1
|
Waeterschoot J, Barniol-Xicota M, Verhelst S, Baatsen P, Koos E, Lammertyn J, Casadevall i Solvas X. Lipid vesicle formation by encapsulation of SMALPs in surfactant-stabilised droplets. Heliyon 2024; 10:e37915. [PMID: 39347415 PMCID: PMC11437848 DOI: 10.1016/j.heliyon.2024.e37915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Understanding the intricate functions of membrane proteins is pivotal in cell biology and drug discovery. The composition of the cell membrane is highly complex, with different types of membrane proteins and lipid species. Hence, studying cellular membranes in a complexity-reduced context is important to enhance our understanding of the roles of these different elements. However, reconstitution of membrane proteins in an environment that closely mimics the cell, like giant unilamellar vesicles (GUVs), remains challenging, often requiring detergents that compromise protein function. To address this challenge, we present a novel strategy to manufacture GUVs from styrene maleic acid lipid particles (SMALPs) that utilises surfactant-stabilised droplets as a template. As a first step towards the incorporation of membrane proteins, this work focusses on the conversion of pure lipid SMALPs in GUVs. To evaluate the method, we produced a new form of SMA linked to fluorescein, referred to as FSMA. We demonstrate the assembly of SMALPs at the surfactant-stabilised droplet interface, resulting in the formation of GUVs when released upon addition of a demulsifying agent. The released vesicles appear similar to electroformed vesicles imaged with confocal light microscopy, but a fluorescein leakage assay and cryo-TEM imaging reveal their porous nature, potentially as a result of residual interactions of SMA with the lipid bilayer. Our study represents a significant step towards opening new avenues for comprehensive protein research in a complexity-reduced, yet biologically relevant, setting.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Biomimetics Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marta Barniol-Xicota
- Department of Medicine and Life Sciences (MELIS), Barcelona Biomedical Research Park, Universitat Pompeu Fabra, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Steven Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven – University of Leuven, Herestraat 49, box 901b, 3000 Leuven, Belgium
| | - Pieter Baatsen
- Center for the Biology of Disease, VIB, Herestraat 49, Leuven, 3000, Belgium
| | - Erin Koos
- Soft Matter, Rheology and Technology (SMaRT) at KU Leuven, Celestijnenlaan 200J, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- Biosensors Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Heverlee, Belgium
| | - Xavier Casadevall i Solvas
- Biomimetics Group, Division of Mechatronics, Biostatistics and Sensors (MeBios), Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Yuan L, Li Y, Li X, Mao Z, Liu Y, Feng C, Jiang R. The molecular mechanism of naringin improving endometrial receptivity of OHSS rats. Mol Reprod Dev 2024; 91:e23715. [PMID: 37963204 DOI: 10.1002/mrd.23715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Controlling ovarian hyperstimulation syndrome (OHSS) in the controlled ovarian hyperstimulation treatment is necessary to increase the implantation success rate. This study aimed to explore the effect of naringin on the endometrial receptivity of OHSS rats. Female rats were randomly assigned to six groups: Blank, model, low-dose naringin (100 mg/kg/day), medium-dose naringin (200 mg/kg/day), high-dose naringin (400 mg/kg/day), and positive (0.18 mg/kg/day estradiol valerate) groups. Except for the blank group, rats established the OHSS model on Day 7, and their treatments were from Day 0 to 14, separately. Hematoxylin and eosin, immunohistochemical, and scanning electron microscopy were performed to detect the naringin effects on the endometrial receptivity of the OHSS model. Next, circRNAs transcriptome analysis was performed to screen circRNAs. Western blot analysis and real-time quantitative PCR were used to verify it. Our study showed that naringin treatments increased embryo number, endometrial thickness, pinopodes number, and Ki67 expression in the OHSS rats. Moreover, the result of circRNAs transcriptome sequencing showed that naringin significantly inhibited the rnocirc_008140 expression in the OHSS rats and significantly inhibited the changes of 28 gene ontology terms and three Kyoto Encyclopedia of Genes and Genomes pathways which were induced by OHSS. Abcc4 and Rps6ka5 genes were the enriched genes of those pathways. Finally, 24 miRNA target genes of rnocirc_008140 were predicted. Our study showed that naringin significantly improved the endometrial receptivity of OHSS rats to increase the embryo implantation success by reducing rnocirc_008140-adsorbed miRNAs to regulate Abcc4 and Rps6ka5 expression.
Collapse
Affiliation(s)
- Lan Yuan
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xueping Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhu Mao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chengzhi Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rongxing Jiang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Umar AW, Ahmad N, Xu M. Reviving Natural Rubber Synthesis via Native/Large Nanodiscs. Polymers (Basel) 2024; 16:1468. [PMID: 38891415 PMCID: PMC11174458 DOI: 10.3390/polym16111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/28/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Natural rubber (NR) is utilized in more than 40,000 products, and the demand for NR is projected to reach $68.5 billion by 2026. The primary commercial source of NR is the latex of Hevea brasiliensis. NR is produced by the sequential cis-condensation of isopentenyl diphosphate (IPP) through a complex known as the rubber transferase (RTase) complex. This complex is associated with rubber particles, specialized organelles for NR synthesis. Despite numerous attempts to isolate, characterize, and study the RTase complex, definitive results have not yet been achieved. This review proposes an innovative approach to overcome this longstanding challenge. The suggested method involves isolating the RTase complex without using detergents, instead utilizing the native membrane lipids, referred to as "natural nanodiscs", and subsequently reconstituting the complex on liposomes. Additionally, we recommend the adaptation of large nanodiscs for the incorporation and reconstitution of the RTase complex, whether it is in vitro transcribed or present within the natural nanodiscs. These techniques show promise as a viable solution to the current obstacles. Based on our experimental experience and insights from published literature, we believe these refined methodologies can significantly enhance our understanding of the RTase complex and its role in in vitro NR synthesis.
