1
|
Toghi A, Chizari M, Khosrowabadi R. A causal role of the right dorsolateral prefrontal cortex in random exploration. Sci Rep 2024; 14:24796. [PMID: 39433838 PMCID: PMC11493979 DOI: 10.1038/s41598-024-76025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
Decision to explore new options with uncertain outcomes or exploit familiar options with known outcomes is a fundamental challenge that the brain faces in almost all real-life decisions. Previous studies have shown that humans use two main explorative strategies to negotiate this explore-exploit tradeoff. Exploring for the sake of information is called directed exploration, and exploration driven by behavioral variability is known as random exploration. While previous neuroimaging studies have shown different neural correlates for these explorative strategies, including right frontopolar cortex (FPC), right dorsolateral prefrontal cortex (DLPFC), and dorsal anterior cingulate cortex (dACC), there is still a lack of causal evidence for most of these brain regions. Here, we focused on the right DLPFC, which was previously supported to be involved in exploration. Using the continuous theta burst stimulation (cTBS) and Horizon task on twenty-five healthy right-handed adult participants, we showed that inhibiting rDLPFC did not change directed exploration but selectively reduced random exploration, by increasing reward sensitivity over the average reward of each option. This suggests a causal role for rDLPFC in random exploration, and further supports dissociable neural implementations for these two explorative strategies.
Collapse
Affiliation(s)
- Armin Toghi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Mojtaba Chizari
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Reza Khosrowabadi
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
2
|
Yeh CH, Lin PC, Tseng RY, Chao YP, Wu CT, Chou TL, Chen RS, Gau SSF, Ni HC, Lin HY. Lack of effects of eight-week left dorsolateral prefrontal theta burst stimulation on white matter macro/microstructure and connection in autism. Brain Imaging Behav 2024; 18:794-807. [PMID: 38492129 DOI: 10.1007/s11682-024-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Whether brain stimulation could modulate brain structure in autism remains unknown. This study explored the impact of continuous theta burst stimulation (cTBS) over the left dorsolateral prefrontal cortex (DLPFC) on white matter macro/microstructure in intellectually able children and emerging adults with autism. Sixty autistic participants were randomized (30 active) and received active or sham cTBS for eight weeks twice per week, 16 total sessions using a double-blind (participant-, rater-, analyst-blinded) design. All participants received high-angular resolution diffusion MR imaging at baseline and week 8. Twenty-eight participants in the active group and twenty-seven in the sham group with good imaging quality entered the final analysis. With longitudinal fixel-based analysis and network-based statistics, we found no significant difference between the active and sham groups in changes of white matter macro/microstructure and connections following cTBS. In addition, we found no association between baseline white matter macro/microstructure and autistic symptom changes from baseline to week 8 in the active group. In conclusion, we did not find a significant impact of left DLPFC cTBS on white matter macro/microstructure and connections in children and emerging adults with autism. These findings need to be interpreted in the context that the current intellectually able cohort in a single university hospital site limits the generalizability. Future studies are required to investigate if higher stimulation intensities and/or doses, other personal factors, or rTMS parameters might confer significant brain structural changes visible on MRI in ASD.
Collapse
Affiliation(s)
- Chun-Hung Yeh
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Po-Chun Lin
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan
| | - Rung-Yu Tseng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ping Chao
- Deparment of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Otorhinolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chen-Te Wu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tai-Li Chou
- Department of Psychology, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Rou-Shayn Chen
- Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Susan Shur-Fen Gau
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Hsing-Chang Ni
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, No.5 Fusing St. Gueishan, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hsiang-Yuan Lin
- Azrieli Adult Neurodevelopmental Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Ngetich R, Villalba-García C, Soborun Y, Vékony T, Czakó A, Demetrovics Z, Németh D. Learning and memory processes in behavioural addiction: A systematic review. Neurosci Biobehav Rev 2024; 163:105747. [PMID: 38870547 DOI: 10.1016/j.neubiorev.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Similar to addictive substances, addictive behaviours such as gambling and gaming are associated with maladaptive modulation of key brain areas and functional networks implicated in learning and memory. Therefore, this review sought to understand how different learning and memory processes relate to behavioural addictions and to unravel their underlying neural mechanisms. Adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we systematically searched four databases - PsycINFO, PubMed, Scopus, and Web of Science using the agreed-upon search string. Findings suggest altered executive function-dependent learning processes and enhanced habit learning in behavioural addiction. Whereas the relationship between working memory and behavioural addiction is influenced by addiction type, working memory aspect, and task nature. Additionally, long-term memory is incoherent in individuals with addictive behaviours. Consistently, neurophysiological evidence indicates alterations in brain areas and networks implicated in learning and memory processes in behavioural addictions. Overall, the present review argues that, like substance use disorders, alteration in learning and memory processes may underlie the development and maintenance of behavioural addictions.
