1
|
Chen J, Hu M, Li M, Wang C, Wang L, Tian Y, Yan H, Liu Q, Liang X, Wang X. Comparative transcriptome analysis identified genes involved in testicular development in Takifugu rubripes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:2. [PMID: 39757246 DOI: 10.1007/s10695-024-01439-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
To identify candidate genes and pathways involved in testicular development in Takifugu rubripes, a comparative transcription analysis was conducted across the various developmental stages of the testis (stages II to V). A total of 9520 differentially expressed genes (DEGs) were identified among the different stages, and they were significantly clustered into six clusters (P < 0.05). One thousand four hundred eleven DEGs such as gndf, wnt1, and cyp17b1 were found to be decreased from stage II to V. In contrast, 994 DEGs such as fn1, ift81, and cdc25a were found to be increased from stage II to V. Six thousand three hundred eighteen DEGs (e.g., dmrt1, sdk2, and chrna1) were identified as being expressed at similar levels at stages II and III. However, they were subsequently found to be decreased from stage III to IV. Four hundred one DEGs exhibited a significant upregulation trend from stage II to III. These genes were expressed at similar levels in stages III, IV, and V, including chrnd, wnt4a, and cyp7a1. The highest expression levels of 200 DEGs (e.g., ccnb2, cdk1, and sycp2) were observed in stage IV, while 196 DEGs (e.g., chmp1b, hsd17b3, and zp3) exhibited the highest expression level in stage III. Those DEGs were mainly enriched in the pathways (e.g., neuroactive ligand-receptor interaction, cell adhesion molecules, and calcium signaling pathways) associated with testicular development. Quantitative polymerase chain reaction of eight randomly selected genes validated the RNA sequencing results. This study may provide new insights into the molecular regulatory mechanisms governing testicular development and spermatogenesis in T. rubripes.
Collapse
Affiliation(s)
- Jinfeng Chen
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Mingtao Hu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Meiyuan Li
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Chenqi Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Liu Wang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Yushun Tian
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongwei Yan
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China.
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China.
| | - Qi Liu
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China.
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, China.
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China.
| | - Xinyan Liang
- Key Laboratory of Environment Controlled Aquaculture (Dalian Ocean University), Ministry of Education, Dalian, 116023, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| | - Xiuli Wang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Pufferfish Breeding and Culture in Liaoning Province, Dalian Ocean University, Dalian, Liaoning, 116023, China
| |
Collapse
|
2
|
Jin C, Yan K, Wang M, Song W, Wang B, Men Y, Niu J, He Y, Zhang Q, Qi J. Dissecting the dynamic cellular transcriptional atlas of adult teleost testis development throughout the annual reproductive cycle. Development 2024; 151:dev202296. [PMID: 38477640 DOI: 10.1242/dev.202296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/14/2024]
Abstract
Teleost testis development during the annual cycle involves dramatic changes in cellular compositions and molecular events. In this study, the testicular cells derived from adult black rockfish at distinct stages - regressed, regenerating and differentiating - were meticulously dissected via single-cell transcriptome sequencing. A continuous developmental trajectory of spermatogenic cells, from spermatogonia to spermatids, was delineated, elucidating the molecular events involved in spermatogenesis. Subsequently, the dynamic regulation of gene expression associated with spermatogonia proliferation and differentiation was observed across spermatogonia subgroups and developmental stages. A bioenergetic transition from glycolysis to mitochondrial respiration of spermatogonia during the annual developmental cycle was demonstrated, and a deeper level of heterogeneity and molecular characteristics was revealed by re-clustering analysis. Additionally, the developmental trajectory of Sertoli cells was delineated, alongside the divergence of Leydig cells and macrophages. Moreover, the interaction network between testicular micro-environment somatic cells and spermatogenic cells was established. Overall, our study provides detailed information on both germ and somatic cells within teleost testes during the annual reproductive cycle, which lays the foundation for spermatogenesis regulation and germplasm preservation of endangered species.
