1
|
Paudel S, Severin GB, Pirani A, Snitkin ES, Mobley HLT. Multiplexed PCR to measure in situ growth rates of uropathogenic E. coli during experimental urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624689. [PMID: 39605434 PMCID: PMC11601645 DOI: 10.1101/2024.11.21.624689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Measuring bacterial growth rates in vitro is routine, however, determining growth rates during infection in host has been more challenging. Peak-to-trough ratio (PTR) is a technique for studying microbial growth dynamics, calculated using the ratio of replication origin (ori) copies to that of the terminus (ter), as originally defined by whole genome sequencing (WGS). WGS presents significant challenges in terms of expense and data analysis complexity due to the presence of host DNA in the samples. Here, we used multiplexed PCR with fluorescent probes to estimate bacterial growth rates based on the abundance of ori- and ter-adjacent loci, without the need for WGS. We establish the utility of this approach by comparing growth rates of the uropathogenic Escherichia coli (UPEC) strain HM86 by WGS (PTR) and qPCR to measure the equivalent ori:ter (O:TPCR ). We found that PTR and O:TPCR were highly correlated and that O:TPCR reliably predicted growth rates calculated by conventional methods. O:TPCR was then used to calculate the in situ E. coli growth rates in urine, bladder, and kidneys collected over the course of a week from a murine model of urinary tract infection (UTI). These analyses revealed that growth rate of UPEC strains gradually increased during the early stages of infection (0-6h), followed by a slow decrease in growth rates during later time points (1-7 days). This rapid and convenient method provides valuable insights into bacterial growth dynamics during infection and can be applied to other bacterial species in both animal models and clinical infections.
Collapse
Affiliation(s)
- Santosh Paudel
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| | - Geoffrey B Severin
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
2
|
Fondi M, Pini F, Riccardi C, Gemo P, Brilli M. A new selective force driving metabolic gene clustering. mSystems 2024; 9:e0096024. [PMID: 39465945 PMCID: PMC11629862 DOI: 10.1128/msystems.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
The evolution of operons has puzzled evolutionary biologists since their discovery, and many theories exist to explain their emergence, spreading, and evolutionary conservation. In this work, we suggest that DNA replication introduces a selective force for the clustering of functionally related genes on chromosomes, which we interpret as a preliminary and necessary step in operon formation. Our reasoning starts from the observation that DNA replication produces copy number variations of genomic regions, and we propose that such changes perturb metabolism. The formalization of this effect by exploiting concepts from metabolic control analysis suggests that the minimization of such perturbations during evolution could be achieved through the formation of gene clusters and operons. We support our theoretical derivations with simulations based on a realistic metabolic network, and we confirm that present-day genomes have a degree of compaction of functionally related genes, which is significantly correlated to the proposed perturbations introduced by replication. The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their first discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis. IMPORTANCE The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology,
University of Florence,
Florence, Italy
| | - Francesco Pini
- Department of
Biosciences, Biotechnology and Environment (DBBA), University of Bari
Aldo Moro, Bari,
Italy
| | | | - Pietro Gemo
- Department of
Biosciences, University of Milan,
Milan, Italy
| | - Matteo Brilli
- Department of
Biosciences, University of Milan,
Milan, Italy
| |
Collapse
|
3
|
Liu Y, Lu M, Sun Q, Guo Z, Lin Y, Li S, Huang Y, Li Y, Fu Q. Magnolol attenuates macrophage pyroptosis triggered by Streptococcus equi subsp. zooepidemicus. Int Immunopharmacol 2024; 131:111922. [PMID: 38522137 DOI: 10.1016/j.intimp.2024.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Streptococcus equi subsp. zooepidemicus (SEZ) is a zoonotic bacterial pathogen that causes life-threatening infections and various diseases such as meningitis, endocarditis and pneumonia. With the use of antibiotics being severely restricted in the international community, an alternative to antibiotics is urgently needed against bacterial. In the present study, the herbal extract magnolol protected mice against SEZ infection, reflected by increased survival rate and reduced bacterial burden. A pro-inflammatory form of cell death occurred in SEZ-infected macrophage. Magnolol downregulated the expression of pyroptosis-related proteins and reduced the formation of cell membrane pores in infected macrophages to suppress the development of subsequent inflammation. We further demonstrated that magnolol directly suppressed SEZ-induced macrophage pyroptosis, which partially protected macrophages from SEZ infection. Our study revealed that magnolol suppressed inflammation and protected mice against SEZ infection, providing a possible treatment for SEZ infection.
Collapse
Affiliation(s)
- Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Meijun Lu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qian Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Shun Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Yajuan Li
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China; Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China.
| |
Collapse
|
4
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Ontai-Brenning A, Hamchand R, Crawford JM, Goodman AL. Gut microbes modulate (p)ppGpp during a time-restricted feeding regimen. mBio 2023; 14:e0190723. [PMID: 37971266 PMCID: PMC10746209 DOI: 10.1128/mbio.01907-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.