Collapse
Affiliation(s)
- Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Ming Xu
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China
- Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen 529199, China
| |
Collapse
|
4
|
Beratto-Ramos A, Dagnino-Leone J, Martínez-Oyanedel J, Fernández M, Aranda M, Bórquez R. Optimization of detergents in solubilization and reconstitution of Aquaporin Z: A structural approach. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184101. [PMID: 36535340 DOI: 10.1016/j.bbamem.2022.184101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The exceptional capacities of aquaporins in terms of water permeation and selectivity have made them an interesting system for membrane applications. Despite the multiple attempts for immobilizing the aquaporins over a porous substrate, there is a lack of studies related to the purification and reconstitution steps, principally associated with the use of detergents in solubilization and destabilization steps. This study analyzed the effect of detergents in Aquaporin Z solubilization, considering the purity and structural homogeneity of the protein. METHODS The extraction process was optimized by the addition of detergent at the sonication step, which enabled the omission of the ultracentrifugation and resuspension steps. Two detergents, Triton X-100, and octyl-glucoside were also evaluated. Destabilization mediated by detergents was used as reconstitution method. Saturation and solubilization points were defined by detergent concentration and both, liposomes and proteoliposomes, were analyzed by size distribution and permeability assays. Detergent removal with Bio-beads was also analyzed. RESULTS Octyl glucoside ensures structural stability and homogeneity of Aquaporin Z. However, high concentrations of detergents induce the presence of defects in proteoliposomes. While saturated liposomes create homogeneous and functional structures, solubilized liposomes get affected by a reassembly process, creating vesicle defects with anomalous permeability profiles. CONCLUSIONS Detergent concentration affects the structural conformation of proteoliposomes in the reconstitution process. GENERAL SIGNIFICANCE Since the destabilization process is dependent on vesicle, detergent, and buffer composition, optimization of this process should be mandatory for further studies. All these considerations will allow achieving the potential of Aquaporins and any other integral membrane protein in their applications for industrial purposes.
Collapse
Affiliation(s)
| | | | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Chile
| | - Marcos Fernández
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Chile
| | - Mario Aranda
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Rodrigo Bórquez
- Department of Chemical Engineering, Universidad de Concepción, Chile.
| |
Collapse
|
5
|
Sawczyc H, Heit S, Watts A. A comparative characterisation of commercially available lipid-polymer nanoparticles formed from model membranes. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:39-51. [PMID: 36786921 PMCID: PMC10039845 DOI: 10.1007/s00249-023-01632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.
Collapse
Affiliation(s)
- Henry Sawczyc
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Sabine Heit
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Anthony Watts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
6
|
Cruz-Vicente P, Gonçalves AM, Barroca-Ferreira J, Silvestre SM, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA. Unveiling the biopathway for the design of novel COMT inhibitors. Drug Discov Today 2022; 27:103328. [PMID: 35907613 DOI: 10.1016/j.drudis.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 06/27/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Catechol-O-methyltransferase (COMT) is an enzyme responsible for the O-methylation of biologically active catechol-based molecules. It has been associated with several neurological disorders, especially Parkinson's disease (PD), because of its involvement in catecholamine metabolism, and has been considered an important therapeutic target for central nervous system disorders. In this review, we summarize the biophysical, structural, and therapeutical relevance of COMT; the medicinal chemistry behind the development of COMT inhibitors and the application of computer-aided design to support the design of novel molecules; current methodologies for the biosynthesis, isolation, and purification of COMT; and revise existing bioanalytical approaches for the assessment of enzymatic activity in several biological matrices.
Collapse
Affiliation(s)
- Pedro Cruz-Vicente
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Ana M Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Jorge Barroca-Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Samuel M Silvestre
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria J Romão
- UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - João A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal
| | - Luis A Passarinha
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6201-506 Covilhã, Portugal.
| |
Collapse
|
7
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
8
|
The function of BK channels extracted and purified within SMALPs. Biochem J 2022; 479:1609-1619. [PMID: 35851603 PMCID: PMC9444072 DOI: 10.1042/bcj20210628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022]
Abstract
Human BK channels are large voltage and Ca2+-activated K+ channels, involved in several important functions within the body. The core channel is a tetramer of α subunits, and its function is modulated by the presence of β and γ accessory subunits. BK channels composed of α subunits, as well as BK channels composed of α and β1 subunits, were successfully solubilised from HEK cells with styrene maleic acid (SMA) polymer and purified by nickel affinity chromatography. Native SMA–PAGE analysis of the purified proteins showed the α subunits were extracted as a tetramer. In the presence of β1 subunits, they were co-extracted with the α subunits as a heteromeric complex. Purified SMA lipid particles (SMALPs) containing BK channel could be inserted into planar lipid bilayers (PLB) and single channel currents recorded, showing a high conductance (≈260 pS), as expected. The open probability was increased in the presence of co-purified β1 subunits. However, voltage-dependent gating of the channel was restricted. In conclusion, we have demonstrated that SMA can be used to effectively extract and purify large, complex, human ion channels, from low expressing sources. That these large channels can be incorporated into PLB from SMALPs and display voltage-dependent channel activity. However, the SMA appears to reduce the voltage dependent gating of the channels.