Collapse
Affiliation(s)
- Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Kai Yan
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Yu Men
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Jingjing Niu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266000, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 572000, China
| |
Collapse
|
3
|
Sahoo B, Gupta MK. Transcriptome Analysis Reveals Spermatogenesis-Related CircRNAs and LncRNAs in Goat Spermatozoa. Biochem Genet 2024; 62:2010-2032. [PMID: 37815627 DOI: 10.1007/s10528-023-10520-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
Mammalian spermatozoa comprises both coding and non-coding RNAs, which are traditionally believed to be a residual of spermatogenesis. The differential expression level of spermatozoal RNAs is also observed between fertile and infertile human, thereby anticipated as potential molecular marker of male fertility. This study investigated the transcriptome profile of goat (Capra hircus) spermatozoa. The sperm transcriptome was analyzed by three different methods viz. RLM-RACE, long-read RNA sequencing (RNAseq) in Nanopore™ platform, and short-read RNAseq in Illumina™ platform. The Illumina™ sequencing discovered 16,604 transcripts with 357 mRNAs having FPKM (fragments per kilobase per million mapped reads) of more than five. The spermatozoal RNA suite included mRNA (94%), rRNA (3%), miscRNA (1%), circRNA (1%), miRNA (1%), etc. This study also predicted circRNAs (127), lncRNAs (655), and imprinted genes (160) that have potential role in male reproduction. The gene ontology analysis revealed the involvement of spermatozoal RNA in regulating male meiosis (TET3, STAT5B), capacitation (ACRBP, CATSPER4), sperm motility (GAS8, TEKT2), spermatogenesis (ADAMTS2, CREB3L4), etc. The spermatozoal RNA were also associated with different biological pathways viz. Wnt signaling pathway, cAMP signaling pathway, AMPK signaling pathway, and MAPK signaling pathways having potential role in spermatogenesis. Overall, this study enlightened the suite of spRNA transcripts in goat and their relevance in male fertility for diagnostic approach.
Collapse
Affiliation(s)
- Bijayalaxmi Sahoo
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, Centre for Bioinformatics and Computational Biology, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India
| | - Mukesh Kumar Gupta
- Gene Manipulation Laboratory, Department of Biotechnology and Medical Engineering, Centre for Bioinformatics and Computational Biology, National Institute of Technology Rourkela, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
4
|
Zheng W, Chen Y, Wang Y, Chen S, Xu XW. Genome-Wide Identification and Involvement in Response to Biotic and Abiotic Stresses of lncRNAs in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:15870. [PMID: 37958851 PMCID: PMC10648414 DOI: 10.3390/ijms242115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in a variety of biological processes, including stress response. However, the number, characteristics and stress-related expression of lncRNAs in turbot are still largely unknown. In this study, a total of 12,999 lncRNAs were identified at the genome-wide level of turbot for the first time using 24 RNA-seq datasets. Sequence characteristic analyses of transcripts showed that lncRNA transcripts were shorter in average length, lower in average GC content and in average expression level as compared to the coding genes. Expression pattern analyses of lncRNAs in 12 distinct tissues showed that lncRNAs, especially lincRNA, exhibited stronger tissue-specific expression than coding genes. Moreover, 612, 1351, 1060, 875, 420 and 1689 differentially expressed (DE) lncRNAs under Vibrio anguillarum, Enteromyxum scophthalmi, and Megalocytivirus infection and heat, oxygen, and salinity stress conditions were identified, respectively. Among them, 151 and 62 lncRNAs showed differential expression under various abiotic and biotic stresses, respectively, and 11 lncRNAs differentially expressed under both abiotic and biotic stresses were selected as comprehensive stress-responsive lncRNA candidates. Furthermore, expression pattern analysis and qPCR validation both verified the comprehensive stress-responsive functions of these 11 lncRNAs. In addition, 497 significantly co-expressed target genes (correlation coefficient (R) > 0.7 and q-value < 0.05) for these 11 comprehensive stress-responsive lncRNA candidates were identified. Finally, GO and KEGG enrichment analyses indicated that these target genes were enriched mainly in molecular function, such as cytokine activity and active transmembrane transporter activity, in biological processes, such as response to stimulus and immune response, and in pathways, such as protein families: signaling and cellular processes, transporters and metabolism. These findings not only provide valuable reference resources for further research on the molecular basis and function of lncRNAs in turbot but also help to accelerate the progress of molecularly selective breeding of stress-resistant turbot strains or varieties.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
| | - Yadong Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Yaning Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- College of Life Science, Qingdao University, Qingdao 266071, China
| | - Songlin Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| | - Xi-wen Xu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; (W.Z.); (Y.C.); (Y.W.)
- Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Wang X, Zhao N, Wang T, Huang J, Liu Q, Li J. Genome-Wide Identification of Aqp Family Related to Spermatogenesis in Turbot ( Scophthalmus maximus). Int J Mol Sci 2023; 24:11770. [PMID: 37511528 PMCID: PMC10380888 DOI: 10.3390/ijms241411770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The development and maturation of sperm entails intricate metabolic processes involving water molecules, amino acids, hormones, and various substances. Among these processes, the role of aquaporins (aqps) in the testis is crucial. Turbot (Scophthalmus maximus) is a significant marine flatfish species in China; however, natural egg laying in females is not feasible under cultured conditions. Consequently, artificial insemination becomes necessary, requiring the retrieval of sperm and eggs through artificial methods. In this study, we combined genomic, transcriptomics, RT-qPCR, computer-assisted sperm analysis (CASA), and immunohistochemistry to investigate the involvement of the aqp family in spermatogenesis in turbot. Through genomic data analysis, we identified 16 aqps genes dispersed across 13 chromosomes, each exhibiting the characteristic major intrinsic protein (MIP) domain associated with AQPs. The results from RNA-seq and RT-qPCR analysis revealed prominent expression of aqp4, 10, and 12 during the proliferative stage, whereas aqp1 showed primary expression during the mature stage. aqp11 displayed high expression levels during both MSII and MSV stages, potentially contributing significantly to the proliferation and maturation of male germ cells. Conversely, aqp8 showed elevated expression levels during the MSIII, MSIII-IV, and MSIV stages, suggesting its direct involvement in spermiogenesis. Immunohistochemical analysis unveiled the predominant localization of AQP1 protein in male germ cells rather than Sertoli cells, specifically concentrated in the head of sperm within cysts. Furthermore, a noteworthy decline in sperm motility was observed when sperm were subjected to treatment with either the AQP1-specific inhibitor (HgCl2) or the AQP1 antibody. However, no direct correlation was found between the expression of Smaqp1 and sperm quality. Overall, these findings provide new insights into the involvement of aqps in teleost spermatogenesis. Moreover, they hold potential for improving techniques related to sperm activation and cryopreservation, offering valuable knowledge for future advancements in this field.
Collapse
Affiliation(s)
- Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinwei Huang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
6
|
Wang X, Liu Q, Li J, Zhou L, Wang T, Zhao N. Dynamic cellular and molecular characteristics of spermatogenesis in the viviparous marine teleost Sebastes schlegelii†. Biol Reprod 2023; 108:338-352. [PMID: 36401879 DOI: 10.1093/biolre/ioac203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/21/2022] Open
Abstract
Spermatogenesis is a dynamic cell developmental process that is essential for reproductive success. Vertebrates utilize a variety of reproductive strategies, including sperm diversity, and internal and external fertilization. Research on the cellular and molecular dynamic changes involved in viviparous teleost spermatogenesis, however, is currently lacking. Here, we combined cytohistology, 10 × genomic single-cell RNA-seq, and transcriptome technology to determine the dynamic development characteristics of the spermatogenesis of Sebastes schlegelii. The expressions of lhcgr (Luteinizing hormone/Choriogonadotropin receptor), fshr (follicle-stimulating hormone receptor), ar (androgen receptor), pgr (progesterone receptor), and cox (cyclo-oxygen-ase), as well as the prostaglandin E and F levels peaked during the maturation period, indicating that they were important for sperm maturation and mating. Fifteen clusters were identified based on the 10 × genomic single-cell results. The cell markers of the sub-cluster were identified by their upregulation; piwil, dazl, and dmrt1 were upregulated and identified as spermatogonium markers, and sycp1/3 and spo11 were identified as spermatocyte markers. For S. schlegelii, the sperm head nucleus was elongated (spherical to streamlined in shape), which is a typical characteristic for sperm involved in internal fertilization. We also identified a series of crucial genes associated with spermiogenesis, such as spata6, spag16, kif20a, trip10, and klf10, while kif2c, kifap3, fez2, and spaca6 were found to be involved in nucleus elongation. The results of this study will enrich our cellular and molecular knowledge of spermatogenesis and spermiogenesis in fish that undergo internal fertilization.