Collapse
Affiliation(s)
- Amy Ontai-Brenning
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Andrew L. Goodman
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Fan J, El Sayyed H, Pambos OJ, Stracy M, Kyropoulos J, Kapanidis AN. RNA polymerase redistribution supports growth in E. coli strains with a minimal number of rRNA operons. Nucleic Acids Res 2023; 51:8085-8101. [PMID: 37351576 PMCID: PMC10450203 DOI: 10.1093/nar/gkad511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023] Open
Abstract
Bacterial transcription by RNA polymerase (RNAP) is spatially organized. RNAPs transcribing highly expressed genes locate in the nucleoid periphery, and form clusters in rich medium, with several studies linking RNAP clustering and transcription of rRNA (rrn). However, the nature of RNAP clusters and their association with rrn transcription remains unclear. Here we address these questions by using single-molecule tracking to monitor the subcellular distribution of mobile and immobile RNAP in strains with a heavily reduced number of chromosomal rrn operons (Δrrn strains). Strikingly, we find that the fraction of chromosome-associated RNAP (which is mainly engaged in transcription) is robust to deleting five or six of the seven chromosomal rrn operons. Spatial analysis in Δrrn strains showed substantial RNAP redistribution during moderate growth, with clustering increasing at cell endcaps, where the remaining rrn operons reside. These results support a model where RNAPs in Δrrn strains relocate to copies of the remaining rrn operons. In rich medium, Δrrn strains redistribute RNAP to minimize growth defects due to rrn deletions, with very high RNAP densities on rrn genes leading to genomic instability. Our study links RNAP clusters and rrn transcription, and offers insight into how bacteria maintain growth in the presence of only 1-2 rrn operons.
Collapse
Affiliation(s)
- Jun Fan
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Hafez El Sayyed
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Oliver J Pambos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| | - Mathew Stracy
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Jingwen Kyropoulos
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin building, University of Oxford, Sherrington Road, Oxford OX1 3QU, UK
| |
Collapse
|
7
|
A Natural Fungal Gene Drive Enacts Killing via DNA Disruption. mBio 2023; 14:e0317322. [PMID: 36537809 PMCID: PMC9972908 DOI: 10.1128/mbio.03173-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fungal spore killers are a class of selfish genetic elements that positively bias their own inheritance by killing non-inheriting gametes following meiosis. As killing takes place specifically within the developing fungal ascus, a tissue which is experimentally difficult to isolate, our understanding of the mechanisms underlying spore killers are limited. In particular, how these loci kill other spores within the fungal ascus is largely unknown. Here, we overcome these experimental barriers by developing model systems in 2 evolutionary distant organisms, Escherichia coli (bacterium) and Saccharomyces cerevisiae (yeast), similar to previous approaches taken to examine the wtf spore killers. Using these systems, we show that the Podospora anserina spore killer protein SPOK1 enacts killing through targeting DNA. IMPORTANCE Natural gene drives have shaped the genomes of many eukaryotes and recently have been considered for applications to control undesirable species. In fungi, these loci are called spore killers. Despite their importance in evolutionary processes and possible applications, our understanding of how they enact killing is limited. We show that the spore killer protein Spok1, which has homologues throughout the fungal tree of life, acts via DNA disruption. Spok1 is only the second spore killer locus in which the cellular target of killing has been identified and is the first known to target DNA. We also show that the DNA disrupting activity of Spok1 is functional in both bacteria and yeast suggesting a highly conserved mode of action.
Collapse
|
8
|
Hechard T, Wang H. Determination of Growth Rate and Virulence Plasmid Copy Number During Yersinia pseudotuberculosis Infection Using Droplet Digital PCR. Methods Mol Biol 2023; 2674:101-115. [PMID: 37258963 DOI: 10.1007/978-1-0716-3243-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenic bacteria have evolved the ability to evade their host defenses and cause diseases. Virulence factors encompass a wide range of adaptations that allow pathogens to survive and proliferate in the hostile host environment during successful infection. In human pathogenic Yersinia species, the potent type III secretion system (T3SS) and other essential virulence factors are encoded on a virulence plasmid. Here, we investigated the bacterial growth rate and plasmid copy number following a Yersinia infection using droplet digital PCR (ddPCR). ddPCR is an exceptionally sensitive, highly precise, and cost-efficient method. It enables precise quantification even from very small amounts of target DNA. This method also enables analysis of complex samples with large amounts of interfering DNA, such as infected tissues or microbiome studies.
Collapse
Affiliation(s)
- Tifaine Hechard
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
9
|
Transcriptional Potential Determines the Adaptability of Escherichia coli Strains with Different Fitness Backgrounds. Microbiol Spectr 2022; 10:e0252822. [PMID: 36445144 PMCID: PMC9769844 DOI: 10.1128/spectrum.02528-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Adaptation through the fitness landscape may be influenced by the gene pool or expression network. However, genetic factors that determine the contribution of beneficial mutations during adaptive evolution are poorly understood. In this study, we experimentally evolved wild-type Escherichia coli K-12 MG1655 and its isogenic derivative that has two additional replication origins and shows higher background fitness. During the short time of experimental evolution, the fitness gains of the two E. coli strains with different fitness backgrounds converged. Populational genome sequencing revealed various mutations with different allele frequencies in evolved populations. Several mutations occurred in genes affecting transcriptional regulation (e.g., RNA polymerase subunit, RNase, ppGpp synthetase, and transcription termination/antitermination factor genes). When we introduced mutations into the ancestral E. coli strains, beneficial effects tended to be lower in the ancestor with higher initial fitness. Replication rate analysis showed that the various replication indices do not correlate with the growth rate. Transcriptome profiling showed that gene expression and gene ontology are markedly enriched in populations with lower background fitness after experimental evolution. Further, the degree of transcriptional change was proportional to the fitness gain. Thus, the evolutionary trajectories of bacteria with different fitness backgrounds can be complex and counterintuitive. Notably, transcriptional change is a major contributor to adaptability. IMPORTANCE Predicting the adaptive potential of bacterial populations can be difficult due to their complexity and dynamic environmental conditions. Also, epistatic interaction between mutations affects the adaptive trajectory. Nevertheless, next-generation sequencing sheds light on understanding evolutionary dynamics through high-throughput genome and transcriptome information. Experimental evolution of two E. coli strains with different background fitness showed that the trajectories of fitness gain, which slowed down during the later stages of evolution, became convergent. This suggests that the adaptability of bacteria can be counterintuitive and that predicting the evolutionary path of bacteria can be difficult even in a constant environment. In addition, transcriptional change is associated with fitness gain during the evolutionary process. Thus, the adaptability of cells depends on their intrinsic genetic capacity for a given evolutionary period. This should be considered when genetically engineered bacteria are optimized through adaptive evolution.