Collapse
Affiliation(s)
- Ronald Ngetich
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
| | | | - Yanisha Soborun
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain
| | - Andrea Czakó
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zsolt Demetrovics
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary; College of Education, Psychology and Social Work, Flinders University, Adelaide, Australia.
| | - Dezső Németh
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, INSERM, CNRS, Université Claude Bernard Lyon 1, Bron, France; Department of Education and Psychology, Faculty of Social Sciences, University of Atlántico Medio, Las Palmas de Gran Canaria, Spain; BML-NAP Research Group, Institute of Psychology, Eötvös Loránd University & Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
4
|
Dengler J, Deck BL, Stoll H, Fernandez-Nunez G, Kelkar AS, Rich RR, Erickson BA, Erani F, Faseyitan O, Hamilton RH, Medaglia JD. Enhancing cognitive control with transcranial magnetic stimulation in subject-specific frontoparietal networks. Cortex 2024; 172:141-158. [PMID: 38330778 DOI: 10.1016/j.cortex.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/26/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Cognitive control processes, including those involving frontoparietal networks, are highly variable between individuals, posing challenges to basic and clinical sciences. While distinct frontoparietal networks have been associated with specific cognitive control functions such as switching, inhibition, and working memory updating functions, there have been few basic tests of the role of these networks at the individual level. METHODS To examine the role of cognitive control at the individual level, we conducted a within-subject excitatory transcranial magnetic stimulation (TMS) study in 19 healthy individuals that targeted intrinsic ("resting") frontoparietal networks. Person-specific intrinsic networks were identified with resting state functional magnetic resonance imaging scans to determine TMS targets. The participants performed three cognitive control tasks: an adapted Navon figure-ground task (requiring set switching), n-back (working memory), and Stroop color-word (inhibition). OBJECTIVE Hypothesis: We predicted that stimulating a network associated with externally oriented control [the "FPCN-B" (fronto-parietal control network)] would improve performance on the set switching and working memory task relative to a network associated with attention (the Dorsal Attention Network, DAN) and cranial vertex in a full within-subjects crossover design. RESULTS We found that set switching performance was enhanced by FPCN-B stimulation along with some evidence of enhancement in the higher-demand n-back conditions. CONCLUSION Higher task demands or proactive control might be a distinguishing role of the FPCN-B, and personalized intrinsic network targeting is feasible in TMS designs.
Collapse
Affiliation(s)
- Julia Dengler
- School of Biomedical Engineering Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Benjamin L Deck
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Harrison Stoll
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | | | - Apoorva S Kelkar
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Ryan R Rich
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Brian A Erickson
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Fareshte Erani
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA
| | | | - Roy H Hamilton
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Medaglia
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, PA, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Xu M, Nikolin S, Samaratunga N, Chow EJH, Loo CK, Martin DM. Cognitive Effects Following Offline High-Frequency Repetitive Transcranial Magnetic Stimulation (HF-rTMS) in Healthy Populations: A Systematic Review and Meta-Analysis. Neuropsychol Rev 2024; 34:250-276. [PMID: 36857011 PMCID: PMC10920443 DOI: 10.1007/s11065-023-09580-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2023] [Indexed: 03/02/2023]
Abstract
High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is a commonly used form of rTMS to treat neuropsychiatric disorders. Emerging evidence suggests that 'offline' HF-rTMS may have cognitive enhancing effects, although the magnitude and moderators of these effects remain unclear. We conducted a systematic review and meta-analysis to clarify the cognitive effects of offline HF-rTMS in healthy individuals. A literature search for randomised controlled trials with cognitive outcomes for pre and post offline HF-rTMS was performed across five databases up until March 2022. This study was registered on the PROSPERO international prospective protocol for systematic reviews (PROSPERO 2020 CRD 42,020,191,269). The Risk of Bias 2 tool was used to assess the risk of bias in randomised trials. Separate analyses examined the cognitive effects of excitatory and inhibitory forms of offline HF-rTMS on accuracy and reaction times across six cognitive domains. Fifty-three studies (N = 1507) met inclusion criteria. Excitatory offline HF-rTMS showed significant small sized effects for improving accuracy (k = 46, g = 0.12) and reaction time (k = 44, g = -0.13) across all cognitive domains collapsed. Excitatory offline HF-rTMS demonstrated a relatively greater effect for executive functioning in accuracy (k = 24, g = 0.14). Reaction times were also improved for the executive function (k = 21, g = -0.11) and motor (k = 3, g = -0.22) domains following excitatory offline HF-rTMS. The current review was restricted to healthy individuals and future research is required to examine cognitive enhancement from offline HF-rTMS in clinical cohorts.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
| | - Nisal Samaratunga
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Esther Jia Hui Chow
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Colleen K Loo
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry & Mental Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, Australia.