Collapse
|
9
|
Podolsky KA, Masubuchi T, Debelouchina GT, Hui E, Devaraj NK. In Situ Assembly of Transmembrane Proteins from Expressed and Synthetic Components in Giant Unilamellar Vesicles. ACS Chem Biol 2022; 17:1015-1021. [PMID: 35482050 PMCID: PMC9255206 DOI: 10.1021/acschembio.2c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reconstituting functional transmembrane (TM) proteins into model membranes is challenging due to the difficulty of expressing hydrophobic TM domains, which often require stabilizing detergents that can perturb protein structure and function. Recent model systems solve this problem by linking the soluble domains of membrane proteins to lipids, using noncovalent conjugation. Herein, we test an alternative solution involving the in vitro assembly of TM proteins from synthetic TM domains and expressed soluble domains using chemoselective peptide ligation. We developed an intein mediated ligation strategy to semisynthesize single-pass TM proteins in synthetic giant unilamellar vesicle (GUV) membranes by covalently attaching soluble protein domains to a synthetic TM polypeptide, avoiding the requirement for detergent. We show that the extracellular domain of programmed cell death protein 1, a mammalian immune checkpoint receptor, retains its ligand-binding function at a membrane interface after ligation to a synthetic TM peptide in GUVs, facilitating the study of receptor-ligand interactions.
Collapse
Affiliation(s)
- K. A. Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A
| | - T. Masubuchi
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, CA, U.S.A
| | - G. T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A
| | - E. Hui
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, CA, U.S.A
| | - N. K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A.,Corresponding Author: Neal K. Devaraj,
| |
Collapse
|
10
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Catania R, Machin J, Rappolt M, Muench SP, Beales PA, Jeuken LJC. Detergent-Free Functionalization of Hybrid Vesicles with Membrane Proteins Using SMALPs. Macromolecules 2022; 55:3415-3422. [PMID: 35571225 PMCID: PMC9097535 DOI: 10.1021/acs.macromol.2c00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Indexed: 11/28/2022]
Abstract
![]()
Hybrid
vesicles (HVs) that consist of mixtures of block copolymers
and lipids are robust biomimetics of liposomes, providing a valuable
building block in bionanotechnology, catalysis, and synthetic biology.
However, functionalization of HVs with membrane proteins remains laborious
and expensive, creating a significant current challenge in the field.
Here, using a new approach of extraction with styrene-maleic acid
(SMA), we show that a membrane protein (cytochrome bo3) directly transfers into HVs with an efficiency of 73.9
± 13.5% without the requirement of detergent, long incubation
times, or mechanical disruption. Direct transfer of membrane proteins
using this approach was not possible into liposomes, suggesting that
HVs are more amenable than liposomes to membrane protein incorporation
from a SMA lipid particle system. Finally, we show that this transfer
method is not limited to cytochrome bo3 and can also be performed with complex membrane protein mixtures.
Collapse
Affiliation(s)
- Rosa Catania
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Jonathan Machin
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K
| | - Stephen P. Muench
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Paul A. Beales
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Lars J. C. Jeuken
- Astbury Centre of Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
- Leiden Institute of Chemistry, University Leiden, Leiden 2300RA, The Netherlands
| |
Collapse
|
12
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
13
|
Guo Y. Detergent-free systems for structural studies of membrane proteins. Biochem Soc Trans 2021; 49:1361-1374. [PMID: 34110369 PMCID: PMC8276625 DOI: 10.1042/bst20201080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022]
Abstract
Membrane proteins play vital roles in living organisms, serving as targets for most currently prescribed drugs. Membrane protein structural biology aims to provide accurate structural information to understand their mechanisms of action. The advance of membrane protein structural biology has primarily relied on detergent-based methods over the past several decades. However, detergent-based approaches have significant drawbacks because detergents often damage the native protein-lipid interactions, which are often crucial for maintaining the natural structure and function of membrane proteins. Detergent-free methods recently have emerged as alternatives with a great promise, e.g. for high-resolution structure determinations of membrane proteins in their native cell membrane lipid environments. This minireview critically examines the current status of detergent-free methods by a comparative analysis of five groups of membrane protein structures determined using detergent-free and detergent-based methods. This analysis reveals that current detergent-free systems, such as the styrene-maleic acid lipid particles (SMALP), the diisobutyl maleic acid lipid particles (DIBMALP), and the cycloalkane-modified amphiphile polymer (CyclAPol) technologies are not better than detergent-based approaches in terms of maintenance of native cell membrane lipids on the transmembrane domain and high-resolution structure determination. However, another detergent-free technology, the native cell membrane nanoparticles (NCMN) system, demonstrated improved maintenance of native cell membrane lipids with the studied membrane proteins, and produced particles that were suitable for high-resolution structural analysis. The ongoing development of new membrane-active polymers and their optimization will facilitate the maturation of these new detergent-free systems.
Collapse
Affiliation(s)
- Youzhong Guo
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0540, USA
| |
Collapse
|
14
|
Biological insights from SMA-extracted proteins. Biochem Soc Trans 2021; 49:1349-1359. [PMID: 34110372 PMCID: PMC8286838 DOI: 10.1042/bst20201067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/08/2023]
Abstract
In the twelve years since styrene maleic acid (SMA) was first used to extract and purify a membrane protein within a native lipid bilayer, this technological breakthrough has provided insight into the structural and functional details of protein–lipid interactions. Most recently, advances in cryo-EM have demonstrated that SMA-extracted membrane proteins are a rich-source of structural data. For example, it has been possible to resolve the details of annular lipids and protein–protein interactions within complexes, the nature of lipids within central cavities and binding pockets, regions involved in stabilising multimers, details of terminal residues that would otherwise remain unresolved and the identification of physiologically relevant states. Functionally, SMA extraction has allowed the analysis of membrane proteins that are unstable in detergents, the characterization of an ultrafast component in the kinetics of electron transfer that was not possible in detergent-solubilised samples and quantitative, real-time measurement of binding assays with low concentrations of purified protein. While the use of SMA comes with limitations such as its sensitivity to low pH and divalent cations, its major advantage is maintenance of a protein's lipid bilayer. This has enabled researchers to view and assay proteins in an environment close to their native ones, leading to new structural and mechanistic insights.