Collapse
|
10
|
L-Form Switching in Escherichia coli as a Common β-Lactam Resistance Mechanism. Microbiol Spectr 2022; 10:e0241922. [PMID: 36102643 PMCID: PMC9603335 DOI: 10.1128/spectrum.02419-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cell wall deficient bacterial L-forms are induced by exposure to cell wall-targeting antibiotics and immune effectors such as lysozyme. L-forms of different bacteria (including Escherichia coli) have been reported in human infections, but whether this is a normal adaptive strategy or simply an artifact of antibiotic treatment in certain bacterial species remains unclear. Here we show that members of a representative, diverse set of pathogenic E. coli readily proliferate as L-forms in supratherapeutic concentrations of the broad-spectrum antibiotic meropenem. We report that they are completely resistant to antibiotics targeting any penicillin-binding proteins in this state, including PBP1A/1B, PBP2, PBP3, PBP4, and PBP5/6. Importantly, we observed that reversion to the cell-walled state occurs efficiently, less than 20 h after antibiotic cessation, with few or no changes in DNA sequence. We defined for the first time a logarithmic L-form growth phase with a doubling time of 80 to 190 min, followed by a stationary phase in late cultures. We further demonstrated that L-forms are metabolically active and remain normally susceptible to antibiotics that affect DNA torsion and ribosomal function. Our findings provide insights into the biology of L-forms and help us understand the risk of β-lactam failure in persistent infections in which L-forms may be common. IMPORTANCE Bacterial L-forms require specialized culture techniques and are neither widely reported nor well understood in human infections. To date, most of the studies have been conducted on Gram-positive and stable L-form bacteria, which usually require mutagenesis or long-term passages for their generation. Here, using an adapted osmoprotective growth media, we provide evidence that pathogenic E. coli can efficiently switch to L-forms and back to a cell-walled state, proliferating aerobically in supratherapeutic concentrations of antibiotics targeting cell walls with few or no changes in their DNA sequences. Our work demonstrates that L-form switching is an effective adaptive strategy in stressful environments and can be expected to limit the efficacy of β-lactam for many important infections.
Collapse
|
11
|
Xu G, Guo Z, Liu Y, Yang Y, Lin Y, Li C, Huang Y, Fu Q. Gasdermin D protects against Streptococcus equi subsp. zooepidemicus infection through macrophage pyroptosis. Front Immunol 2022; 13:1005925. [PMID: 36311722 PMCID: PMC9614658 DOI: 10.3389/fimmu.2022.1005925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Streptococcus equi subsp. zooepidemicus (S. zooepidemicus, SEZ) is an essential zoonotic bacterial pathogen that can cause various inflammation, such as meningitis, endocarditis, and pneumonia. Gasdermin D (GSDMD) is involved in cytokine release and cell death, indicating an important role in controlling the microbial infection. This study investigated the protective role of GSDMD in mice infected with SEZ and examined the role of GSDMD in peritoneal macrophages in the infection. GSDMD-deficient mice were more susceptible to intraperitoneal infection with SEZ, and the white pulp structure of the spleen was seriously damaged in GSDMD-deficient mice. Although the increased proportion of macrophages did not depend on GSDMD in both spleen and peritoneal lavage fluid (PLF), deficiency of GSDMD caused the minor release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) during the infection in vivo. In vitro, SEZ infection induced more release of IL-1β, IL-18, and lactate dehydrogenase (LDH) in wild-type macrophages than in GSDMD-deficient macrophages. Finally, we demonstrated that pore formation and pyroptosis of macrophages depended on GSDMD. Our findings highlight the host defense mechanisms of GSDMD against SEZ infection, providing a potential therapeutic target in SEZ infection.
Collapse
Affiliation(s)
- Guobin Xu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Guo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuxuan Liu
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yalin Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yongjin Lin
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chunliu Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yunfei Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Qiang Fu
- School of Life Science and Engineering, Foshan University, Foshan, China
- Foshan University Veterinary Teaching Hospital, Foshan University, Foshan, China
- *Correspondence: Qiang Fu,
| |
Collapse
|
12
|
Beebout CJ, Robertson GL, Reinfeld BI, Blee AM, Morales GH, Brannon JR, Chazin WJ, Rathmell WK, Rathmell JC, Gama V, Hadjifrangiskou M. Uropathogenic Escherichia coli subverts mitochondrial metabolism to enable intracellular bacterial pathogenesis in urinary tract infection. Nat Microbiol 2022; 7:1348-1360. [PMID: 35995841 PMCID: PMC9756876 DOI: 10.1038/s41564-022-01205-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
Urinary tract infections are among the most common human bacterial infections and place a significant burden on healthcare systems due to associated morbidity, cost and antibiotic use. Despite being a facultative anaerobe, uropathogenic Escherichia coli, the primary cause of urinary tract infections, requires aerobic respiration to establish infection in the bladder. Here, by combining bacterial genetics with cell culture and murine models of infection, we demonstrate that the widely conserved respiratory quinol oxidase cytochrome bd is required for intracellular infection of urothelial cells. Through a series of genetic, biochemical and functional assays, we show that intracellular oxygen scavenging by cytochrome bd alters mitochondrial physiology by reducing the efficiency of mitochondrial respiration, stabilizing the hypoxia-inducible transcription factor HIF-1 and promoting a shift towards aerobic glycolysis. This bacterially induced rewiring of host metabolism antagonizes apoptosis, thereby protecting intracellular bacteria from urothelial cell exfoliation and preserving their replicative niche. These results reveal the metabolic basis for intracellular bacterial pathogenesis during urinary tract infection and identify subversion of mitochondrial metabolism as a bacterial strategy to facilitate persistence within the urinary tract.