- Black Dog Institute, Sydney, Australia.
- UNSW Sydney, High St, Kensington, NSW, 2052, Australia.
| |
Collapse
|
6
|
Dai P, Wang ZX, Yu HX, Liu CB, Liu SH, Zhang H. The Effect of Continuous Theta Burst Stimulation over the Right Dorsolateral Prefrontal Cortex on Cognitive Function and Emotional Regulation in Patients with Cerebral Small Vessel Disease. Brain Sci 2023; 13:1309. [PMID: 37759910 PMCID: PMC10526451 DOI: 10.3390/brainsci13091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVES Cognitive impairment in cerebral small vessel disease (CSVD) is a common cause of vascular dementia and is often accompanied by mental disorders. The purpose of this study was to investigate the effect of continuous theta burst stimulation (cTBS) over the right dorsolateral prefrontal cortex (DLPFC) on the cognitive function and Hamilton depression (HAMD) scores in patients with CSVD. METHODS A total of 30 CSVD patients who met the inclusion criteria were randomly assigned to either the sham or cTBS group. The patients in both groups received routine cognitive function training. All the patients were under treatment for 14 sessions, with one session per day (each cTBS conditioning session consisted of three-pulse bursts at 50 Hz repeated at 5 Hz, 80% MT, and 600 pulses). Before and after the treatment, the patients in both groups were evaluated using the Montreal Cognitive Assessment (MoCA), Stroop Color-Word Test (SCWT), Trail Marking Test (TMT), Digital Span Test (DST), and HAMD test. The time to complete the SCWT and TMT were recorded. The scores of the MoCA, DST and HAMD test were recorded. RESULTS The HAMD scores in the cTBS group decreased significantly compared to the control (p < 0.05). There were no significant differences in the MoCA (including the MoCA subitems) or DST scores or in the SCWT or TMT completion times between the two groups (p > 0.05). For the HAMD scores and the MoCA subitem visuospatial/executive scores, the SCWT-B and SCWT-C completion times in the two groups both improved significantly before and after treatment (p < 0.05). For the MoCA scores, the DST-backward scores and the TMT-B completion times in the cTBS group improved significantly before and after treatment (p < 0.05). There was no significant difference in the SCWT-A, TMT-A completion times and MoCA subitems naming, attention, language, abstraction, delayed recall, and orientation scores either before or after treatment in the two groups or between the two groups (p > 0.05). CONCLUSIONS In this study, cTBS over the right DLPFC decreased the HAMD scores significantly in patients with CSVD but had no significant improvement or impairment effects on cognitive function. cTBS over the right DLPFC could be used to treat CSVD patients with depression symptoms.
Collapse
Affiliation(s)
- Pei Dai
- School of Rehabilitation, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, China
| | - Zhao-Xia Wang
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hui-Xian Yu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Chang-Bin Liu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Si-Hao Liu
- Department of Rehabilitation Medicine, Beijing Tian tan Hospital, Capital Medical University, Beijing 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing 100070, China
| | - Hao Zhang
- School of Rehabilitation, Capital Medical University, China Rehabilitation Research Center, Beijing 100068, China
| |
Collapse
|
7
|
Watanabe T, Chen X, Yunoki K, Matsumoto T, Horinouchi T, Ito K, Ishida H, Sunagawa T, Mima T, Kirimoto H. Differential Effects of Transcranial Static Magnetic Stimulation Over Left and Right Dorsolateral Prefrontal Cortex on Brain Oscillatory Responses During a Working Memory Task. Neuroscience 2023; 517:50-60. [PMID: 36907432 DOI: 10.1016/j.neuroscience.2023.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
Transcranial static magnetic stimulation (tSMS) is known to influence behavioral and neural activities. However, although the left and right dorsolateral prefrontal cortex (DLPFC) are associated with different cognitive functions, there remains a lack of knowledge on a difference in the effects of tSMS on cognitive performance and related brain activity between left and right DLPFC stimulations. To address this knowledge gap, we examined how differently tSMS over the left and right DLPFC altered working memory performance and electroencephalographic oscillatory responses using a 2-back task, in which subjects monitor a sequence of stimuli and decide whether a presented stimulus matches the stimulus presented two trials previously. Fourteen healthy adults (five females) performed the 2-back task before, during (20 min after the start of stimulation), immediately after, and 15 min after three different stimulation conditions: tSMS over the left DLPFC, tSMS over the right DLPFC, and sham stimulation. Our preliminary results revealed that while tSMS over the left and right DLPFC impaired working memory performance to a similar extent, the impacts of tSMS on brain oscillatory responses were different between the left and right DLPFC stimulations. Specifically, tSMS over the left DLPFC increased the event-related synchronization in beta band whereas tSMS over the right DLPFC did not show such an effect. These findings support evidence that the left and right DLPFC play different roles in working memory and suggest that the neural mechanism underlying the impairment of working memory by tSMS can be different between left and right DLPFC stimulations.
