1
|
Jony MJ, Joshi A, Dash A, Shukla S. Non-Viral Delivery Systems to Transport Nucleic Acids for Inherited Retinal Disorders. Pharmaceuticals (Basel) 2025; 18:87. [PMID: 39861150 PMCID: PMC11768406 DOI: 10.3390/ph18010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Inherited retinal disorders (IRDs) represent a group of challenging genetic conditions that often lead to severe visual impairment or blindness. The complexity of these disorders, arising from their diverse genetic causes and the unique structural and functional aspects of retinal cells, has made developing effective treatments particularly challenging. Recent advancements in gene therapy, especially non-viral nucleic acid delivery systems like liposomes, solid lipid nanoparticles, dendrimers, and polymersomes, offer promising solutions. These systems provide advantages over viral vectors, including reduced immunogenicity and enhanced targeting capabilities. This review delves into introduction of common IRDs such as Leber congenital amaurosis, retinitis pigmentosa, Usher syndrome, macular dystrophies, and choroideremia and critically assesses current treatments including neuroprotective agents, cellular therapy, and gene therapy along with their limitations. The focus is on the emerging role of non-viral delivery systems, which promise to address the current limitations of specificity, untoward effects, and immunogenicity in existing gene therapies. Additionally, this review covers recent clinical trial developments in gene therapy for retinal disorders.
Collapse
Affiliation(s)
- Md Jobair Jony
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Ameya Joshi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Alekha Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| | - Surabhi Shukla
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
2
|
Karali M, García-García G, Kaminska K, AlTalbishi A, Cancellieri F, Testa F, Barillari MR, Panagiotou ES, Psillas G, Vaclavik V, Tran VH, Janeschitz-Kriegl L, Scholl HP, Salameh M, Barberán-Martínez P, Rodríguez-Muñoz A, Armengot M, Scarpato M, Zeuli R, Quinodoz M, Simonelli F, Rivolta C, Banfi S, Millán JM. Variants in the AGBL5 gene are responsible for autosomal recessive Retinitis pigmentosa with hearing loss. Eur J Hum Genet 2024:10.1038/s41431-024-01768-8. [PMID: 39672920 DOI: 10.1038/s41431-024-01768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/29/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024] Open
Abstract
The AGBL5 gene encodes for the Cytoplasmic Carboxypeptidase 5 (CCP5), an α-tubulin deglutamylase that cleaves the γ-carboxyl-linked branching point of glutamylated tubulin. To date, pathogenic variants in AGBL5 have been associated only with isolated retinitis pigmentosa (RP). Hearing loss has not been reported in AGBL5-caused retinal disease. In this study, we performed exome sequencing in probands of eight unrelated families from Italy, Spain, Palestine, Switzerland, and Greece. All subjects had a clinical diagnosis of (suspected) Usher syndrome type II for the concurrent presence of RP and post-verbal sensorineural hearing loss (SNHL) that ranged from mild to moderate.We identified biallelic sequence variants in AGBL5 in all analysed subjects. Four of the identified variants were novel. The variants co-segregated with the retinal and auditory phenotypes in additional affected family members. We did not detect any causative variants in known deafness or Usher syndrome genes that could explain the patients' hearing loss. We therefore conclude that SNHL is a feature of a syndromic presentation of AGBL5 retinopathy. This study provides the first evidence that mutations in AGBL5 can cause syndromic RP forms associated with hearing loss, probably due to dysfunction of sensory cilia in the retina and the inner ear.
Collapse
Affiliation(s)
- Marianthi Karali
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', 80131, Naples, Italy
| | - Gema García-García
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, Valencia, Spain
- Center for Rare Diseases (CIBERER), Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular, and Genomic Biomedicine, Valencia, Spain
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
| | | | | | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', 80131, Naples, Italy
| | - Maria Rosaria Barillari
- Department of Mental and Physical Health and Preventive Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Evangelia S Panagiotou
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - George Psillas
- 1st Academic ENT Department, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece
| | - Veronika Vaclavik
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004, Lausanne, Switzerland
| | - Viet H Tran
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1004, Lausanne, Switzerland
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | | | - Hendrik Pn Scholl
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Manar Salameh
- St John of Jerusalem Eye Hospital, Jerusalem, Palestine
| | - Pilar Barberán-Martínez
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular, and Genomic Biomedicine, Valencia, Spain
| | | | - Miguel Armengot
- University and Polytechnic La Fe Hospital of Valencia, Valencia, Spain
| | - Margherita Scarpato
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Roberta Zeuli
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Francesca Simonelli
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania 'Luigi Vanvitelli', 80131, Naples, Italy
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, 4031, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Sandro Banfi
- Medical Genetics, Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', 80138, Naples, Italy.
