of human PRF. Results In total, 1746 titles were identified with the search terms, from these 37 met the inclusion criteria and were chosen for data extraction. In addition, 16 new studies, mainly published in 2019, were also included in the analysis resulting in 53 studies. No meta-analysis could be performed due to the heterogeneity of study designs. Included studies show that PRF enhances proliferation, migration, adhesion, and osteogenic differentiation on a variety of cell types along with cell signaling activation. Furthermore, PRF reduces inflammation, suppresses osteoclastogenesis, and increases the expression of various growth factors in mesenchymal cells. Summary and conclusions Despite some notable differences of the studies, the overall findings suggest a positive effect of PRF on cell proliferation, migration, adhesion, differentiation, and inflammation pointing towards a therapeutic potential in regenerative dentistry. Clinical relevance PRF serves as a reservoir of bioactive molecules to support wound healing and bone regeneration. Although the cellular mechanisms by which PRF supports the clinical outcomes remain unclear, in vitro research provides possible explanations. This systematic review aims to provide an update of the existing research on how PRF affects basic physiological processes in vitro. The overall findings suggest that PRF induces cell proliferation, migration, adhesion, and differentiation along with possessing anti-inflammatory properties further supporting its therapeutic potential in wound healing and bone regeneration.
Collapse
Affiliation(s)
- Franz-Josef Strauss
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Department of Conservative Dentistry, School of Dentistry, Universidad de Chile, Av. Sergio Livingstone, 943, Santiago, Chile
| | - Jila Nasirzade
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Zahra Kargarpoor
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Alexandra Stähli
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria. .,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland. .,Austrian Cluster for Tissue Regeneration, Donaueschingenstrasse 13, 1200, Vienna, Austria.
| |
Collapse
|
47
|
Lee J, Lee J, Hwang S, Choi J, Rhyu I, Yeo IL. Leukocyte‐ and platelet‐rich fibrin is an effective membrane for lateral ridge augmentation: An in vivo study using a canine model with surgically created defects. J Periodontol 2019; 91:120-128. [DOI: 10.1002/jper.19-0186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jun‐Beom Lee
- Department of PeriodontologySeoul National University School of Dentistry Seoul Korea
| | - Jung‐Tae Lee
- Dental Research InstituteSeoul National University Seoul Korea
| | - Sukhyun Hwang
- Graduate CoursesKorea University College of Medicine Seoul Korea
| | - Jung‐Yoo Choi
- Dental Research InstituteSeoul National University Seoul Korea
| | - In‐Chul Rhyu
- Department of PeriodontologySeoul National University School of Dentistry Seoul Korea
| | - In‐Sung L. Yeo
- Department of ProsthodonticsSchool of Dentistry and Dental Research InstituteSeoul National University Seoul Korea
| |
Collapse
|
48
|
de Sousa Gomes P, Daugela P, Poskevicius L, Mariano L, Fernandes MH. Molecular and Cellular Aspects of Socket Healing in the Absence and Presence of Graft Materials and Autologous Platelet Concentrates: a Focused Review. J Oral Maxillofac Res 2019; 10:e2. [PMID: 31620264 PMCID: PMC6788423 DOI: 10.5037/jomr.2019.10302] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The present manuscript aims to critically detail the physiologic process of socket healing, in the absence or presence of grafting materials or platelet concentrates, addressing the associated molecular and cellular events that culminate in the restoration of the lost tissue architecture and functionality. MATERIAL AND METHODS An electronic search in the National Library of Medicine database MEDLINE through its online site PubMed and Web of Science from inception until May 2019 was conducted to identify articles concerning physiologic process of socket healing, in the absence or presence of grafting materials or platelet concentrates. The search was restricted to English language articles without time restriction. Additionally, a hand search was carried out in oral surgery, periodontology and dental implants related journals. RESULTS In total, 122 literature sources were obtained and reviewed. The detailed biological events, at the molecular and cellular level, that occur in the alveolus after tooth extraction and socket healing process modulated by grafting materials or autologous platelet concentrates were presented as two entities. CONCLUSIONS Tooth extraction initiates a convoluted set of orderly biological events in the alveolus, aiming wound closure and socket healing. The healing process comprises a wide range of events, regulated by the interplay of cytokines, chemokines and growth factors that determine cellular recruitment, proliferation and differentiation in the healing milieu, in a space- and time-dependent choreographic interplay. Additionally, the healing process may further be modulated by the implantation of grafting materials or autologous platelet concentrates within the tooth socket, aiming to enhance the regenerative outcome.