Collapse
|
15
|
Current problems and future avenues in proteoliposome research. Biochem Soc Trans 2021; 48:1473-1492. [PMID: 32830854 DOI: 10.1042/bst20190966] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Membrane proteins (MPs) are the gatekeepers between different biological compartments separated by lipid bilayers. Being receptors, channels, transporters, or primary pumps, they fulfill a wide variety of cellular functions and their importance is reflected in the increasing number of drugs that target MPs. Functional studies of MPs within a native cellular context, however, is difficult due to the innate complexity of the densely packed membranes. Over the past decades, detergent-based extraction and purification of MPs and their reconstitution into lipid mimetic systems has been a very powerful tool to simplify the experimental system. In this review, we focus on proteoliposomes that have become an indispensable experimental system for enzymes with a vectorial function, including many of the here described energy transducing MPs. We first address long standing questions on the difficulty of successful reconstitution and controlled orientation of MPs into liposomes. A special emphasis is given on coreconstitution of several MPs into the same bilayer. Second, we discuss recent progress in the development of fluorescent dyes that offer sensitive detection with high temporal resolution. Finally, we briefly cover the use of giant unilamellar vesicles for the investigation of complex enzymatic cascades, a very promising experimental tool considering our increasing knowledge of the interplay of different cellular components.
Collapse
|
16
|
Yang L, Catalano C, Xu Y, Qiu W, Zhang D, McDermott A, Guo Y, Blount P. A native cell membrane nanoparticles system allows for high-quality functional proteoliposome reconstitution. BBA ADVANCES 2021; 1. [PMID: 34296205 PMCID: PMC8294337 DOI: 10.1016/j.bbadva.2021.100011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Proteoliposomes mimic the cell membrane environment allowing for structural and functional membrane protein analyses as well as antigen presenting and drug delivery devices. To make proteoliposomes, purified functional membrane proteins are required. Detergents have traditionally been used for the first step in this process However, they can irreversibly denature or render membrane proteins unstable, and the necessary removal of detergents after reconstitution can decrease proteoliposome yields. The recently developed native cell membrane nanoparticles (NCMN) system has provided a variety of detergent-free alternatives for membrane protein preparation for structural biology research. Here we attempt to employ the MCMN system for the functional reconstitution of channels into proteoliposomes. NCMN polymers NCMNP1–1 and NCMNP7–1, members of a NCMN polymer library that have been successful in extraction and affinity purification of a number of intrinsic membrane proteins, were selected for the purification and subsequent reconstitution of three bacterial channels: KcsA and the mechanosensitive channels of large and small conductance (MscL and MscS). We found that channels in NCMN particles, which appeared to be remarkably stable when stored at 4 °C, can be reconstituted into bilayers by simply incubating with lipids. We show that the resulting proteoliposomes can be patched for electrophysiological studies or used for the generation of liposome-based nanodevices. In sum, the findings demonstrate that the NCMN system is a simple and robust membrane protein extraction and reconstitution approach for making high-quality functional proteoliposomes that could significantly impact membrane protein research and the development of nanodevices.
Collapse
Affiliation(s)
- Limin Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, United States
| | - Claudio Catalano
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0133, United States
| | - Yunyao Xu
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Weihua Qiu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0133, United States
| | - Dongyu Zhang
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Ann McDermott
- Department of Chemistry, Columbia University, New York, NY 10027, United States
| | - Youzhong Guo
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298-0540, United States.,Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23298-0133, United States
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9040, United States
| |
Collapse
|
17
|
Dilworth MV, Findlay HE, Booth PJ. Detergent-free purification and reconstitution of functional human serotonin transporter (SERT) using diisobutylene maleic acid (DIBMA) copolymer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183602. [PMID: 33744253 PMCID: PMC8111416 DOI: 10.1016/j.bbamem.2021.183602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/17/2022]
Abstract
Structure and function analysis of human membrane proteins in lipid bilayer environments is acutely lacking despite the fundame1ntal cellular importance of these proteins and their dominance of drug targets. An underlying reason is that detailed study usually requires a potentially destabilising detergent purification of the proteins from their host membranes prior to subsequent reconstitution in a membrane mimic; a situation that is exacerbated for human membrane proteins due to the inherent difficulties in overexpressing suitable quantities of the proteins. We advance the promising styrene maleic acid polymer (SMA) extraction approach to introduce a detergent-free method of obtaining stable, functional human membrane transporters in bilayer nanodiscs directly from yeast cells. We purify the human serotonin transporter (hSERT) following overexpression in Pichia pastoris using diisobutylene maleic acid (DIBMA) as a superior method to traditional detergents or the more established styrene maleic acid polymer. hSERT plays a pivotal role in neurotransmitter regulation being responsible for the transport of the neurotransmitter 5-hydroxytryptamine (5-HT or serotonin). It is representative of the neurotransmitter sodium symporter (NSS) family, whose importance is underscored by the numerous diseases attributed to their malfunction. We gain insight into hSERT activity through an in vitro transport assay and find that DIBMA extraction improves the thermostability and activity of hSERT over the conventional detergent method. The non-aromatic amphipathic polymer DIBMA can be successfully employed to purify human membrane proteins. DIBMA solubilisation of hSERT from yeast membranes and resultant nanodisc thermostability is comparable to SMA. DIBMA and SMA encapsulated hSERT lipid-nanodiscs exhibit higher binding activity than hSERT DDMCHS micelles. Proteoliposomes reconstituted with hSERT-DIBMALPs possess higher transport activity than comparable DDMCHS reconstitutions.