Collapse
Affiliation(s)
- Tatsunori Watanabe
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Xiaoxiao Chen
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; College of Physical Education and Sports Rehabilitation, Jinzhou Medical University, Jinzhou, China
| | - Keisuke Yunoki
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takuya Matsumoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan; Faculty of Health Sciences, Tokyo Kasei University, Saitama, Japan
| | - Takayuki Horinouchi
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kanami Ito
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Haruki Ishida
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Toru Sunagawa
- Department of Analysis and Control of Upper Extremity Function, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Hikari Kirimoto
- Department of Sensorimotor Neuroscience, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
8
|
Hobot J, Skóra Z, Wierzchoń M, Sandberg K. Continuous Theta Burst Stimulation to the left anterior medial prefrontal cortex influences metacognitive efficiency. Neuroimage 2023; 272:119991. [PMID: 36858333 DOI: 10.1016/j.neuroimage.2023.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
The contribution of the prefrontal areas to visual awareness is critical for the Global Neuronal Workspace Theory and higher-order theories of consciousness. The goal of the present study was to test the potential engagement of the anterior medial prefrontal cortex (aMPFC) in visual awareness judgements. We aimed to temporarily influence the neuronal dynamics of the left aMPFC via neuroplasticity-like mechanisms. We used different Theta Burst Stimulation (TBS) protocols in combination with a visual identification task and visual awareness ratings. Either continuous TBS (cTBS), intermittent TBS (iTBS), or sham TBS was applied prior to the experimental paradigm in a within-participant design. Compared with sham TBS, we observed an increase in participants' ability to judge their perception adequately (metacognitive efficiency) following cTBS but not iTBS. The effect was accompanied by lower visual awareness ratings in incorrect responses. No significant differences in the identification task performance were observed. We interpret these results as evidence of the involvement of PFC in the brain network that underlies metacognition. Further, we discuss whether the results of TMS studies on perceptual metacognition can be taken as evidence for PFC involvement in awareness itself.
Collapse
Affiliation(s)
- Justyna Hobot
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | - Zuzanna Skóra
- Colourlab, Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Michał Wierzchoń
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland
| | - Kristian Sandberg
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology 2023; 48:113-120. [PMID: 35810199 PMCID: PMC9700665 DOI: 10.1038/s41386-022-01370-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
Activity-dependent synaptic plasticity is a ubiquitous property of the nervous system that allows neurons to communicate and change their connections as a function of past experiences. Through reweighting of synaptic strengths, the nervous system can remodel itself, giving rise to durable memories that create the biological basis for mental function. In healthy individuals, synaptic plasticity undergoes characteristic developmental and aging trajectories. Dysfunctional plasticity, in turn, underlies a wide spectrum of neuropsychiatric disorders including depression, schizophrenia, addiction, and posttraumatic stress disorder. From a mechanistic standpoint, synaptic plasticity spans the gamut of spatial and temporal scales, from microseconds to the lifespan, from microns to the entire nervous system. With the numbers and strengths of synapses changing on such wide scales, there is an important need to develop measurement techniques with complimentary sensitivities and a growing number of approaches are now being harnessed for this purpose. Through hemodynamic measures, structural and tracer imaging, and noninvasive neuromodulation, it is possible to image structural and functional changes that underlie synaptic plasticity and associated behavioral learning. Here we review the mechanisms of neural plasticity and the historical and future trends in techniques that allow imaging of synaptic changes that accompany psychiatric disorders, highlighting emerging therapeutics and the challenges and opportunities accompanying this burgeoning area of study.
Collapse
|
10
|
Ngetich R, Jin D, Li W, Song B, Zhang J, Jin Z, Li L. Enhancing Visuospatial Working Memory Performance Using Intermittent Theta-Burst Stimulation Over the Right Dorsolateral Prefrontal Cortex. Front Hum Neurosci 2022; 16:752519. [PMID: 35370586 PMCID: PMC8968997 DOI: 10.3389/fnhum.2022.752519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Noninvasive brain stimulation provides a promising approach for the treatment of neuropsychiatric conditions. Despite the increasing research on the facilitatory effects of this kind of stimulation on the cognitive processes, the majority of the studies have used the standard stimulation approaches such as the transcranial direct current stimulation and the conventional repetitive transcranial magnetic stimulation (rTMS) which seem to be limited in robustness and the duration of the transient effects. However, a recent specialized type of rTMS, theta-burst stimulation (TBS), patterned to mimic the natural cross-frequency coupling of the human brain, may induce robust and longer-lasting effects on cortical activity. Here, we aimed to investigate the effects of the intermittent TBS (iTBS), a facilitatory form of TBS, over the right DLPFC (rDLPFC), a brain area implicated in higher-order cognitive processes, on visuospatial working memory (VSWM) performance. Therefore, iTBS was applied over either the rDLPFC or the vertex of 24 healthy participants, in two separate sessions. We assessed VSWM performance using 2-back and 4-back visuospatial tasks before iTBS (at the baseline (BL), and after the iTBS. Our results indicate that the iTBS over the rDLPFC significantly enhanced VSWM performance in the 2-back task, as measured by the discriminability index and the reaction time. However, the 4-back task performance was not significantly modulated by iTBS. These findings demonstrate that the rDLPFC plays a critical role in VSWM and that iTBS is a safe and effective approach for investigating the causal role of the specific brain areas.