Collapse
Affiliation(s)
- Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Zhou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Whole Exome Sequencing and In Silico Analysis of Human Sertoli in Patients with Non-Obstructive Azoospermia. Int J Mol Sci 2022; 23:ijms232012570. [PMID: 36293429 PMCID: PMC9604420 DOI: 10.3390/ijms232012570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Non-obstructive azoospermia (NOA) is a serious cause of male infertility. The Sertoli cell responds to androgens and takes on roles supporting spermatogenesis, which may cause infertility. This work aims to enhance the genetic diagnosis of NOA via the discovery of new and hub genes implicated in human NOA and to better assess the odds of successful sperm extraction according to the individual’s genotype. Whole exome sequencing (WES) was done on three NOA patients to find key genes involved in NOA. We evaluated genome-wide transcripts (about 50,000 transcripts) by microarray between the Sertoli of non-obstructive azoospermia and normal cells. The microarray analysis of three human cases with different non-obstructive azoospermia revealed that 32 genes were upregulated, and the expressions of 113 genes were downregulated versus the normal case. For this purpose, Enrich Shiny GO, STRING, and Cytoscape online evaluations were applied to predict the functional and molecular interactions of proteins and then recognize the master pathways. The functional enrichment analysis demonstrated that the biological process (BP) terms “inositol lipid-mediated signaling”, “positive regulation of transcription by RNA polymerase II”, and “positive regulation of DNA-templated transcription” significantly changed in upregulated differentially expressed genes (DEGs). The BP investigation of downregulated DEGs highlighted “mitotic cytokinesis”, “regulation of protein-containing complex assembly”, “cytoskeleton-dependent cytokinesis”, and the “peptide metabolic process”. Overrepresented molecular function (MF) terms in upregulated DEGs included “ubiquitin-specific protease binding”, “protease binding”, “phosphatidylinositol trisphosphate phosphatase activity”, and “clathrin light chain binding”. Interestingly, the MF analysis of the downregulated DEGs revealed overexpression in “ATPase inhibitor activity”, “glutathione transferase activity”, and “ATPase regulator activity”. Our findings suggest that these genes and their interacting hub proteins could help determine the pathophysiologies of germ cell abnormalities and infertility.
Collapse
|
8
|
Castro-Arnau J, Chauvigné F, Gómez-Garrido J, Esteve-Codina A, Dabad M, Alioto T, Finn RN, Cerdà J. Developmental RNA-Seq transcriptomics of haploid germ cells and spermatozoa uncovers novel pathways associated with teleost spermiogenesis. Sci Rep 2022; 12:14162. [PMID: 35986060 PMCID: PMC9391476 DOI: 10.1038/s41598-022-18422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/10/2022] [Indexed: 12/18/2022] Open
Abstract
AbstractIn non-mammalian vertebrates, the molecular mechanisms involved in the transformation of haploid germ cells (HGCs) into spermatozoa (spermiogenesis) are largely unknown. Here, we investigated this process in the marine teleost gilthead seabream (Sparus aurata) through the examination of the changes in the transcriptome between cell-sorted HGCs and ejaculated sperm (SPZEJ). Samples were collected under strict quality controls employing immunofluorescence microscopy as well as by determining the sperm motion kinematic parameters by computer-assisted sperm analysis. Deep sequencing by RNA-seq identified a total of 7286 differentially expressed genes (DEGs) (p-value < 0.01) between both cell types, of which nearly half were upregulated in SPZEJ compared to HCGs. In addition, approximately 9000 long non-coding RNAs (lncRNAs) were found, of which 56% were accumulated or emerged de novo in SPZEJ. The upregulated transcripts are involved in transcriptional and translational regulation, chromatin and cytoskeleton organization, metabolic processes such as glycolysis and oxidative phosphorylation, and also include a number of ion and water channels, exchangers, transporters and receptors. Pathway analysis conducted on DEGs identified 37 different signaling pathways enriched in SPZEJ, including 13 receptor pathways, from which the most predominant correspond to the chemokine and cytokine, gonadotropin-releasing hormone receptor and platelet derived growth factor signaling pathways. Our data provide new insight into the mRNA and lncRNA cargos of teleost spermatozoa and uncover the possible involvement of novel endocrine mechanisms during the differentiation and maturation of spermatozoa.