- Telethon Institute of Genetics and Medicine, 80078, Pozzuoli, Italy.
| | - José M Millán
- Molecular, Cellular, and Genomic Biomedicine Group, IIS-La Fe, Valencia, Spain.
- Center for Rare Diseases (CIBERER), Madrid, Spain.
- Joint Unit CIPF-IIS La Fe Molecular, Cellular, and Genomic Biomedicine, Valencia, Spain.
- 1st Department of Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki, Greece.
| |
Collapse
|
3
|
García-Bohórquez B, Barberán-Martínez P, Aller E, Jaijo T, Mínguez P, Rodilla C, Fernández-Caballero L, Blanco-Kelly F, Ayuso C, Sanchis-Juan A, Broekman S, de Vrieze E, van Wijk E, García-García G, Millán JM. Exploring non-coding variants and evaluation of antisense oligonucleotides for splicing redirection in Usher syndrome. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102374. [PMID: 39629117 PMCID: PMC11612772 DOI: 10.1016/j.omtn.2024.102374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/24/2024] [Indexed: 12/06/2024]
Abstract
Exploring non-coding regions is increasingly gaining importance in the diagnosis of inherited retinal dystrophies. Deep-intronic variants causing aberrant splicing have been identified, prompting the development of antisense oligonucleotides (ASOs) to modulate splicing. We performed a screening of five previously described USH2A deep-intronic variants among USH2A monoallelic patients with Usher syndrome (USH) or isolated retinitis pigmentosa. Sequencing of entire USH2A or USH genes was then conducted in unresolved or newly monoallelic cases. The splicing impact of identified variants was assessed using minigene assays, and ASOs were designed to correct splicing. The screening allowed to diagnose 30.95% of the studied patients. The sequencing of USH genes revealed 16 new variants predicted to affect splicing, with four confirmed to affect splicing through minigene assays. Two of them were unreported deep-intronic variants and predicted to include a pseudoexon in the pre-mRNA, and the other two could alter a regulatory cis-element. ASOs designed for three USH2A deep-intronic variants successfully redirected splicing in vitro. Our study demonstrates the improvement in genetic characterization of IRDs when analyzing non-coding regions, highlighting that deep-intronic variants significantly contribute to USH2A pathogenicity. Furthermore, successful splicing modulation through ASOs highlights their therapeutic potential for patients carrying deep-intronic variants.
Collapse
Affiliation(s)
- Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Pilar Barberán-Martínez
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| | - Pablo Mínguez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
- Bioinformatics Unit, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Cristina Rodilla
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Lidia Fernández-Caballero
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Carmen Ayuso
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Alba Sanchis-Juan
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sanne Broekman
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine, Health Research Institute La Fe, 46026 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Joint Unit CIPF-IIS La Fe Molecular, Cellular and Genomic Biomedicine, 46026 Valencia, Spain
- University and Polytechnic La Fe Hospital of Valencia, 46026 Valencia, Spain
| |
Collapse
|
4
|
Faruque PR, Hou B, Oh JK, Tsang SH. A Novel CEP78 Variant Presenting as Cone Dystrophy and Hearing Loss. Ophthalmic Surg Lasers Imaging Retina 2024; 55:742-746. [PMID: 39172222 DOI: 10.3928/23258160-20240717-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Mutations in CEP78 lead to abnormal production of cilia and have previously been identified to cause cone-rod dystrophy (CRD) with progressive sensorineural hearing loss. The authors describe a case of cone dystrophy (CD) with sensorineural hearing loss in a variant that had previously been reported to be of unknown significance and associated with CRD only. This report corroborates the pathogenicity of this variant and highlights that different phenotypes may be associated with one genotype. [Ophthalmic Surg Lasers Imaging Retina 2024;55:742-746.].