Collapse
Affiliation(s)
- Connor J Beebout
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriella L Robertson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Bradley I Reinfeld
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexandra M Blee
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Grace H Morales
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John R Brannon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Walter J Chazin
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - W Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Marro FC, Laurent F, Josse J, Blocker AJ. Methods to monitor bacterial growth and replicative rates at the single-cell level. FEMS Microbiol Rev 2022; 46:6623663. [PMID: 35772001 PMCID: PMC9629498 DOI: 10.1093/femsre/fuac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/01/2022] [Accepted: 06/28/2022] [Indexed: 01/09/2023] Open
Abstract
The heterogeneity of bacterial growth and replicative rates within a population was proposed a century ago notably to explain the presence of bacterial persisters. The term "growth rate" at the single-cell level corresponds to the increase in size or mass of an individual bacterium while the "replicative rate" refers to its division capacity within a defined temporality. After a decades long hiatus, recent technical innovative approaches allow population growth and replicative rates heterogeneity monitoring at the single-cell level resuming in earnest. Among these techniques, the oldest and widely used is time-lapse microscopy, most recently combined with microfluidics. We also discuss recent fluorescence dilution methods informing only on replicative rates and best suited. Some new elegant single cell methods so far only sporadically used such as buoyant mass measurement and stable isotope probing have emerged. Overall, such tools are widely used to investigate and compare the growth and replicative rates of bacteria displaying drug-persistent behaviors to that of bacteria growing in specific ecological niches or collected from patients. In this review, we describe the current methods available, discussing both the type of queries these have been used to answer and the specific strengths and limitations of each method.
Collapse
Affiliation(s)
- Florian C Marro
- Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, Gerland, 69007 Lyon, France,CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France
| | - Frédéric Laurent
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France,Laboratoire de bactériologie, Institut des Agents Infectieux, French National Reference Center for Staphylococci, Hospices Civils de Lyon, Lyon, France
| | - Jérôme Josse
- CIRI – Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France,Institut des Sciences Pharmaceutiques et Biologiques (ISPB), Université Claude Bernard Lyon 1, Lyon, France,Centre de Référence pour la prise en charge des Infections ostéo-articulaires complexes (CRIOAc Lyon; www.crioac-lyon.fr), Hospices Civils de Lyon, Lyon, France
| | - Ariel J Blocker
- Corresponding author. Evotec ID Lyon, In Vitro Biology, Infectious Diseases and Antibacterials Unit, France. E-mail:
| |
Collapse
|
14
|
Behrmann MS, Perera HM, Hoang JM, Venkat TA, Visser BJ, Bates D, Trakselis MA. Targeted chromosomal Escherichia coli:dnaB exterior surface residues regulate DNA helicase behavior to maintain genomic stability and organismal fitness. PLoS Genet 2021; 17:e1009886. [PMID: 34767550 PMCID: PMC8612530 DOI: 10.1371/journal.pgen.1009886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/24/2021] [Accepted: 10/18/2021] [Indexed: 12/05/2022] Open
Abstract
Helicase regulation involves modulation of unwinding speed to maintain coordination of DNA replication fork activities and is vital for replisome progression. Currently, mechanisms for helicase regulation that involve interactions with both DNA strands through a steric exclusion and wrapping (SEW) model and conformational shifts between dilated and constricted states have been examined in vitro. To better understand the mechanism and cellular impact of helicase regulation, we used CRISPR-Cas9 genome editing to study four previously identified SEW-deficient mutants of the bacterial replicative helicase DnaB. We discovered that these four SEW mutations stabilize constricted states, with more fully constricted mutants having a generally greater impact on genomic stress, suggesting a dynamic model for helicase regulation that involves both excluded strand interactions and conformational states. These dnaB mutations result in increased chromosome complexities, less stable genomes, and ultimately less viable and fit strains. Specifically, dnaB:mut strains present with increased mutational frequencies without significantly inducing SOS, consistent with leaving single-strand gaps in the genome during replication that are subsequently filled with lower fidelity. This work explores the genomic impacts of helicase dysregulation in vivo, supporting a combined dynamic regulatory mechanism involving a spectrum of DnaB conformational changes and relates current mechanistic understanding to functional helicase behavior at the replication fork. DNA replication is a vital biological process, and the proteins involved are structurally and functionally conserved across all domains of life. As our fundamental knowledge of genes and genetics grows, so does our awareness of links between acquired genetic mutations and disease. Understanding how genetic material is replicated accurately and efficiently and with high fidelity is the foundation to identifying and solving genome-based diseases. E. coli are model organisms, containing core replisome proteins, but lack the complexity of the human replication system, making them ideal for investigating conserved replisome behaviors. The helicase enzyme acts at the forefront of the replication fork to unwind the DNA helix and has also been shown to help coordinate other replisome functions. In this study, we examined specific mutations in the helicase that have been shown to regulate its conformation and speed of unwinding. We investigate how these mutations impact the growth, fitness, and cellular morphology of bacteria with the goal of understanding how helicase regulation mechanisms affect an organism’s ability to survive and maintain a stable genome.