Collapse
|
9
|
Li J, Lyu L, Wen H, Li Y, Wang X, Zhang Y, Yao Y, Qi X. Comparative transcriptomic analysis of gonadal development and renewal in the ovoviviparous black rockfish (Sebastes schlegelii). BMC Genomics 2021; 22:874. [PMID: 34863110 PMCID: PMC8642938 DOI: 10.1186/s12864-021-08169-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The black rockfish (Sebastes schlegelii) has an ovoviviparous reproductive pattern and long-term sperm storage, resulting in asynchronous gonadal development between the sexes. However, the comprehensive understanding of gonadal development in black rockfish has not yet been achieved. Here, we studied gonadal development and germ cell renewal using histology and RNA-seq. RESULTS In this study, RNA-seq was performed on testes and ovaries to characterize key pathways and genes that are active during development and gamete maturation in black rockfish. Differentially expressed genes (DEGs) were identified and annotated in 4 comparisons (F_III vs. F_IV, F_IV vs. F_V, M_III vs. M_IV and M_IV vs. M_V). Based on analysis of DEGs enriched in the testis, 11 and 14 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mapped to the M_III vs. M_IV group and the M_IV vs. M_V group, respectively. DEGs in ovarian development were also classified into 10 groups according to their biological functions. The expression patterns of the selected genes determined by qPCR were significantly correlated with the RNA-Seq results, supporting the reliability and accuracy of the RNA-Seq analysis. E2 levels showed down regulation from previtellogenesis to mature stage in female and T level showed down regulation from spermatogenesis to regressed stage in the male. CONCLUSIONS The categories "intercellular interaction and cytoskeleton", "molecule amplification" and "repair in the cell cycle" were revealed to be crucial in testis development and spermatogenesis, as was the biosynthesis of a series of metabolites. Our results provide comprehensive insight into black rockfish gonadal development and provide a basis for further study of reproductive physiology and molecular biology in ovoviviparity teleosts.
Collapse
Affiliation(s)
- Jianshuang Li
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Likang Lyu
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Haishen Wen
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Yun Li
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Xiaojie Wang
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Ying Zhang
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Yijia Yao
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China
| | - Xin Qi
- College of Fishery, Ocean University of China, Qingdao, 266000, P. R. China.
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, 266003, P. R. China.
| |
Collapse
|
10
|
Fan B, Xie D, Li Y, Wang X, Qi X, Li S, Meng Z, Chen X, Peng J, Yang Y, Li Y, Wang L. A single intronic single nucleotide polymorphism in splicing site of steroidogenic enzyme hsd17b1 is associated with phenotypic sex in oyster pompano, Trachinotus anak. Proc Biol Sci 2021; 288:20212245. [PMID: 34784765 DOI: 10.1098/rspb.2021.2245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Teleosts show varied master sex determining (MSD) genes and sex determination (SD) mechanisms, with frequent turnovers of sex chromosomes. Tracing the origins of MSD genes and turnovers of sex chromosomes in a taxonomic group is of particular interest in evolutionary biology. Oyster pompano (Trachinotus anak), a marine fish, belongs to the family Carangidae, in which 17b-hydroxysteroid dehydrogenase 1 (hsd17b1) has repeatedly evolved to an MSD gene. Whole-genome resequencing identified a single nucleotide polymorphism (SNP) at chromosome 24 to be strictly associated with phenotypic sex, with females being the heterozygous sex. This SNP is located in a splicing site at the first exon/intron boundary of hsd17b1. The Z-linked SNP results in malfunction of all spliced isoforms, whereas the W-linked isoforms were predicted to have open reading frames that are conserved among vertebrates, suggesting that hsd17b1 is a female-determining gene. The differential alternative splicing patterns of ZZ and ZW genotypes were consistently observed both in undifferentiated stages and differentiated gonads. We observed elevated recombination around the SD locus and no differentiation between Z and W chromosomes. The extreme diversity of mutational mechanisms that hsd17b1 evolves to an MSD gene highlights frequent in situ turnovers between sex chromosomes in the Carangidae.