Collapse
Affiliation(s)
- Marvin V Dilworth
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| | - Heather E Findlay
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| | - Paula J Booth
- Department of Chemistry, King's College London, London SE1 1DB, United Kingdom.
| |
Collapse
|
18
|
Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TW. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021; 11:63. [PMID: 33418902 PMCID: PMC7825061 DOI: 10.3390/biom11010063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane transport proteins. This review paper focuses on methodologies to generate cell plasma membrane transport protein-targeting nanobodies, and the advantages and pitfalls while generating these small antibody-derivatives, and discusses several therapeutic nanobodies directed towards transmembrane proteins, including channels and pores, adenosine triphosphate-powered pumps and porters.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium;
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| | - Timo W.M. De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium;
| |
Collapse
|
19
|
Luchini A, Vitiello G. Mimicking the Mammalian Plasma Membrane: An Overview of Lipid Membrane Models for Biophysical Studies. Biomimetics (Basel) 2020; 6:biomimetics6010003. [PMID: 33396534 PMCID: PMC7838988 DOI: 10.3390/biomimetics6010003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cell membranes are very complex biological systems including a large variety of lipids and proteins. Therefore, they are difficult to extract and directly investigate with biophysical methods. For many decades, the characterization of simpler biomimetic lipid membranes, which contain only a few lipid species, provided important physico-chemical information on the most abundant lipid species in cell membranes. These studies described physical and chemical properties that are most likely similar to those of real cell membranes. Indeed, biomimetic lipid membranes can be easily prepared in the lab and are compatible with multiple biophysical techniques. Lipid phase transitions, the bilayer structure, the impact of cholesterol on the structure and dynamics of lipid bilayers, and the selective recognition of target lipids by proteins, peptides, and drugs are all examples of the detailed information about cell membranes obtained by the investigation of biomimetic lipid membranes. This review focuses specifically on the advances that were achieved during the last decade in the field of biomimetic lipid membranes mimicking the mammalian plasma membrane. In particular, we provide a description of the most common types of lipid membrane models used for biophysical characterization, i.e., lipid membranes in solution and on surfaces, as well as recent examples of their applications for the investigation of protein-lipid and drug-lipid interactions. Altogether, promising directions for future developments of biomimetic lipid membranes are the further implementation of natural lipid mixtures for the development of more biologically relevant lipid membranes, as well as the development of sample preparation protocols that enable the incorporation of membrane proteins in the biomimetic lipid membranes.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark;
| | - Giuseppe Vitiello
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CSGI-Center for Colloid and Surface Science, via della Lastruccia 3, 50019 Sesto Fiorentino (Florence), Italy
- Correspondence:
| |
Collapse
|
20
|
Abstract
Transmembrane proteins involved in metabolic redox reactions and photosynthesis catalyse a plethora of key energy-conversion processes and are thus of great interest for bioelectrocatalysis-based applications. The development of membrane protein modified electrodes has made it possible to efficiently exchange electrons between proteins and electrodes, allowing mechanistic studies and potentially applications in biofuels generation and energy conversion. Here, we summarise the most common electrode modification and their characterisation techniques for membrane proteins involved in biofuels conversion and semi-artificial photosynthesis. We discuss the challenges of applications of membrane protein modified electrodes for bioelectrocatalysis and comment on emerging methods and future directions, including recent advances in membrane protein reconstitution strategies and the development of microbial electrosynthesis and whole-cell semi-artificial photosynthesis.
Collapse
|
21
|
Hugentobler KG, Heinrich D, Berg J, Heberle J, Brzezinski P, Schlesinger R, Block S. Lipid Composition Affects the Efficiency in the Functional Reconstitution of the Cytochrome c Oxidase. Int J Mol Sci 2020; 21:ijms21196981. [PMID: 32977390 PMCID: PMC7583929 DOI: 10.3390/ijms21196981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transmembrane protein cytochrome c oxidase (CcO) is the terminal oxidase in the respiratory chain of many aerobic organisms and catalyzes the reduction of dioxygen to water. This process maintains an electrochemical proton gradient across the membrane hosting the oxidase. CcO is a well-established model enzyme in bioenergetics to study the proton-coupled electron transfer reactions and protonation dynamics involved in these processes. Its catalytic mechanism is subject to ongoing intense research. Previous research, however, was mainly focused on the turnover of oxygen and electrons in CcO, while studies reporting proton turnover rates of CcO, that is the rate of proton uptake by the enzyme, are scarce. Here, we reconstitute CcO from R. sphaeroides into liposomes containing a pH sensitive dye and probe changes of the pH value inside single proteoliposomes using fluorescence microscopy. CcO proton turnover rates are quantified at the single-enzyme level. In addition, we recorded the distribution of the number of functionally reconstituted CcOs across the proteoliposome population. Studies are performed using proteoliposomes made of native lipid sources, such as a crude extract of soybean lipids and the polar lipid extract of E. coli, as well as purified lipid fractions, such as phosphatidylcholine extracted from soybean lipids. It is shown that these lipid compositions have only minor effects on the CcO proton turnover rate, but can have a strong impact on the reconstitution efficiency of functionally active CcOs. In particular, our experiments indicate that efficient functional reconstitution of CcO is strongly promoted by the addition of anionic lipids like phosphatidylglycerol and cardiolipin.