Collapse
Affiliation(s)
- Megan S. Behrmann
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Himasha M. Perera
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Joy M. Hoang
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Trisha A. Venkat
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
| | - Bryan J. Visser
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Michael A. Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Campion C, Charbon G, Thomsen TT, Nielsen PE, Løbner-Olesen A. Antisense inhibition of the Escherichia coli NrdAB aerobic ribonucleotide reductase is bactericidal due to induction of DNA strand breaks. J Antimicrob Chemother 2021; 76:2802-2814. [PMID: 34450639 PMCID: PMC8521395 DOI: 10.1093/jac/dkab305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Antisense peptide nucleic acids (PNAs) constitute an alternative to traditional antibiotics, by their ability to silence essential genes. OBJECTIVES To evaluate the antibacterial effects of antisense PNA-peptide conjugates that target the gene encoding the alpha subunit (NrdA) of the Escherichia coli ribonucleotide reductase (RNR). METHODS Bacterial susceptibility of a series of NrdA-targeting PNAs was studied by MIC determination and time-kill analysis. Western-blot analysis, gene complementation and synergy with hydroxyurea were employed to determine the efficiency of NrdA-PNA antisense treatment. The effect on chromosome replication was addressed by determining the DNA synthesis rate, by flow cytometry analysis, by quantitative PCR and by fluorescence microscopy. The use of DNA repair mutants provided insight into the bactericidal action of NrdA-PNA. RESULTS Treatment with NrdA-PNA specifically inhibited growth of E. coli, as well as NrdA protein translation at 4 μM. Also, the DNA synthesis rate was reduced, preventing completion of chromosome replication and resulting in formation of double-stranded DNA breaks and cell death. CONCLUSIONS These data present subunits of the NrdAB RNR as a target for future antisense microbial agents and provide insight into the bacterial physiological response to RNR-targeting antimicrobials.
Collapse
Affiliation(s)
- Christopher Campion
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark.,Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Godefroid Charbon
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Thomas T Thomsen
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Henrik Harpestreng Vej 4A, 2100 Copenhagen, Denmark
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Center for Peptide-Based Antibiotics, The Panum Institute, University of Copenhagen, Blegdamsvej 3c, 2200 Copenhagen N, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Faculty of Science, Section for Functional Genomics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
16
|
Effect of erythritol and xylitol on Streptococcus pyogenes causing peritonsillar abscesses. Sci Rep 2021; 11:15855. [PMID: 34349211 PMCID: PMC8339055 DOI: 10.1038/s41598-021-95367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
Polyols are effective against caries-causing streptococci but the effect on oropharynx-derived pyogenic streptococci is not well characterised. We aimed to study the effect of erythritol (ERY) and xylitol (XYL) against Streptococcus pyogenes isolated from peritonsillar abscesses (PTA). We used 31 clinical isolates and 5 throat culture collection strains. Inhibition of bacterial growth by polyols at 2.5%, 5% and 10% concentrations was studied and the results were scored. Amylase levels in PTA pus were compared to polyol effectivity scores (PES). Growth curves of four S. pyogenes isolates were analysed. Our study showed that XYL was more effective than ERY inhibiting 71–97% and 48–84% of isolates, respectively, depending of concentrations. 48% of clinical and all throat strains were inhibited by polyols in all concentrations (PES 3). PES was negative or zero in 26% of the isolates in the presence of ERY and in 19% of XYL. ERY enhanced the growth of S. pyogenes isolated from pus with high amylase levels. Polyols in all concentrations inhibited the growth in exponential phase. In conclusion, ERY and XYL are potent growth inhibitors of S. pyogenes isolated from PTA. Therefore, ERY and XYL may have potential in preventing PTA in the patients with frequent tonsillitis episodes.
Collapse
|
17
|
Abstract
Bloodstream infections (BSI) are a major public health burden due to high mortality rates and the cost of treatment. The impact of BSI is further compounded by a rise in antibiotic resistance among Gram-negative species associated with these infections. Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Enterobacter hormaechei, Citrobacter freundii, and Acinetobacter baumannii are all common causes of BSI, which can be recapitulated in a murine model. The objective of this study was to characterize infection kinetics and bacterial replication rates during bacteremia for these six pathogens to gain a better understanding of bacterial physiology during infection. Temporal observations of bacterial burdens of the tested species demonstrated varied abilities to establish colonization in the spleen, liver, or kidney. K. pneumoniae and S. marcescens expanded rapidly in the liver and kidney, respectively. Other organisms, such as C. freundii and E. hormaechei, were steadily cleared from all three target organs throughout the infection. In situ replication rates measured by whole-genome sequencing of bacterial DNA recovered from murine spleens demonstrated that each species was capable of sustained replication at 24 h postinfection, and several species demonstrated <60-min generation times. The relatively short generation times observed in the spleen were in contrast to an overall decrease in bacterial burden for some species, suggesting that the rate of immune-mediated clearance exceeded replication. Furthermore, bacterial generation times measured in the murine spleen approximated those measured during growth in human serum cultures. Together, these findings provide insight into the infection kinetics of six medically important species during bacteremia.
Collapse
|
18
|
Lagage V, Uphoff S. Pulses and delays, anticipation and memory: seeing bacterial stress responses from a single-cell perspective. FEMS Microbiol Rev 2021; 44:565-571. [PMID: 32556120 DOI: 10.1093/femsre/fuaa022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Stress responses are crucial for bacteria to survive harmful conditions that they encounter in the environment. Although gene regulatory mechanisms underlying stress responses in bacteria have been thoroughly characterised for decades, recent advances in imaging technologies helped to uncover previously hidden dynamics and heterogeneity that become visible at the single-cell level. Despite the diversity of stress response mechanisms, certain dynamic regulatory features are frequently seen in single cells, such as pulses, delays, stress anticipation and memory effects. Often, these dynamics are highly variable across cells. While any individual cell may not achieve an optimal stress response, phenotypic diversity can provide a benefit at the population level. In this review, we highlight microscopy studies that offer novel insights into how bacteria sense stress, regulate protective mechanisms, cope with response delays and prepare for future environmental challenges. These studies showcase developments in the single-cell imaging toolbox including gene expression reporters, FRET, super-resolution microscopy and single-molecule tracking, as well as microfluidic techniques to manipulate cells and create defined stress conditions.