Collapse
|
5
|
Courdier C, Dhaenens CM, Grunewald O, Guerrot AM, Audo I, Lecleire-Collet A, Amstutz-Montadert I, Gad S, Lapeyre G, Zanlonghi X, Bonneau D, Fradin M, Le Meur G, Marlin S, Blanc P, Roux AF, Meunier I, Michaud V. The phenotypic spectrum of CEP250 gene variants. Ophthalmic Genet 2024:1-8. [PMID: 39610034 DOI: 10.1080/13816810.2024.2434045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/10/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Classically, Usher syndrome is characterized by the association of sensorineural hearing loss (SNHL), retinitis pigmentosa (RP) and possible vestibular dysfunction. Pathogenic bi-allelic variants in CEP250 cause atypical autosomal recessive Usher syndrome, which is associated with SNHL and photoreceptors dysfunction without vestibular signs. To date, only 19 scattered descriptions have been reported. In this study, we present detailed clinical and genetic description of 7 unrelated individuals with CEP250 related disease, along with a literature review to provide new insight on the severity and course of the disease. METHODS We retrospectively recruited 7 unrelated individuals who underwent genetic testing (targeted gene panel or whole genome sequencing) and were found to carry CEP250 pathogenic variants. RESULTS Most patients (5/7) exhibit both retinal dystrophy and SNHL. Two patients appear to present either isolated hearing loss or visual impairment, but further investigations are needed to confirm a possible non-syndromic presentation. All patients harbored isolated truncating variants. DISCUSSION CEP250 pathogenic variants are associated with post-lingual SNHL, and most often progressive photoreceptor dysfunction. The disease may begin with ocular features or hearing loss. We strongly recommend genetic analysis of classical and atypical Usher related-genes, in patients with isolated retinal dystrophy or SNHL. We also recommend ophthalmological evaluation and follow-up in patients with isolated SNHL, and conversely. The coexistence of loss- and gain-of-function effects may exist, complicating the development of gene therapy.
Collapse
Affiliation(s)
- Cécile Courdier
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | | | - Olivier Grunewald
- U1172-LilNCog-Lille Neuroscience & Cognition, CHU Lille, Lille, France
| | | | - Isabelle Audo
- Centre de Référence REFERET, GHNO des Quinze-Vingt Paris, Paris, France
| | | | | | - Shai Gad
- Service ORL, Hôpital Charles Nicolle CHU de Rouen, Rouen, France
| | | | - Xavier Zanlonghi
- Centres de compétence maladies rares génétiques, Service d'Ophtalmologie CHU Rennes, Rennes, France
| | - Dominique Bonneau
- Département de Biochimie et génétique CHU Angers, Angers, France
- Mitovasc INSERM 1083 CNRS 6015, Université d'Angers, Angers, France
| | - Mélanie Fradin
- Service de Génétique Clinique, Hôpital Sud - CHU Rennes, Rennes, France
| | - Guylène Le Meur
- Service d'Ophtalmologie CHU Nantes, Inserm, TARGET, Nantes Université, Nantes, France
| | - Sandrine Marlin
- Centre de référence Surdités Génétiques, UF Développement et Morphogénèse, Service de Médecine génomique des Maladies rares, Institut Imagine, INSERM U1163, Hôpital Necker-APHP, Paris France
| | - Pierre Blanc
- Laboratoire de Biologie médicale, Laboratoire SeqOIA-PFMG2025, Paris, France
| | - Anne-Françoise Roux
- LBMR Pathologies neurosensorielles rare, CHU Montpellier, Montpellier, France
- INM Inserm U1298, Université de Montpellier, Montpellier, France
| | | | - Vincent Michaud
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
- Laboratory of Rare Diseases: Genetics and Metabolism (MRGM) INSERM U1211, University of Bordeaux, Bordeaux, France
| |
Collapse
|
6
|