Collapse
Affiliation(s)
- Katharina Gloria Hugentobler
- Institute of Chemistry and Biochemistry, Emmy-Noether Group “Bionanointerfaces”, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany;
| | - Dorothea Heinrich
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany; (D.H.); (R.S.)
| | - Johan Berg
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; (J.B.); (P.B.)
| | - Joachim Heberle
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany;
| | - Peter Brzezinski
- Department of Biochemistry and Biophysics, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91 Stockholm, Sweden; (J.B.); (P.B.)
| | - Ramona Schlesinger
- Department of Physics, Genetic Biophysics, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany; (D.H.); (R.S.)
| | - Stephan Block
- Institute of Chemistry and Biochemistry, Emmy-Noether Group “Bionanointerfaces”, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany;
- Correspondence:
| |
Collapse
|
22
|
Singh P, Szigyártó IC, Ricci M, Zsila F, Juhász T, Mihály J, Bősze S, Bulyáki É, Kardos J, Kitka D, Varga Z, Beke-Somfai T. Membrane Active Peptides Remove Surface Adsorbed Protein Corona From Extracellular Vesicles of Red Blood Cells. Front Chem 2020; 8:703. [PMID: 32850685 PMCID: PMC7432246 DOI: 10.3389/fchem.2020.00703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Besides the outstanding potential in biomedical applications, extracellular vesicles (EVs) are also promising candidates to expand our knowledge on interactions between vesicular surface proteins and small-molecules which exert biomembrane-related functions. Here we provide mechanistic details on interactions between membrane active peptides with antimicrobial effect (MAPs) and red blood cell derived EVs (REVs) and we demonstrate that they have the capacity to remove members of the protein corona from REVs even at lower than 5 μM concentrations. In case of REVs, the Soret-band arising from the membrane associated hemoglobins allowed to follow the detachment process by flow-Linear Dichroism (flow-LD). Further on, the significant change on the vesicle surfaces was confirmed by transmission electron microscopy (TEM). Since membrane active peptides, such as melittin have the affinity to disrupt vesicles, a combination of techniques, fluorescent antibody labeling, microfluidic resistive pulse sensing, and flow-LD were employed to distinguish between membrane destruction and surface protein detachment. The removal of protein corona members is a newly identified role for the investigated peptides, which indicates complexity of their in vivo function, but may also be exploited in synthetic and natural nanoparticle engineering. Furthermore, results also promote that EVs can be used as improved model systems for biophysical studies providing insight to areas with so far limited knowledge.
Collapse
Affiliation(s)
- Priyanka Singh
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Imola Cs Szigyártó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Maria Ricci
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ferenc Zsila
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tünde Juhász
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Éva Bulyáki
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - József Kardos
- Department of Biochemistry, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Diána Kitka
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Beke-Somfai
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
23
|
Rottet S, Iqbal S, Beales PA, Lin A, Lee J, Rug M, Scott C, Callaghan R. Characterisation of Hybrid Polymersome Vesicles Containing the Efflux Pumps NaAtm1 or P-Glycoprotein. Polymers (Basel) 2020; 12:E1049. [PMID: 32375237 PMCID: PMC7284524 DOI: 10.3390/polym12051049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/18/2022] Open
Abstract
Investigative systems for purified membrane transporters are almost exclusively reliant on the use of phospholipid vesicles or liposomes. Liposomes provide an environment to support protein function; however, they also have numerous drawbacks and should not be considered as a "one-size fits all" system. The use of artificial vesicles comprising block co-polymers (polymersomes) offers considerable advantages in terms of structural stability; provision of sufficient lateral pressure; and low passive permeability, which is a particular issue for transport assays using hydrophobic compounds. The present investigation demonstrates strategies to reconstitute ATP binding cassette (ABC) transporters into hybrid vesicles combining phospholipids and the block co-polymer poly (butadiene)-poly (ethylene oxide). Two efflux pumps were chosen; namely the Novosphingobium aromaticivorans Atm1 protein and human P-glycoprotein (Pgp). Polymersomes were generated with one of two lipid partners, either purified palmitoyl-oleoyl-phosphatidylcholine, or a mixture of crude E. coli lipid extract and cholesterol. Hybrid polymersomes were characterised for size, structural homogeneity, stability to detergents, and permeability. Two transporters, NaAtm1 and P-gp, were successfully reconstituted into pre-formed and surfactant-destabilised hybrid polymersomes using a detergent adsorption strategy. Reconstitution of both proteins was confirmed by density gradient centrifugation and the hybrid polymersomes supported substrate dependent ATPase activity of both transporters. The hybrid polymersomes also displayed low passive permeability to a fluorescent probe (calcein acetomethoxyl-ester (C-AM)) and offer the potential for quantitative measurements of transport activity for hydrophobic compounds.
Collapse
Affiliation(s)
- Sarah Rottet
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra 2601, Australia; (S.R.); (C.S.)
| | - Shagufta Iqbal
- Research School of Biology, and the Medical School, Australian National University, Canberra 2601, Australia; (S.I.); (A.L.)
| | - Paul A. Beales
- School of Chemistry Bragg Centre for Materials Research and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK;
| | - Anran Lin
- Research School of Biology, and the Medical School, Australian National University, Canberra 2601, Australia; (S.I.); (A.L.)
| | - Jiwon Lee
- Centre for Advanced Microscopy, Australian National University, Canberra 2601, Australia; (J.L.); (M.R.)
| | - Melanie Rug
- Centre for Advanced Microscopy, Australian National University, Canberra 2601, Australia; (J.L.); (M.R.)