Collapse
|
11
|
Spinal cord representation of motor cortex plasticity reflects corticospinal tract LTP. Proc Natl Acad Sci U S A 2021; 118:2113192118. [PMID: 34934000 PMCID: PMC8719859 DOI: 10.1073/pnas.2113192118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 11/18/2022] Open
Abstract
Although it is well known that activity-dependent motor cortex (MCX) plasticity produces long-term potentiation (LTP) of local cortical circuits, leading to enhanced muscle function, the effects on the corticospinal projection to spinal neurons has not yet been thoroughly studied. Here, we investigate a spinal locus for corticospinal tract (CST) plasticity in anesthetized rats using multichannel recording of motor-evoked, intraspinal local field potentials (LFPs) at the sixth cervical spinal cord segment. We produced LTP by intermittent theta burst electrical stimulation (iTBS) of the wrist area of MCX. Approximately 3 min of MCX iTBS potentiated the monosynaptic excitatory LFP recorded within the CST termination field in the dorsal horn and intermediate zone for at least 15 min after stimulation. Ventrolaterally, in the spinal cord gray matter, which is outside the CST termination field in rats, iTBS potentiated an oligosynaptic negative LFP that was localized to the wrist muscle motor pool. Spinal LTP remained robust, despite pharmacological blockade of iTBS-induced LTP within MCX using MK801, showing that activity-dependent spinal plasticity can be induced without concurrent MCX LTP. Pyramidal tract iTBS, which preferentially activates the CST, also produced significant spinal LTP, indicating the capacity for plasticity at the CST-spinal interneuron synapse. Our findings show CST monosynaptic LTP in spinal interneurons and demonstrate that spinal premotor circuits are capable of further modifying descending MCX control signals in an activity-dependent manner.
Collapse
|
12
|
Deng X, Wang J, Zang Y, Li Y, Fu W, Su Y, Chen X, Du B, Dong Q, Chen C, Li J. Intermittent theta burst stimulation over the parietal cortex has a significant neural effect on working memory. Hum Brain Mapp 2021; 43:1076-1086. [PMID: 34730863 PMCID: PMC8764471 DOI: 10.1002/hbm.25708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
The crucial role of the parietal cortex in working memory (WM) storage has been identified by fMRI studies. However, it remains unknown whether repeated parietal intermittent theta‐burst stimulation (iTBS) can improve WM. In this within‐subject randomized controlled study, under the guidance of fMRI‐identified parietal activation in the left hemisphere, 22 healthy adults received real and sham iTBS sessions (five consecutive days, 600 pulses per day for each session) with an interval of 9 months between the two sessions. Electroencephalography signals of each subject before and after both iTBS sessions were collected during a change detection task. Changes in contralateral delay activity (CDA) and K‐score were then calculated to reflect neural and behavioral WM improvement. Repeated‐measures ANOVA suggested that real iTBS increased CDA more than the sham one (p = .011 for iTBS effect). Further analysis showed that this effect was more significant in the left hemisphere than in the right hemisphere (p = .029 for the hemisphere‐by‐iTBS interaction effect). Pearson correlation analyses showed significant correlations for two conditions between CDA changes in the left hemisphere and K score changes (ps <.05). In terms of the behavioral results, significant K score changes after real iTBS were observed for two conditions, but a repeated‐measures ANOVA showed a nonsignificant main effect of iTBS (p = .826). These results indicate that the current iTBS protocol is a promising way to improve WM capability based on the neural indicator (CDA) but further optimization is needed to produce a behavioral effect.