Collapse
Affiliation(s)
- Valentine Lagage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
19
|
Shin J, Choe D, Ransegnola B, Hong H, Onyekwere I, Cross T, Shi Q, Cho B, Westblade LF, Brito IL, Dörr T. A multifaceted cellular damage repair and prevention pathway promotes high-level tolerance to β-lactam antibiotics. EMBO Rep 2021; 22:e51790. [PMID: 33463026 PMCID: PMC7857431 DOI: 10.15252/embr.202051790] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Bactericidal antibiotics are powerful agents due to their ability to convert essential bacterial functions into lethal processes. However, many important bacterial pathogens are remarkably tolerant against bactericidal antibiotics due to inducible damage repair responses. The cell wall damage response two-component system VxrAB of the gastrointestinal pathogen Vibrio cholerae promotes high-level β-lactam tolerance and controls a gene network encoding highly diverse functions, including negative control over multiple iron uptake systems. How this system contributes to tolerance is poorly understood. Here, we show that β-lactam antibiotics cause an increase in intracellular free iron levels and collateral oxidative damage, which is exacerbated in the ∆vxrAB mutant. Mutating major iron uptake systems dramatically increases ∆vxrAB tolerance to β-lactams. We propose that VxrAB reduces antibiotic-induced toxic iron and concomitant metabolic perturbations by downregulating iron uptake transporters and show that iron sequestration enhances tolerance against β-lactam therapy in a mouse model of cholera infection. Our results suggest that a microorganism's ability to counteract diverse antibiotic-induced stresses promotes high-level antibiotic tolerance and highlights the complex secondary responses elicited by antibiotics.
Collapse
Affiliation(s)
- Jung‐Ho Shin
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Donghui Choe
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
| | - Brett Ransegnola
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Hye‐Rim Hong
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Ikenna Onyekwere
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Trevor Cross
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
| | - Qiaojuan Shi
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Byung‐Kwan Cho
- Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
- KI for the BioCenturyKorea Advanced Institute of Science and TechnologyDaejeonKorea
- Intelligent Synthetic Biology CenterDaejeonKorea
| | - Lars F Westblade
- Department of Pathology and Laboratory MedicineWeill Cornell MedicineNew YorkNYUSA
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Ilana L Brito
- Meinig School of Biomedical EngineeringCornell UniversityIthacaNYUSA
| | - Tobias Dörr
- Weill Institute for Cell and Molecular BiologyCornell, UniversityIthacaNYUSA
- Department of MicrobiologyCornell UniversityIthacaNYUSA
- Cornell Institute of Host‐Microbe Interactions and DiseaseCornell UniversityIthacaNYUSA
| |
Collapse
|
20
|
Li S, Edelmann D, Berghoff BA, Georg J, Evguenieva-Hackenberg E. Bioinformatic prediction reveals posttranscriptional regulation of the chromosomal replication initiator gene dnaA by the attenuator sRNA rnTrpL in Escherichia coli. RNA Biol 2020; 18:1324-1338. [PMID: 33164661 DOI: 10.1080/15476286.2020.1846388] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DnaA is the initiator protein of chromosome replication, but the regulation of its homoeostasis in enterobacteria is not well understood. The DnaA level remains stable at different growth rates, suggesting a link between metabolism and dnaA expression. In a bioinformatic prediction, which we made to unravel targets of the sRNA rnTrpL in Enterobacteriaceae, the dnaA mRNA was the most conserved target candidate. The sRNA rnTrpL is derived from the transcription attenuator of the tryptophan biosynthesis operon. In Escherichia coli, its level is higher in minimal than in rich medium due to derepressed transcription without external tryptophan supply. Overexpression and deletion of the rnTrpL gene decreased and increased, respectively, the levels of dnaA mRNA. The decrease of the dnaA mRNA level upon rnTrpL overproduction was dependent on hfq and rne. Base pairing between rnTrpL and dnaA mRNA in vivo was validated. In minimal medium, the oriC level was increased in the ΔtrpL mutant, in line with the expected DnaA overproduction and increased initiation of chromosome replication. In line with this, chromosomal rnTrpL mutation abolishing the interaction with dnaA increased both the dnaA mRNA and the oriC level. Moreover, upon addition of tryptophan to minimal medium cultures, the oriC level in the wild type was increased. Thus, rnTrpL is a base-pairing sRNA that posttranscriptionally regulates dnaA in E. coli. Furthermore, our data suggest that rnTrpL contributes to the DnaA homoeostasis in dependence on the nutrient availability, which is represented by the tryptophan level in the cell.
Collapse
Affiliation(s)
- Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Daniel Edelmann
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Bork A Berghoff
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Jens Georg
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
21
|
Abbott IJ, Roberts JA, Meletiadis J, Peleg AY. Antimicrobial pharmacokinetics and preclinical in vitro models to support optimized treatment approaches for uncomplicated lower urinary tract infections. Expert Rev Anti Infect Ther 2020; 19:271-295. [PMID: 32820686 DOI: 10.1080/14787210.2020.1813567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Urinary tract infections (UTIs) are extremely common. Millions of people, particularly healthy women, are affected worldwide every year. One-in-two women will have a recurrence within 12-months of an initial UTI. Inadequate treatment risks worsening infection leading to acute pyelonephritis, bacteremia and sepsis. In an era of increasing antimicrobial resistance, it is critical to provide optimized antimicrobial treatment. AREAS COVERED Literature was searched using PubMed and Google Scholar (up to 06/2020), examining the etiology, diagnosis and oral antimicrobial therapy for uncomplicated UTIs, with emphasis on urinary antimicrobial pharmacokinetics (PK) and the application of dynamic in vitro models for the pharmacodynamic (PD) profiling of pathogen response. EXPERT OPINION The majority of antimicrobial agents included in international guidelines were developed decades ago without well-described dose-response relationships. Microbiology laboratories still apply standard diagnostic methodology that has essentially remained unchanged for decades. Furthermore, it is uncertain how relevant standard in vitro susceptibility is for predicting antimicrobial efficacy in urine. In order to optimize UTI treatments, clinicians must exploit the urine-specific PK of antimicrobial agents. Dynamic in vitro models are valuable tools to examine the PK/PD and urodynamic variables associated with UTIs, while informing uropathogen susceptibility reporting, optimized dosing schedules, clinical trials and treatment guidelines.