Collapse
Affiliation(s)
- Bin Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China.,Yangjiang Haina Fisheries Co., Ltd., Yangjiang 529500, People's Republic of China.,Yangjiang Polytechnic, Yangjiang 529500, People's Republic of China
| | - Dizhi Xie
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yanwei Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Xulei Wang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, People's Republic of China
| | - Xin Qi
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, People's Republic of China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Xinghan Chen
- Yangjiang Polytechnic, Yangjiang 529500, People's Republic of China
| | - Junyao Peng
- Yangjiang Hongyun Marine Fish Seed Breeding Co., Ltd., Yangjiang 529500, People's Republic of China
| | - Yongjian Yang
- Yangjiang Haina Fisheries Co., Ltd., Yangjiang 529500, People's Republic of China
| | - Yuanyou Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Le Wang
- Molecular Population Genetics Group, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| |
Collapse
|
11
|
Guo Q, Jiang Y, Bai H, Chen G, Chang G. miR-301a-5p Regulates TGFB2 during Chicken Spermatogenesis. Genes (Basel) 2021; 12:genes12111695. [PMID: 34828300 PMCID: PMC8621736 DOI: 10.3390/genes12111695] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
The process of spermatogenesis is complex and systemic, requiring the cooperation of many regulators. However, little is known about how micro RNAs (miRNAs) regulate spermatogenesis in poultry. In this study, we investigated key miRNAs and their target genes that are involved in spermatogenesis in chickens. Next-generation sequencing was conducted to determine miRNA expression profiles in five cell types: primordial germ cells (PGCs), spermatogonial stem cells (SSCs), spermatogonia (Spa), and chicken sperm. Next, we analyzed and identified several key miRNAs that regulate spermatogenesis in the four germline cell miRNA profiles. Among the enriched miRNAs, miRNA-301a-5p was the key miRNA in PGCs, SSCs, and Spa. Through reverse transcription quantitative PCR (RT-qPCR), dual-luciferase, and miRNA salience, we confirmed that miR-301a-5p binds to transforming growth factor-beta 2 (TGFβ2) and is involved in the transforming growth factor-beta (TGF-β) signaling pathway and germ cell development. To the best of our knowledge, this is the first demonstration of miR-301a-5p involvement in spermatogenesis by direct binding to TGFβ2, a key gene in the TGF-β signaling pathway. This finding contributes to the insights into the molecular mechanism through which miRNAs regulate germline cell differentiation and spermatogenesis in chickens.
Collapse
Affiliation(s)
- Qixin Guo
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
| | - Yong Jiang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
| | - Hao Bai
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Jiangsu Key Laboratory for Animal Genetics, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China; (Q.G.); (Y.J.); (H.B.); (G.C.)
- Correspondence:
| |
Collapse
|
12
|
Saintilnord WN, Tenlep SYN, Preston JD, Duregon E, DeRouchey JE, Unrine JM, de Cabo R, Pearson KJ, Fondufe-Mittendorf YN. Chronic Exposure to Cadmium Induces Differential Methylation in Mice Spermatozoa. Toxicol Sci 2021; 180:262-276. [PMID: 33483743 PMCID: PMC8041459 DOI: 10.1093/toxsci/kfab002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cadmium exposure is ubiquitous and has been linked to diseases including cancers and reproductive defects. Since cadmium is nonmutagenic, it is thought to exert its gene dysregulatory effects through epigenetic reprogramming. Several studies have implicated germline exposure to cadmium in developmental reprogramming. However, most of these studies have focused on maternal exposure, while the impact on sperm fertility and disease susceptibility has received less attention. In this study, we used reduced representation bisulfite sequencing to comprehensively investigate the impact of chronic cadmium exposure on mouse spermatozoa DNA methylation. Adult male C57BL/J6 mice were provided water with or without cadmium chloride for 9 weeks. Sperm, testes, liver, and kidney tissues were collected at the end of the treatment period. Cadmium exposure was confirmed through gene expression analysis of metallothionein-1 and 2, 2 well-known cadmium-induced genes. Analysis of sperm DNA methylation changes revealed 1788 differentially methylated sites present at regulatory regions in sperm of mice exposed to cadmium compared with vehicle (control) mice. Furthermore, most of these differential methylation changes positively correlated with changes in gene expression at both the transcription initiation stage as well as the splicing levels. Interestingly, the genes targeted by cadmium exposure are involved in several critical developmental processes. Our results present a comprehensive analysis of the sperm methylome in response to chronic cadmium exposure. These data, therefore, highlight a foundational framework to study gene expression patterns that may affect fertility in the exposed individual as well as their offspring, through paternal inheritance.