Collapse
Affiliation(s)
- Xinping Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jue Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Wenjin Fu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yanyan Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
13
|
Continuous theta-burst stimulation over the right dorsolateral prefrontal cortex impairs visuospatial working memory performance in medium load task. Neuroreport 2021; 32:808-814. [PMID: 33994528 DOI: 10.1097/wnr.0000000000001666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Previous studies have shown that visuospatial working memory (VSWM) plays a key role in the encoding and processing of visuospatial information. More importantly, there is evidence suggesting the role of frontal and parietal cortical areas in VSWM and especially, the influence of the frontal cortex in regulating goal-directed behavior. However, the functional role of the right dorsolateral prefrontal cortex (rDLPFC) in visuospatial working memory is still unclear. Here, we noninvasively modulated the rDLPFC activity using continuous theta-burst stimulation (cTBS), with the vertex as the control site. Our study aimed to investigate the effects of cTBS over rDLPFC on working memory task (2- and 4-back) performance. Working memory performance was assessed at the baseline and after stimulation. We observed that the working memory performance as measured by discriminability index was impaired after cTBS over rDLPFC in 2-back task, whereas 4-back task performance was not significantly affected. More so, there was no effect on performance after cTBS over the vertex, suggesting a functional role of rDLPFC in VSWM. Our findings demonstrate the involvement of the rDLPFC in VSWM as well as the load-dependent effect of working memory performance. Taken together, our work constitutes a useful addition to the literature and underscores the effectiveness and efficiency of noninvasive brain stimulation in modulating neuro-cognitive activity.
Collapse
|
14
|
Hertrich I, Dietrich S, Blum C, Ackermann H. The Role of the Dorsolateral Prefrontal Cortex for Speech and Language Processing. Front Hum Neurosci 2021; 15:645209. [PMID: 34079444 PMCID: PMC8165195 DOI: 10.3389/fnhum.2021.645209] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
This review article summarizes various functions of the dorsolateral prefrontal cortex (DLPFC) that are related to language processing. To this end, its connectivity with the left-dominant perisylvian language network was considered, as well as its interaction with other functional networks that, directly or indirectly, contribute to language processing. Language-related functions of the DLPFC comprise various aspects of pragmatic processing such as discourse management, integration of prosody, interpretation of nonliteral meanings, inference making, ambiguity resolution, and error repair. Neurophysiologically, the DLPFC seems to be a key region for implementing functional connectivity between the language network and other functional networks, including cortico-cortical as well as subcortical circuits. Considering clinical aspects, damage to the DLPFC causes psychiatric communication deficits rather than typical aphasic language syndromes. Although the number of well-controlled studies on DLPFC language functions is still limited, the DLPFC might be an important target region for the treatment of pragmatic language disorders.
Collapse
Affiliation(s)
- Ingo Hertrich
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Susanne Dietrich
- Evolutionary Cognition, Department of Psychology, University of Tübingen, Tübingen, Germany
| | - Corinna Blum
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hermann Ackermann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
15
|
Balasubramani PP, Ojeda A, Grennan G, Maric V, Le H, Alim F, Zafar-Khan M, Diaz-Delgado J, Silveira S, Ramanathan D, Mishra J. Mapping cognitive brain functions at scale. Neuroimage 2021; 231:117641. [PMID: 33338609 PMCID: PMC8221518 DOI: 10.1016/j.neuroimage.2020.117641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/31/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
A fundamental set of cognitive abilities enable humans to efficiently process goal-relevant information, suppress irrelevant distractions, maintain information in working memory, and act flexibly in different behavioral contexts. Yet, studies of human cognition and their underlying neural mechanisms usually evaluate these cognitive constructs in silos, instead of comprehensively in-tandem within the same individual. Here, we developed a scalable, mobile platform, "BrainE" (short for Brain Engagement), to rapidly assay several essential aspects of cognition simultaneous with wireless electroencephalography (EEG) recordings. Using BrainE, we rapidly assessed five aspects of cognition including (1) selective attention, (2) response inhibition, (3) working memory, (4) flanker interference and (5) emotion interference processing, in 102 healthy young adults. We evaluated stimulus encoding in all tasks using the EEG neural recordings, and isolated the cortical sources of the spectrotemporal EEG dynamics. Additionally, we used BrainE in a two-visit study in 24 young adults to investigate the reliability of the neuro-cognitive data as well as its plasticity to transcranial magnetic stimulation (TMS). We found that stimulus encoding on multiple cognitive tasks could be rapidly assessed, identifying common as well as distinct task processes in both sensory and cognitive control brain regions. Event related synchronization (ERS) in the theta (3-7 Hz) and alpha (8-12 Hz) frequencies as well as event related desynchronization (ERD) in the beta frequencies (13-30 Hz) were distinctly observed in each task. The observed ERS/ERD effects were overall anticorrelated. The two-visit study confirmed high test-retest reliability for both cognitive and neural data, and neural responses showed specific TMS protocol driven modulation. We also show that the global cognitive neural responses are sensitive to mental health symptom self-reports. This first study with the BrainE platform showcases its utility in studying neuro-cognitive dynamics in a rapid and scalable fashion.