Collapse
Affiliation(s)
- Iain J Abbott
- Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia
| | - Jason A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia.,School of Pharmacy, Centre for Translational Anti-infective Pharmacodynamics, The University of Queensland, Brisbane, Australia.,Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Haidari, Greece
| | - Anton Y Peleg
- Department of Infectious Diseases, the Alfred Hospital and Central Clinical School, Monash University, Melbourne, Australia.,Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Australia
| |
Collapse
|
22
|
Roche B, Bumann D. Single-cell reporters for pathogen responses to antimicrobial host attacks. Curr Opin Microbiol 2020; 59:16-23. [PMID: 32810800 DOI: 10.1016/j.mib.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
Host-pathogen interactions are often heterogeneous involving individual encounters between host and pathogen cells with diverse molecular mechanisms, response networks, and diverging outcomes. Single-cell reporters can identify the various types of interactions and participating pathogen subsets, help to unravel underlying molecular mechanism, and determine individual outcomes and their impact on disease progression. In this review, we discuss reporters-based on fluorescent proteins. We present different types of reporters and their experimental advantages and challenges, and describe how different strategies can interrogate exposure to antimicrobial host mechanism, pathogen response, inflicted damage, and impact on pathogen fitness at the single-cell level. We find many gaps in available tools but also exciting avenues to address these issues.
Collapse
Affiliation(s)
- Béatrice Roche
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Dirk Bumann
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland.
| |
Collapse
|
23
|
Vlazaki M, Rossi O, Price DJ, McLean C, Grant AJ, Mastroeni P, Restif O. A data-based mathematical modelling study to quantify the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica during treatment and relapse. J R Soc Interface 2020; 17:20200299. [PMID: 32634369 DOI: 10.1098/rsif.2020.0299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic therapy has drastically reduced the mortality and sequelae of bacterial infections. From naturally occurring to chemically synthesized, different classes of antibiotics have been successfully used without detailed knowledge of how they affect bacterial dynamics in vivo. However, a proportion of patients receiving antimicrobial therapy develop recrudescent infections post-treatment. Relapsing infections are attributable to incomplete clearance of bacterial populations following antibiotic administration; the metabolic profile of this antibiotic-recalcitrant bacterial subpopulation, the spatio-temporal context of its emergence and the variance of antibiotic-bacterial interactions in vivo remain unclear. Here, we develop and apply a mechanistic mathematical model to data from a study comparing the effects of ciprofloxacin and ampicillin on the within-host dynamics of Salmonella enterica serovar Typhimurium in murine infections. Using the inferential capacity of our model, we show that the antibiotic-recalcitrant bacteria following ampicillin, but not ciprofloxacin, treatment belong to a non-replicating phenotype. Aligning with previous studies, we independently estimate that the lymphoid tissues and spleen are important reservoirs of non-replicating bacteria. Finally, we predict that post-treatment, the progenitors of the non-growing and growing bacterial populations replicate and die at different rates. Ultimately, the liver, spleen and mesenteric lymph nodes are all repopulated by progenitors of the previously non-growing phenotype in ampicillin-treated mice.
Collapse
Affiliation(s)
- Myrto Vlazaki
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Omar Rossi
- GSK Vaccines Institute for Global Health, Via Fiorentina 1, 53100 Siena, Italy
| | - David J Price
- Centre of Epidemiology and Biostatistics, University of Melbourne, Grattan Street, Parkville, Victoria 3010, Australia.,The Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Callum McLean
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Andrew J Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| |
Collapse
|
24
|
Counting Replication Origins to Measure Growth of Pathogens. Antibiotics (Basel) 2020; 9:antibiotics9050239. [PMID: 32397204 PMCID: PMC7277869 DOI: 10.3390/antibiotics9050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the success of bacterial strains in infecting their host has been essentially ascribed to the presence of canonical virulence genes. While it is unclear how much growth rate impacts the outcome of an infection, it is long known that the efficacy of the most commonly used antibiotics is correlated to growth. This applies especially to β-lactams, whose efficacy is nearly abolished when cells grow very slowly. It is therefore reasonable to assume that a niche or genetic dependent change in growth rate could contribute to the variability in the outcome of antibiotic therapy. However, little is known about the growth rate of pathogens or their pathotypes in their host.
Collapse
|
25
|
Windels EM, Van den Bergh B, Michiels J. Bacteria under antibiotic attack: Different strategies for evolutionary adaptation. PLoS Pathog 2020; 16:e1008431. [PMID: 32379814 PMCID: PMC7205213 DOI: 10.1371/journal.ppat.1008431] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Bacteria are well known for their extremely high adaptability in stressful environments. The clinical relevance of this property is clearly illustrated by the ever-decreasing efficacy of antibiotic therapies. Frequent exposures to antibiotics favor bacterial strains that have acquired mechanisms to overcome drug inhibition and lethality. Many strains, including life-threatening pathogens, exhibit increased antibiotic resistance or tolerance, which considerably complicates clinical practice. Alarmingly, recent studies show that in addition to resistance, tolerance levels of bacterial populations are extremely flexible in an evolutionary context. Here, we summarize laboratory studies providing insight in the evolution of resistance and tolerance and shed light on how the treatment conditions could affect the direction of bacterial evolution under antibiotic stress.