Cuzzuol BR, Apolonio JS, da Silva Júnior RT, de Carvalho LS, Santos LKDS, Malheiro LH, Silva Luz M, Calmon MS, Crivellaro HDL, Lemos FFB, Freire de Melo F. Usher syndrome: Genetic diagnosis and current therapeutic approaches. World J Otorhinolaryngol 2024; 11:1-17. [DOI: 10.5319/wjo.v11.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Usher Syndrome (USH) is the most common deaf-blind syndrome, affecting approximately 1 in 6000 people in the deaf population. This genetic condition is characterized by a combination of hearing loss (HL), retinitis pigmentosa, and, in some cases, vestibular areflexia. Among the subtypes of USH, USH type 1 is considered the most severe form, presenting profound bilateral congenital deafness, vestibular areflexia, and early onset RP. USH type 2 is the most common form, exhibiting congenital moderate to severe HL for low frequencies and severe to profound HL for high frequencies. Conversely, type 3 is the rarest, initially manifesting mild symptoms during childhood that become more prominent in the first decades of life. The dual impact of USH on both visual and auditory senses significantly impairs patients’ quality of life, restricting their daily activities and interactions with society. To date, 9 genes have been confirmed so far for USH: MYO7A, USH1C, CDH23, PCDH15, USH1G, USH2A, ADGRV1, WHRN and CLRN1. These genes are inherited in an autosomal recessive manner and encode proteins expressed in the inner ear and retina, leading to functional loss. Although non-genetic methods can assist in patient triage and disease extension evaluation, genetic and molecular tests play a pivotal role in providing genetic counseling, enabling appropriate gene therapy, and facilitating timely cochlear implantation (CI). The CRISPR/Cas9 system and viral-based gene replacement therapy have recently emerged as highly promising techniques for treating USH. Regarding drug therapy, PTC-124 and Nb54 have been identified as promising drug interventions for genetic HL in USH. Simultaneously, CI has proven to be critical in the restoration of hearing. This review aims to summarize the genetic and molecular diagnosis of USH and highlight the importance of early diagnosis in guiding appropriate treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Beatriz Rocha Cuzzuol
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Jonathan Santos Apolonio
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Lorena Sousa de Carvalho
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luana Kauany de Sá Santos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Luciano Hasimoto Malheiro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Mariana Santos Calmon
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Henrique de Lima Crivellaro
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabian Fellipe Bueno Lemos
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
7
|
Borgese N, Guillén-Samander A, Colombo SF, Mancassola G, Di Berardino F, Zanetti D, Carrera P. Combined Presence in Heterozygosis of Two Variant Usher Syndrome Genes in Two Siblings Affected by Isolated Profound Age-Related Hearing Loss. Biomedicines 2023; 11:2657. [PMID: 37893031 PMCID: PMC10604119 DOI: 10.3390/biomedicines11102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Sensorineural age-related hearing loss affects a large proportion of the elderly population, and has both environmental and genetic causes. Notwithstanding increasing interest in this debilitating condition, the genetic risk factors remain largely unknown. Here, we report the case of two sisters affected by isolated profound sensorineural hearing loss after the age of seventy. Genomic DNA sequencing revealed that the siblings shared two monoallelic variants in two genes linked to Usher Syndrome (USH genes), a recessive disorder of the ear and the retina: a rare pathogenic truncating variant in USH1G and a previously unreported missense variant in ADGRV1. Structure predictions suggest a negative effect on protein stability of the latter variant, allowing its classification as likely pathogenic according to American College of Medical Genetics criteria. Thus, the presence in heterozygosis of two recessive alleles, which each cause syndromic deafness, may underlie digenic inheritance of the age-related non-syndromic hearing loss of the siblings, a hypothesis that is strengthened by the knowledge that the two genes are integrated in the same functional network, which underlies stereocilium development and organization. These results enlarge the spectrum and complexity of the phenotypic consequences of USH gene mutations beyond the simple Mendelian inheritance of classical Usher syndrome.