Collapse
Affiliation(s)
| | - Alejandro Ojeda
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Gillian Grennan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Vojislav Maric
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hortense Le
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Fahad Alim
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mariam Zafar-Khan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Juan Diaz-Delgado
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sarita Silveira
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Mental Health, VA San Diego Medical Center, San Diego, CA
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Holczer A, Németh VL, Vékony T, Kocsis K, Király A, Kincses ZT, Vécsei L, Klivényi P, Must A. The Effects of Bilateral Theta-burst Stimulation on Executive Functions and Affective Symptoms in Major Depressive Disorder. Neuroscience 2021; 461:130-139. [PMID: 33731314 DOI: 10.1016/j.neuroscience.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Major depressive disorder (MDD) is characterized by severe affective as well as cognitive symptoms. Moreover, cognitive impairment in MDD can persist after the remission of affective symptoms. Theta-burst stimulation (TBS) is a promising tool to manage the affective symptoms of major depressive disorder (MDD); however, its cognition-enhancing effects are sparsely investigated. Here, we aimed to examine whether the administration of bilateral TBS has pro-cognitive effects in MDD. Ten daily sessions of neuronavigated active or sham TBS were delivered bilaterally over the dorsolateral prefrontal cortex to patients with MDD. The n-back task and the attention network task were administered to assess working memory and attention, respectively. Affective symptoms were measured using the 21-item Hamilton Depression Rating Scale. We observed moderate evidence that the depressive symptoms of patients receiving active TBS improved compared to participants in the sham stimulation. No effects of TBS on attention and working memory were detected, supported by a moderate-to-strong level of evidence. The effects of TBS on psychomotor processing speed should be further investigated. Bilateral TBS has a substantial antidepressive effect with no immediate adverse effects on executive functions.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Viola Luca Németh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Teodóra Vékony
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Krisztián Kocsis
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Central European Institute of Technology, Brno, Czech Republic
| | - Zsigmond Tamás Kincses
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Anita Must
- Institute of Psychology, Faculty of Arts, University of Szeged, Szeged, Hungary.
| |
Collapse
|
17
|
The effect of non-invasive brain stimulation on executive functioning in healthy controls: A systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 125:122-147. [PMID: 33503477 DOI: 10.1016/j.neubiorev.2021.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 12/07/2020] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
In recent years, there has been a heightened interest in the effect of non-invasive brain stimulation on executive functioning. However, there is no comprehensive overview of its effects on different executive functioning domains in healthy individuals. Here, we assessed the state of the field by conducting a systematic review and meta-analysis on the effectiveness of non-invasive brain stimulation (i.e. repetitive transcranial magnetic stimulation and transcranial direct current stimulation) over prefrontal regions on tasks assessing working memory, inhibition, flexibility, planning and initiation performance. Our search yielded 63 studies (n = 1537), and the effectiveness of excitatory and inhibitory non-invasive brain stimulation were assessed per executive functioning task. Our analyses showed that excitatory non-invasive brain stimulation had a small but positive effect on Stop Signal Task and Go/No-Go Task performance, and that inhibitory stimulation had a small negative effect on Flanker Task performance. Non-invasive brain stimulation did not affect performance on working memory and flexibility tasks, and effects on planning tasks were inconclusive.
Collapse
|
18
|
Ngetich R, Zhou J, Zhang J, Jin Z, Li L. Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Front Integr Neurosci 2020; 14:35. [PMID: 32848648 PMCID: PMC7417340 DOI: 10.3389/fnint.2020.00035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023] Open
Abstract
Theta burst stimulation is increasingly growing in popularity as a non-invasive method of moderating corticospinal networks. Theta burst stimulation uses gamma frequency trains applied at the rhythm of theta, thus, mimicking theta–gamma coupling involved in cognitive processes. The dorsolateral prefrontal cortex has been found to play a crucial role in numerous cognitive processes. Here, we include 25 studies for review to determine the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex; 20 of these studies are healthy participant and five are patient (pharmacotherapy-resistant depression) studies. Due to the heterogeneous nature of the included studies, only a descriptive approach is used and meta-analytics ruled out. The cognitive effect is measured on various cognitive domains: attention, working memory, planning, language, decision making, executive function, and inhibitory and cognitive control. We conclude that continuous theta burst stimulation over the dorsolateral prefrontal cortex mainly inhibits cognitive performance. However, in some instances, it can lead to improved performance by inhibiting the effect of distractors or other competing irrelevant cognitive processes. To be precise, continuous theta burst stimulation over the right dorsolateral prefrontal cortex impaired attention, inhibitory control, planning, and goal-directed behavior in decision making but also improved decision making by reducing impulsivity. Conversely, continuous theta burst stimulation over the left dorsolateral prefrontal cortex impaired executive function, working, auditory feedback regulation, and cognitive control but accelerated the planning, decision-making process. These findings constitute a useful contribution to the literature on the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Ronald Ngetich