Collapse
Affiliation(s)
- Etthel M. Windels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
26
|
Bacterial variability in the mammalian gut captured by a single-cell synthetic oscillator. Nat Commun 2019; 10:4665. [PMID: 31604953 PMCID: PMC6789134 DOI: 10.1038/s41467-019-12638-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
Synthetic gene oscillators have the potential to control timed functions and periodic gene expression in engineered cells. Such oscillators have been refined in bacteria in vitro, however, these systems have lacked the robustness and precision necessary for applications in complex in vivo environments, such as the mammalian gut. Here, we demonstrate the implementation of a synthetic oscillator capable of keeping robust time in the mouse gut over periods of days. The oscillations provide a marker of bacterial growth at a single-cell level enabling quantification of bacterial dynamics in response to inflammation and underlying variations in the gut microbiota. Our work directly detects increased bacterial growth heterogeneity during disease and differences between spatial niches in the gut, demonstrating the deployment of a precise engineered genetic oscillator in real-life settings.
Collapse
|
27
|
Spheroplast-Mediated Carbapenem Tolerance in Gram-Negative Pathogens. Antimicrob Agents Chemother 2019; 63:AAC.00756-19. [PMID: 31285232 DOI: 10.1128/aac.00756-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/28/2019] [Indexed: 01/01/2023] Open
Abstract
Antibiotic tolerance, the ability to temporarily sustain viability in the presence of bactericidal antibiotics, constitutes an understudied and yet potentially widespread cause of antibiotic treatment failure. We have previously shown that the Gram-negative pathogen Vibrio cholerae can tolerate exposure to the typically bactericidal β-lactam antibiotics by assuming a spherical morphotype devoid of detectable cell wall material. However, it is unclear how widespread β-lactam tolerance is. Here, we tested a panel of clinically significant Gram-negative pathogens for their response to the potent, broad-spectrum carbapenem antibiotic meropenem. We show that clinical isolates of Enterobacter cloacae, Klebsiella aerogenes, and Klebsiella pneumoniae, but not Escherichia coli, exhibited moderate to high levels of tolerance of meropenem, both in laboratory growth medium and in human serum. Importantly, tolerance was mediated by cell wall-deficient spheroplasts, which readily recovered wild-type morphology and growth upon removal of antibiotic. Our results suggest that carbapenem tolerance is prevalent in clinically significant bacterial species, and we suggest that this could contribute to treatment failure associated with these organisms.
Collapse
|
28
|
Growth Rate of Escherichia coli During Human Urinary Tract Infection: Implications for Antibiotic Effect. Antibiotics (Basel) 2019; 8:antibiotics8030092. [PMID: 31336946 PMCID: PMC6783841 DOI: 10.3390/antibiotics8030092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/06/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022] Open
Abstract
Escherichia coli is the primary cause of urinary tract infection (UTI), which is one of the most frequent human infections. While much is understood about the virulence factors utilized by uropathogenic E. coli (UPEC), less is known about the bacterial growth dynamics taking place during infection. Bacterial growth is considered essential for successful host colonization and infection, and most antibiotics in clinical use depend on active bacterial growth to exert their effect. However, a means to measure the in situ bacterial growth rate during infection has been lacking. Due to faithful coordination between chromosome replication and cell growth and division in E. coli, chromosome replication provides a quantitative measure of the bacterial growth rate. In this study, we explored the potential for inferring in situ bacterial growth rate from a single urine sample in patients with E. coli bacteriuria by differential genome quantification (ori:ter) performed by quantitative PCR. We found active bacterial growth in almost all samples. However, this occurs with day-to-day and inter-patient variability. Our observations indicate that chromosome replication provides not only a robust measure of bacterial growth rate, but it can also be used as a means to evaluate antibiotic effect.
Collapse
|
29
|
Comparative Activity of Ceftriaxone, Ciprofloxacin, and Gentamicin as a Function of Bacterial Growth Rate Probed by Escherichia coli Chromosome Replication in the Mouse Peritonitis Model. Antimicrob Agents Chemother 2019; 63:AAC.02133-18. [PMID: 30509946 DOI: 10.1128/aac.02133-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
Commonly used antibiotics exert their effects predominantly on rapidly growing bacterial cells; yet, the growth dynamics taking place during infection in a complex host environment remain largely unknown. Hence, a means to measure in situ bacterial growth rate is essential to predict the outcome of antibacterial treatment. We have recently validated chromosome replication as a readout of in situ bacterial growth rate during Escherichia coli infection in the mouse peritonitis model. By the use of two complementary methods (quantitative PCR and fluorescence microscopy) for differential genome origin and terminus copy number quantification, we demonstrated the ability to track bacterial growth rate, both on a population average level and on a single-cell level, from one single biological specimen. Here, we asked whether the in situ growth rate predicts antibiotic treatment effect during infection in the same model. Parallel in vitro growth experiments were conducted as a proof of concept. Our data demonstrate that the activities of the commonly used antibiotics ceftriaxone and gentamicin correlated with pretreatment bacterial growth rate; both drugs performed better during rapid growth than during slow growth. Conversely, ciprofloxacin was less sensitive to bacterial growth rate, both in a homogenous in vitro bacterial population and in a more heterogeneous in vivo bacterial population. The method serves as a platform to test any antibiotic's dependency on active in situ bacterial growth. Improved insight into this relationship in vivo could ultimately prove helpful in evaluating future antibacterial strategies.
Collapse
|