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Acton, Canberra 2601, Australia; (S.R.); (C.S.)
| | - Richard Callaghan
- Research School of Biology, and the Medical School, Australian National University, Canberra 2601, Australia; (S.I.); (A.L.)
| |
Collapse
|
24
|
Routledge SJ, Jamshad M, Little HA, Lin YP, Simms J, Thakker A, Spickett CM, Bill RM, Dafforn TR, Poyner DR, Wheatley M. Ligand-induced conformational changes in a SMALP-encapsulated GPCR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183235. [PMID: 32126232 PMCID: PMC7156913 DOI: 10.1016/j.bbamem.2020.183235] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/27/2022]
Abstract
The adenosine 2A receptor (A2AR), a G-protein-coupled receptor (GPCR), was solubilised and purified encapsulated in styrene maleic acid lipid particles (SMALPs). The purified A2AR-SMALP was associated with phospholipids characteristic of the plasma membrane of Pichia pastoris, the host used for its expression, confirming that the A2AR-SMALP encapsulated native lipids. The fluorescence spectrum of the A2AR-SMALP showed a characteristic broad emission peak at 330 nm, produced by endogenous Trp residues. The inverse agonist ZM241385 caused 30% increase in fluorescence emission, unusually accompanied by a red-shift in the emission wavelength. The emission spectrum also showed sub-peaks at 321 nm, 335 nm and 350 nm, indicating that individual Trp inhabited different environments following ZM241385 addition. There was no effect of the agonist NECA on the A2AR-SMALP fluorescence spectrum. Substitution of two Trp residues by Tyr suggested that ZM241385 affected the environment and mobility of Trp2466.48 in TM6 and Trp2687.33 at the extracellular face of TM7, causing transition to a more hydrophobic environment. The fluorescent moiety IAEDANS was site-specifically introduced at the intracellular end of TM6 (residue 2316.33) to report on the dynamic cytoplasmic face of the A2AR. The inverse agonist ZM241385 caused a concentration-dependent increase in fluorescence emission as the IAEDANS moved to a more hydrophobic environment, consistent with closing the G-protein binding crevice. NECA generated only 30% of the effect of ZM241385. This study provides insight into the SMALP environment; encapsulation supported constitutive activity of the A2AR and ZM241385-induced conformational transitions but the agonist NECA generated only small effects. Conformational changes in the A2AR monitored in a nano-scale membrane disc (SMALP). Profile of phospholipids in A2AR-SMALP similar to the plasma membrane. A partially-active conformation of A2AR is supported in a SMALP. Inverse agonist induced dose-dependent conformational transitions in A2AR-SMALP. In contrast to inverse agonist, agonist induced only small conformational changes.
Collapse
Affiliation(s)
| | - Mohammed Jamshad
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Haydn A Little
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Yu-Pin Lin
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - John Simms
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Alpesh Thakker
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | | | - Roslyn M Bill
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Tim R Dafforn
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - David R Poyner
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | - Mark Wheatley
- Centre for Sport, Exercise and Life Sciences, Alison Gingell Building, Faculty of Health and Life Sciences, Coventry University, Coventry CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
25
|
Eudragit S100 Entrapped Liposome for Curcumin Delivery: Anti-Oxidative Effect in Caco-2 Cells. COATINGS 2020. [DOI: 10.3390/coatings10020114] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Curcumin is a natural polyphenol with strong antioxidant activity. However, this molecule shows a very poor bioavailability, instability, and rapid metabolism in vivo. In this work curcumin was loaded in Eudragit-coated liposomes to create a gastroresistant carrier, able to protect its load from degradation and free it at the site of absorption in the colon region. Small unilamellar vesicles were prepared and coated with Eudragit by a pH-driven method. The physico-chemical properties of the prepared systems were assessed by light scattering, transmission electron microscopy, infrared spectroscopy, and differential scanning calorimetry. The uptake of vesicles by Caco-2 cells and the anti-oxidant activity in cells were evaluated. The produced vesicles showed dimensions of about forty nanometers that after covering with Eudragit resulted to have micrometric dimensions at acid pH. The experiments showed that at pH > 7.0 the polymeric coating dissolves, releasing the nanometric liposomes and allowing them to enter Caco-2 cells. Delivered curcumin loaded vesicles were then able to decrease significantly ROS levels as induced by H2O2 in Caco-2 cells. The proposed work showed the possibility of realizing effective gastroresistant curcumin liposome formulations for the delivery of antioxidant molecules to Caco-2 cells, potentially applicable to the treatment of pathological conditions related to intestinal oxidative stress.