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhou
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Holczer A, Németh VL, Vékony T, Vécsei L, Klivényi P, Must A. Non-invasive Brain Stimulation in Alzheimer's Disease and Mild Cognitive Impairment-A State-of-the-Art Review on Methodological Characteristics and Stimulation Parameters. Front Hum Neurosci 2020; 14:179. [PMID: 32523520 PMCID: PMC7261902 DOI: 10.3389/fnhum.2020.00179] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/21/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have been proposed as a new therapeutic way to enhance the cognition of patients with dementia. However, serious methodological limitations appear to affect the estimates of their efficacy. We reviewed the stimulation parameters and methods of studies that used TMS or tDCS to alleviate the cognitive symptoms of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI). Moreover, we evaluated the risk of bias in these studies. Our aim was to highlight the current vulnerabilities of the field and to formulate recommendations on how to manage these issues when designing studies. Methods: Electronic databases and citation searching were used to identify studies administering TMS or tDCS on patients with AD or MCI to enhance cognitive function. Data were extracted by one review author into summary tables with the supervision of the authors. The risk of bias analysis of randomized-controlled trials was conducted by two independent assessors with version 2 of the Cochrane risk-of-bias tool for randomized trials. Results: Overall, 36 trials were identified of which 23 randomized-controlled trials underwent a risk of bias assessment. More than 75% of randomized-controlled trials involved some levels of bias in at least one domain. Stimulation parameters were highly variable with some ranges of effectiveness emerging. Studies with low risk of bias indicated TMS to be potentially effective for patients with AD or MCI while questioned the efficacy of tDCS. Conclusions: The presence and extent of methodical issues affecting TMS and tDCS research involving patients with AD and MCI were examined for the first time. The risk of bias frequently affected the domains of the randomization process and selection of the reported data while missing outcome was rare. Unclear reporting was present involving randomization, allocation concealment, and blinding. Methodological awareness can potentially reduce the high variability of the estimates regarding the effectiveness of TMS and tDCS. Studies with low risk of bias delineate a range within TMS parameters seem to be effective but question the efficacy of tDCS.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Viola Luca Németh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Teodóra Vékony
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Center, University of Szeged, Szeged, Hungary
| | - Anita Must
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
- Faculty of Arts, Institute of Psychology, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Bakulin I, Zabirova A, Lagoda D, Poydasheva A, Cherkasova A, Pavlov N, Kopnin P, Sinitsyn D, Kremneva E, Fedorov M, Gnedovskaya E, Suponeva N, Piradov M. Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study. Brain Sci 2020; 10:brainsci10020083. [PMID: 32033106 PMCID: PMC7071618 DOI: 10.3390/brainsci10020083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023] Open
Abstract
It has been proposed that the effectiveness of non-invasive brain stimulation (NIBS) as a cognitive enhancement technique may be enhanced by combining the stimulation with concurrent cognitive activity. However, the benefits of such a combination in comparison to protocols without ongoing cognitive activity have not yet been studied. In the present study, we investigate the effects of fMRI-guided high-frequency repetitive transcranial magnetic stimulation (HF rTMS) over the left dorsolateral prefrontal cortex (DLPFC) on working memory (WM) in healthy volunteers, using an n-back task with spatial and verbal stimuli and a spatial span task. In two combined protocols (TMS + WM + (maintenance) and TMS + WM + (rest)) trains of stimuli were applied in the maintenance and rest periods of the modified Sternberg task, respectively. We compared them to HF rTMS without a cognitive load (TMS + WM −) and control stimulation (TMS − WM + (maintenance)). No serious adverse effects appeared in this study. Among all protocols, significant effects on WM were shown only for the TMS + WM − with oppositely directed influences of this protocol on storage and manipulation in spatial WM. Moreover, there was a significant difference between the effects of TMS + WM − and TMS + WM + (maintenance), suggesting that simultaneous cognitive activity does not necessarily lead to an increase in TMS effects.
Collapse
Affiliation(s)
- Ilya Bakulin
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
- Correspondence: ; Tel.: +7-495-490-2010
| | - Alfiia Zabirova
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Dmitry Lagoda
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Alexandra Poydasheva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Anastasiia Cherkasova
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Nikolay Pavlov
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Peter Kopnin
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Dmitry Sinitsyn
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Elena Kremneva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Maxim Fedorov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, Territory of Innovation Center «Skolkovo», Moscow 121205, Russia;
| | - Elena Gnedovskaya
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, Territory of Innovation Center «Skolkovo», Moscow 121205, Russia;
| | - Natalia Suponeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Michael Piradov
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| |
Collapse
|