Collapse
Affiliation(s)
- Wesley N Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Sara Y N Tenlep
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Joshua D Preston
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Eleonora Duregon
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Jason E DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 20892, USA
| | - Kevin J Pearson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| | - Yvonne N Fondufe-Mittendorf
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536-0509, USA,To whom correspondence should be addressed at Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0509, USA. E-mail: ; Department of Molecular and Cellular Biochemistry, University of Kentucky, 800 Rose Street, 273 BBSRB, Lexington, KY 40536-0509, USA. E-mail:
| |
Collapse
|
13
|
Morro B, Doherty MK, Balseiro P, Handeland SO, MacKenzie S, Sveier H, Albalat A. Plasma proteome profiling of freshwater and seawater life stages of rainbow trout (Oncorhynchus mykiss). PLoS One 2020; 15:e0227003. [PMID: 31899766 PMCID: PMC6941806 DOI: 10.1371/journal.pone.0227003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/09/2019] [Indexed: 01/18/2023] Open
Abstract
The sea-run phenotype of rainbow trout (Oncorhynchus mykiss), like other anadromous salmonids, present a juvenile stage fully adapted to life in freshwater known as parr. Development in freshwater is followed by the smolt stage, where preadaptations needed for seawater life are developed making fish ready to migrate to the ocean, after which event they become post-smolts. While these three life stages have been studied using a variety of approaches, proteomics has never been used for such purpose. The present study characterised the blood plasma proteome of parr, smolt and post-smolt rainbow trout using a gel electrophoresis liquid chromatography tandem mass spectrometry approach alone or in combination with low-abundant protein enrichment technology (combinatorial peptide ligand library). In total, 1,822 proteins were quantified, 17.95% of them being detected only in plasma post enrichment. Across all life stages, the most abundant proteins were ankyrin-2, DNA primase large subunit, actin, serum albumin, apolipoproteins, hemoglobin subunits, hemopexin-like proteins and complement C3. When comparing the different life stages, 17 proteins involved in mechanisms to cope with hyperosmotic stress and retinal changes, as well as the downregulation of nonessential processes in smolts, were significantly different between parr and smolt samples. On the other hand, 11 proteins related to increased growth in post-smolts, and also related to coping with hyperosmotic stress and to retinal changes, were significantly different between smolt and post-smolt samples. Overall, this study presents a series of proteins with the potential to complement current seawater-readiness assessment tests in rainbow trout, which can be measured non-lethally in an easily accessible biofluid. Furthermore, this study represents a first in-depth characterisation of the rainbow trout blood plasma proteome, having considered three life stages of the fish and used both fractionation alone or in combination with enrichment methods to increase protein detection.
Collapse
Affiliation(s)
- Bernat Morro
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| | - Mary K. Doherty
- Institute of Health Research and Innovation, Centre for Health Science, University of the Highlands and Islands, Inverness, Scotland, United Kingdom
| | | | | | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
- NORCE AS, Universitetet i Bergen, Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, Universitetet i Bergen, Bergen, Norway
| | - Amaya Albalat
- Institute of Aquaculture, University of Stirling, Stirling, Scotland, United Kingdom
| |
Collapse
|
14
|
The initiation of puberty in Atlantic salmon brings about large changes in testicular gene expression that are modulated by the energy status. BMC Genomics 2019; 20:475. [PMID: 31185904 PMCID: PMC6558769 DOI: 10.1186/s12864-019-5869-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/31/2019] [Indexed: 02/08/2023] Open
Abstract
Background When puberty starts before males reach harvest size, animal welfare and sustainability issues occur in Atlantic salmon (Salmo salar) aquaculture. Hallmarks of male puberty are an increased proliferation activity in the testis and elevated androgen production. Examining transcriptional changes in salmon testis during the transition from immature to maturing testes may help understanding the regulation of puberty, potentially leading to procedures to modulate its start. Since differences in body weight influence, via unknown mechanisms, the chances for entering puberty, we used two feed rations to create body weight differences. Results Maturing testes were characterized by an elevated proliferation activity of Sertoli cells and of single undifferentiated spermatogonia. Pituitary gene expression data suggest increased Gnrh receptor and gonadotropin gene expression, potentially responsible for the elevated circulating androgen levels in maturing fish. Transcriptional changes in maturing