Collapse
Affiliation(s)
- Nica Borgese
- Consiglio Nazionale delle Ricerche Neuroscience Institute, 20854 Vedano al Lambro, Italy;
| | | | - Sara Francesca Colombo
- Consiglio Nazionale delle Ricerche Neuroscience Institute, 20854 Vedano al Lambro, Italy;
- NeuroMi Milan Center for Neuroscience, Milan, Italy
| | - Giulia Mancassola
- Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
- Laboratory of Clinical Molecular Genetics, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Federica Di Berardino
- Audiology Unit, Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.D.B.); (D.Z.)
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milan, Italy
| | - Diego Zanetti
- Audiology Unit, Department of Specialistic Surgical Sciences, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.D.B.); (D.Z.)
- Department of Clinical Sciences and Community Health, University of Milano, 20122 Milan, Italy
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
- Laboratory of Clinical Molecular Genetics, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
8
|
Kang M, Kim JA, Song MH, Joo SY, Kim SJ, Jang SH, Lee H, Seong JK, Choi JY, Gee HY, Jung J. Novel Variant in CEP250 Causes Protein Mislocalization and Leads to Nonsyndromic Autosomal Recessive Type of Progressive Hearing Loss. Cells 2023; 12:2328. [PMID: 37759551 PMCID: PMC10528078 DOI: 10.3390/cells12182328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Genetic hearing loss is the most common hereditary sensorial disorder. Though more than 120 genes associated with deafness have been identified, unveiled causative genes and variants of diverse types of hearing loss remain. Herein, we identified a novel nonsense homozygous variant in CEP250 (c.3511C>T; p.Gln1171Ter) among the family members with progressive moderate sensorineural hearing loss in nonsyndromic autosomal recessive type but without retinal degeneration. CEP250 encodes C-Nap1 protein belonging to the CEP protein family, comprising 30 proteins that play roles in centrosome aggregation and cell cycle progression. The nonsense variant in CEP250 led to the early truncating protein of C-Nap1, which hindered centrosome localization; heterologous expression of CEP250 (c.3511C>T) in NIH3T3 cells within cilia expression condition revealed that the truncating C-Nap1 (p.Gln1171Ter) was not localized at the centrosome but was dispersed in the cytosol. In the murine adult cochlea, Cep250 was expressed in the inner and outer hair cells. Knockout mice of Cep250 showed significant hair cell degeneration and progressive hearing loss in auditory brainstem response. In conclusion, a nonsense variant in CEP250 results in a deficit of centrosome localization and hair cell degeneration in the cochlea, which is associated with the progression of hearing loss in humans and mice.
Collapse
Affiliation(s)
- Minjin Kang
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.K.); (J.Y.C.)
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
| | - Jung Ah Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Mee Hyun Song
- Department of Otorhinolaryngology Head and Neck Surgery, Myongji Hospital, Hanyang University College of Medicine, Goyang 04763, Republic of Korea
| | - Sun Young Joo
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Se Jin Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Hyun Jang
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.K.); (J.Y.C.)
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si 10408, Republic of Korea;
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea;
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.K.); (J.Y.C.)
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
| | - Heon Yung Gee
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (M.K.); (J.Y.C.)
- Institute for Lee Won Sang Yonsei Ear Science, Seoul 03722, Republic of Korea (S.Y.J.)