Collapse
|
26
|
Styrene maleic-acid lipid particles (SMALPs) into detergent or amphipols: An exchange protocol for membrane protein characterisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183192. [PMID: 31945320 PMCID: PMC7086155 DOI: 10.1016/j.bbamem.2020.183192] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Membrane proteins are traditionally extracted and purified in detergent for biochemical and structural characterisation. This process is often costly and laborious, and the stripping away of potentially stabilising lipids from the membrane protein of interest can have detrimental effects on protein integrity. Recently, styrene-maleic acid (SMA) co-polymers have offered a solution to this problem by extracting membrane proteins directly from their native membrane, while retaining their naturally associated lipids in the form of stable SMA lipid particles (SMALPs). However, the inherent nature and heterogeneity of the polymer renders their use challenging for some downstream applications – particularly mass spectrometry (MS). While advances in cryo-electron microscopy (cryo-EM) have enhanced our understanding of membrane protein:lipid interactions in both SMALPs and detergent, the resolution obtained with this technique is often insufficient to accurately identify closely associated lipids within the transmembrane annulus. Native-MS has the power to fill this knowledge gap, but the SMA polymer itself remains largely incompatible with this technique. To increase sample homogeneity and allow characterisation of membrane protein:lipid complexes by native-MS, we have developed a novel SMA-exchange method; whereby the membrane protein of interest is first solubilised and purified in SMA, then transferred into amphipols or detergents. This allows the membrane protein and endogenously associated lipids extracted by SMA co-polymer to be identified and examined by MS, thereby complementing results obtained by cryo-EM and creating a better understanding of how the lipid bilayer directly affects membrane protein structure and function. First reported exchange protocol for transferring membrane proteins solubilised in SMALPs, into detergent or amphipols. Purification of protein:lipid complexes without detergent for mass spectrometry and subsequent lipid identification. Cost effective membrane protein purification requiring only minimal amounts of detergents in the exchange process.
Collapse
|
27
|
Nakatani Y, Shimaki Y, Dutta D, Muench SP, Ireton K, Cook GM, Jeuken LJC. Unprecedented Properties of Phenothiazines Unraveled by a NDH-2 Bioelectrochemical Assay Platform. J Am Chem Soc 2020; 142:1311-1320. [PMID: 31880924 DOI: 10.1021/jacs.9b10254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Type II NADH:quinone oxidoreductase (NDH-2) plays a crucial role in the respiratory chains of many organisms. Its absence in mammalian cells makes NDH-2 an attractive new target for developing antimicrobials and antiprotozoal agents. We established a novel bioelectrochemical platform to characterize the catalytic behavior of NDH-2 from Caldalkalibacillus thermarum and Listeria monocytogenes strain EGD-e while bound to native-like lipid membranes. Catalysis of both NADH oxidation and lipophilic quinone reduction by membrane-bound NDH-2 followed the Michaelis-Menten model; however, the maximum turnover was only achieved when a high concentration of quinone (>3 mM) was present in the membrane, suggesting that quinone availability regulates NADH-coupled respiration activity. The quinone analogue 2-heptyl-4-hydroxyquinoline-N-oxide inhibited C. thermarum NDH-2 activity, and its potency is higher in a membrane environment compared to assays performed with water-soluble quinone analogues, demonstrating the importance of testing compounds under physiologically relevant conditions. Furthermore, when phenothiazines, one of the most commonly identified NDH-2 inhibitors, were tested, they did not inhibit membrane-bound NDH-2. Instead, our assay platform unexpectedly suggests a novel mode of phenothiazine action where chlorpromazine, a promising antitubercular agent and key medicine used to treat psychotic disorders, is able to disrupt pH gradients across bacterial membranes.
Collapse
Affiliation(s)
- Yoshio Nakatani
- Department of Microbiology and Immunology , University of Otago , Dunedin 9054 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - Yosuke Shimaki
- Department of Microbiology and Immunology , University of Otago , Dunedin 9054 , New Zealand
| | - Debajyoti Dutta
- School of Biomedical Sciences and the Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Stephen P Muench
- School of Biomedical Sciences and the Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Keith Ireton
- Department of Microbiology and Immunology , University of Otago , Dunedin 9054 , New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology , University of Otago , Dunedin 9054 , New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery , The University of Auckland , Private Bag 92019, Auckland 1042 , New Zealand
| | - Lars J C Jeuken
- School of Biomedical Sciences and the Astbury Centre for Structural Molecular Biology , University of Leeds , Leeds LS2 9JT , United Kingdom
| |
Collapse
|
28
|
Expression and detergent free purification and reconstitution of the plant plasma membrane Na +/H + antiporter SOS1 overexpressed in Pichia pastoris. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183111. [PMID: 31678368 DOI: 10.1016/j.bbamem.2019.183111] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022]
Abstract
The plant plasma membrane Na+/H+ antiporter SOS1 (Salt Overlay Sensitive 1) of Arabidopsis thaliana is the major transporter extruding Na+ out of cells in exchange for an intracellular H+. The sodium extrusion process maintains a low intracellular Na+ concentration and thereby facilitates salt tolerance. A. thaliana SOS1 consists of 1146 amino acids, with the first 450 in a N-terminal membrane transport domain and the balance forming a cytosolic regulatory domain. For studies on characterization of the protein, two different constructs of SOS1 comprising of the residues 28 to 460 and 28 to 990 were cloned and overexpressed in methylotropic yeast strain of Pichia pastoris with a C-terminal histidine tag using the expression vector pPICZA. Styrene malic acid copolymers (SMA) were used as a cost-effective alternative to detergent for solubilization and isolation of this membrane protein. Immobilized Ni2+-ion affinity chromatography was used to purify the expressed protein resulting in a yield of ~0.6-2 mg of SOS1 per liter of Pichia pastoris culture. The SMA purified protein containing amino acids 28 to 990 was directly reconstituted into liposomes for determination of Na+ transport activity and was functionally active. However, similar reconstitution with amino acids 28-460 did not yield a functional protein. Other results have shown that the truncated SOS1 protein at amino acid 481 is active, which infers the presence of an element between residues 461-481 which is necessary for SOS1 activity. This region contains several conserved segments that may be important in SOS1 structure and function.
Collapse
|