testes included a broad variety of signaling systems (e.g. Tgfβ, Wnt, insulin/Igf, nuclear receptors), but also, activation of metabolic pathways such as anaerobic metabolism and protection against ROS. Feed restriction lowered the incidence of puberty. In males maturing despite feed restriction, plasma androgen levels were higher than in maturing fish receiving the full ration. A group of 449 genes that were up-regulated in maturing fully fed fish, was up-regulated more prominently in testis from fish maturing under caloric restriction. Moreover, 421 genes were specifically up-regulated in testes from fish maturing under caloric restriction, including carbon metabolism genes, a pathway relevant for nucleotide biosynthesis and for placing epigenetic marks. Conclusions Undifferentiated spermatogonia and Sertoli cell populations increased at the beginning of puberty, which was associated with the up-regulation of metabolic pathways (e.g. anaerobic and ROS pathways) known from other stem cell systems. The higher androgen levels in males maturing under caloric restriction may be responsible for the stronger up-regulation of a common set of (449) maturation-associated genes, and the specific up-regulation of another set of (421) genes. The latter opened regulatory and/or metabolic options for initiating puberty despite feed restriction. As a means to reduce the incidence of male puberty in salmon, however, caloric restriction seems unsuitable. Electronic supplementary material The online version of this article (10.1186/s12864-019-5869-9) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Koyama T, Nakamoto M, Morishima K, Yamashita R, Yamashita T, Sasaki K, Kuruma Y, Mizuno N, Suzuki M, Okada Y, Ieda R, Uchino T, Tasumi S, Hosoya S, Uno S, Koyama J, Toyoda A, Kikuchi K, Sakamoto T. A SNP in a Steroidogenic Enzyme Is Associated with Phenotypic Sex in Seriola Fishes. Curr Biol 2019; 29:1901-1909.e8. [PMID: 31130458 DOI: 10.1016/j.cub.2019.04.069] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/03/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
Vertebrate sex development consists largely of two processes: "sex determination," the initial bifurcation of sexual identity, and "sex differentiation," which subsequently facilitates maleness or femaleness according to the sex determination signal. Steroid hormones promote multiple types of sexual dimorphism in eutherian mammals and avians [1-3], in which they are indispensable for proper sex differentiation. By contrast, in many poikilothermic vertebrates, steroid hormones have been proposed to be key players in sex determination as well as sex differentiation [4-8]. This hypothesis was introduced more than 50 years ago but has never been rigorously tested due to difficulties in discriminating the roles of steroids in sex determination and differentiation. We found that a missense SNP in the gene encoding the steroidogenic enzyme 17β-hydroxysteroid dehydrogenase 1 (Hsd17b1) was perfectly associated with ZZ/ZW sex determination in Seriola fishes. Biochemical analyses revealed that a glutamate residue present specifically in Z-type HSD17B1 attenuated interconversion between 17-keto and 17β-hydroxy steroids relative to the allelic product from the W chromosome, which harbors glycine at that position, by disrupting the hydrogen bond network between the steroid and the enzyme's catalytic residues. Hsd17b1 mRNA is constitutively expressed in undifferentiated and differentiating gonads of both genotypic sexes, whereas W-type mRNA is expressed only in genotypic females. Meanwhile, Cyp19a1 is predominantly expressed in differentiating ovary. We conclude that the combination of Hsd17b1 alleles determines sex by modulating endogenous estrogen levels in Seriola species. These findings strongly support the long-standing hypothesis on steroids in sex determination.
Collapse
Affiliation(s)
- Takashi Koyama
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Masatoshi Nakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Kagayaki Morishima
- Oita Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd., 508-8 Ariakeura, Tsurumi, Saeki, Oita 876-1204, Japan
| | - Ryohei Yamashita
- Oita Marine Biological Technology Center, Nippon Suisan Kaisha, Ltd., 508-8 Ariakeura, Tsurumi, Saeki, Oita 876-1204, Japan
| | - Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Kohei Sasaki
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | - Yosuke Kuruma
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Naoki Mizuno
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Moe Suzuki
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Yoshiharu Okada
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Risa Ieda
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Tsubasa Uchino
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Satoshi Tasumi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan
| | - Jiro Koyama
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 50-20 Shimoarata 4-Chome, Kagoshima 890-0056, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Hamamatsu, Shizuoka 431-0214, Japan.
| | - Takashi Sakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|