| |
Collapse
|
9
|
Abu-Diab A, Gopalakrishnan P, Matsevich C, de Jong M, Obolensky A, Khalaileh A, Salameh M, Ejzenberg A, Gross M, Banin E, Sharon D, Khateb S. Homozygous Knockout of Cep250 Leads to a Relatively Late-Onset Retinal Degeneration and Sensorineural Hearing Loss in Mice. Transl Vis Sci Technol 2023; 12:3. [PMID: 36857066 PMCID: PMC9987170 DOI: 10.1167/tvst.12.3.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Purpose Usher syndrome (USH) is the most common syndromic inherited retinal disease, causing retinitis pigmentosa and sensorineural hearing loss. We reported previously that a nonsense mutation in the centrosome-associated protein CEP250 gene (encoding C-Nap1) causes atypical USH in patients of Iranian Jewish origin. To better characterize CEP250, we aimed to generate and study a knockout (KO) mouse model for Cep250. Methods Mice heterozygous for a "knockout-first" Cep250 construct were generated and bred with Cre recombinase mice to generate the null allele and produce homozygous Cep250 KO mice. Retinal function was evaluated by full-field electroretinography (ffERG) at variable ages, and retinal structure changes were examined using histological analysis. Hearing thresholds were detected using auditory brainstem response (ABR) at the age of 20 months. Results The Cep250 KO mouse model was generated by activating a construct harboring a deletion of exons 6 and 7. At 6 months, the ffERG was normal, but it decreased gradually with age. For both photopic and scotopic ffERG responses, very low amplitudes were evident at 20 months. Histological analysis confirmed late-onset retinal degeneration. ABR tests illustrated that hearing threshold significantly increased at the age of 20 months. Conclusions Although most USH animal models have normal retinal function and structure, the Cep250 KO mouse model shows both retinal degeneration and hearing loss with a relatively late age of onset. This model may shed more light on CEP250-associated retinal and hearing deficits and represents an efficient platform for the development of treatment modalities for USH. Translational Relevance Our study demonstrates better understanding of Cep250-associated retinal and hearing disease in a mouse model and may help in developing more efficient gene therapy modalities.
Collapse
Affiliation(s)
- Alaa Abu-Diab
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chen Matsevich
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marije de Jong
- Department of Otolaryngology, Head and Neck Surgery, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayat Khalaileh
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Manar Salameh
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ayala Ejzenberg
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Menachem Gross
- Department of Otolaryngology, Head and Neck Surgery, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samer Khateb
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Abstract
The centrosome, consisting of centrioles and the associated pericentriolar material, is the main microtubule-organizing centre (MTOC) in animal cells. During most of interphase, the two centrosomes of a cell are joined together by centrosome cohesion into one MTOC. The most dominant element of centrosome cohesion is the centrosome linker, an interdigitating, fibrous network formed by the protein C-Nap1 anchoring a number of coiled-coil proteins including rootletin to the proximal end of centrioles. Alternatively, centrosomes can be kept together by the action of the minus end directed kinesin motor protein KIFC3 that works on interdigitating microtubules organized by both centrosomes and probably by the actin network. Although cells connect the two interphase centrosomes by several mechanisms into one MTOC, the general importance of centrosome cohesion, particularly for an organism, is still largely unclear. In this article, we review the functions of the centrosome linker and discuss how centrosome cohesion defects can lead to diseases.
Collapse
Affiliation(s)
- Hairuo Dang
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and,Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg 69120, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, and
| |
Collapse
|
11
|
Colcombet-Cazenave B, Cordier F, Zhu Y, Bouvier G, Litsardaki E, Laserre L, Prevost MS, Raynal B, Caillet-Saguy C, Wolff N. Deciphering the Molecular Interaction Between the Adhesion G Protein-Coupled Receptor ADGRV1 and its PDZ-Containing Regulator PDZD7. Front Mol Biosci 2022; 9:923740. [PMID: 35836927 PMCID: PMC9274004 DOI: 10.3389/fmolb.2022.923740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hearing relies on the transduction of sound-evoked vibrations into electrical signals, occurring in the stereocilia bundle of inner ear hair cells. The G protein-coupled receptor (GPCR) ADGRV1 and the multi-PDZ protein PDZD7 play a critical role in the formation and function of stereocilia through their scaffolding and signaling properties. During hair cell development, the GPCR activity of ADGRV1 is specifically inhibited by PDZD7 through an unknown mechanism. Here, we describe the key interactions mediated by the two N-terminal PDZ domains of PDZD7 and the cytoplasmic domain of ADGRV1. Both PDZ domains can bind to the C-terminal PDZ binding motif (PBM) of ADGRV1 with the critical contribution of atypical C-terminal β extensions. The two PDZ domains form a supramodule in solution, stabilized upon PBM binding. Interestingly, we showed that the stability and binding properties of the PDZ tandem are affected by two deafness-causing mutations located in the binding grooves of PDZD7 PDZ domains.