Collapse
Affiliation(s)
- Pedro de Sousa Gomes
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
- LAQV/REQUIMTE, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| | - Povilas Daugela
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Lukas Poskevicius
- Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, KaunasLithuania.
| | - Lorena Mariano
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| | - Maria Helena Fernandes
- BoneLab, Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, PortoPortugal.
- LAQV/REQUIMTE, Faculty of Dental Medicine, U. Porto, PortoPortugal.
| |
Collapse
|
49
|
Preconditioning of Human Dental Pulp Stem Cells with Leukocyte- and Platelet-Rich Fibrin-Derived Factors Does Not Enhance Their Neuroregenerative Effect. Stem Cells Int 2019; 2019:8589149. [PMID: 31089335 PMCID: PMC6476049 DOI: 10.1155/2019/8589149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/22/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Pathologies of the central nervous system are characterized by loss of brain tissue and neuronal function which cannot be adequately restored by endogenous repair processes. This stresses the need for novel treatment options such as cell-based therapies that are able to restore damaged tissue or stimulate repair. This study investigated the neuroregenerative potential of the conditioned medium of human dental pulp stem cells (CM-hDPSCs) on neural stem cell (NSC) proliferation and migration as well as on neurite outgrowth of primary cortical neurons (pCNs). Additionally, the effect of leukocyte- and platelet-rich fibrin (L-PRF) priming on the neuroregenerative potential of the hDPSC secretome on NSCs and pCNs was evaluated. L-PRF contains factors that enhance stem cell-induced regeneration, but its effect on hDPSC-mediated neuroregeneration is unknown. This study demonstrated that CM-hDPSCs enhanced neuritogenesis. Moreover, CM-hDPSCs had a chemoattractant effect on NSCs. Although priming hDPSCs with L-PRF increased brain-derived neurotrophic factor secretion, no additional effects on the paracrine-mediated repair mechanisms were observed. These data support the neuroregenerative potential of hDPSCs, and although priming had no additional effect, the potential of L-PRF-primed hDPSCs on distinct regenerative mechanisms remains to be clarified.
Collapse
|
50
|
Kasnak G, Fteita D, Jaatinen O, Könönen E, Tunali M, Gürsoy M, Gürsoy UK. Regulatory effects of PRF and titanium surfaces on cellular adhesion, spread, and cytokine expressions of gingival keratinocytes. Histochem Cell Biol 2019; 152:63-73. [PMID: 30767049 DOI: 10.1007/s00418-019-01774-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2019] [Indexed: 01/13/2023]
Abstract
Dental implant material has an impact on adhesion and spreading of oral mucosal cells on its surface. Platelet-rich fibrin (PRF), a second-generation platelet concentrate, can enhance cell proliferation and adhesion. The aim was to examine the regulatory effects of PRF and titanium surfaces on cellular adhesion, spread, and cytokine expressions of gingival keratinocytes. Human gingival keratinocytes were cultured on titanium grade 4, titanium grade 5 (Ti5), and HA discs at 37 °C in a CO2 incubator for 6 h and 24 h, using either elutes of titanium-PRF (T-PRF) or leukocyte and platelet-rich fibrin (L-PRF), or mammalian cell culture medium as growth media. Cell numbers were determined using a Cell Titer 96 assay. Interleukin (IL)-1β, IL-1Ra, IL-8, monocyte chemoattractant protein (MCP)-1, and vascular endothelial growth factor (VEGF) expression levels were measured using the Luminex® xMAP™ technique, and cell adhesion and spread by scanning electron microscopy. Epithelial cell adhesion and spread was most prominent to Ti5 surfaces. L-PRF stimulated cell adhesion to HA surface. Both T-PRF and L-PRF activated the expressions of IL-1 β, IL-8, IL-1Ra, MCP-1, and VEGF, T-PRF being the strongest activator. Titanium surface type has a regulatory role in epithelial cell adhesion and spread, while PRF type determines the cytokine response.
Collapse
Affiliation(s)
- Gökhan Kasnak
- Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey. .,Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
| | - Dareen Fteita
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Olli Jaatinen
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Oral Health Care, Welfare Division, City of Turku, Turku, Finland
| | - Mustafa Tunali
- Department of Periodontology, Faculty of Dentistry, University of Bezmialem, Istanbul, Turkey
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Ulvi K Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| |
Collapse
|