Collapse
Affiliation(s)
- Baptiste Colcombet-Cazenave
- Channel Receptors Unit, UMR CNRS 3571, Institut Pasteur, Université de Paris, Paris, France
- Complexité du Vivant, Sorbonne Université, Paris, France
| | - Florence Cordier
- Structural Bioinformatics Unit, UMR CNRS 3528, Institut Pasteur, Université de Paris, Paris, France
- Biological NMR and HDX-MS Technological Platform, UMR CNRS 3528, Institut Pasteur, Université de Paris, Paris, France
| | - Yanlei Zhu
- Channel Receptors Unit, UMR CNRS 3571, Institut Pasteur, Université de Paris, Paris, France
| | - Guillaume Bouvier
- Structural Bioinformatics Unit, UMR CNRS 3528, Institut Pasteur, Université de Paris, Paris, France
| | - Eleni Litsardaki
- Channel Receptors Unit, UMR CNRS 3571, Institut Pasteur, Université de Paris, Paris, France
| | - Louise Laserre
- Channel Receptors Unit, UMR CNRS 3571, Institut Pasteur, Université de Paris, Paris, France
| | - Marie S. Prevost
- Channel Receptors Unit, UMR CNRS 3571, Institut Pasteur, Université de Paris, Paris, France
| | - Bertrand Raynal
- Molecular Biophysics Platform-C2RT, UMR CNRS 3528, Institut Pasteur, Université de Paris, Paris, France
| | - Célia Caillet-Saguy
- Channel Receptors Unit, UMR CNRS 3571, Institut Pasteur, Université de Paris, Paris, France
| | - Nicolas Wolff
- Channel Receptors Unit, UMR CNRS 3571, Institut Pasteur, Université de Paris, Paris, France
- *Correspondence: Nicolas Wolff,
| |
Collapse
|
12
|
Jaffal L, Akhdar H, Joumaa H, Ibrahim M, Chhouri Z, Assi A, Helou C, Lee H, Seo GH, Joumaa WH, El Shamieh S. Novel Missense and Splice Site Mutations in USH2A, CDH23, PCDH15, and ADGRV1 Are Associated With Usher Syndrome in Lebanon. Front Genet 2022; 13:864228. [PMID: 35651951 PMCID: PMC9149366 DOI: 10.3389/fgene.2022.864228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 01/02/2023] Open
Abstract
The purpose of this study was to expand the mutation spectrum by searching the causative mutations in nine Lebanese families with Usher syndrome (USH) using whole-exome sequencing. The pathogenicity of candidate mutations was first evaluated according to their frequency, conservation, and in silico prediction tools. Then, it was confirmed via Sanger sequencing, followed by segregation analysis. Finally, a meta-analysis was conducted to calculate the prevalence of USH genes in the Lebanese population. Three missense mutations, two splice site mutations, and one insertion/deletion were detected in eight of the families. Four of these variants were novel: c.5535C > A; p.(Asn1845Lys) in exon 41 of CDH23, c.7130G > A; p.(Arg2377Gln) in exon 32 of ADGRV1, c.11390-1G > A in USH2A, and c.3999–6A > G in PCDH15. All the identified mutations were shown to be likely disease-causing through our bioinformatics analysis and co-segregated with the USH phenotype. The mutations were classified according to the ACMG standards. Finally, our meta-analysis showed that the mutations in ADGRV1, USH2A, and CLRN1 are the most prevalent and responsible for approximately 75% of USH cases in Lebanon. Of note, the frequency USH type 3 showed a relatively high incidence (23%) compared to the worldwide prevalence, which is around 2–4%. In conclusion, our study has broadened the mutational spectrum of USH and showed a high heterogeneity of this disease in the Lebanese population.
Collapse
Affiliation(s)
- Lama Jaffal
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hanane Akhdar
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Beirut, Lebanon
| | - Hawraa Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Mariam Ibrahim
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Zahraa Chhouri
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Alexandre Assi
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Charles Helou
- Retinal Service, Beirut Eye & ENT Specialist Hospital, Beirut, Lebanon
| | - Hane Lee
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Go Hun Seo
- Rare Genetic Disease Research Center, 3billion Inc, Seoul, South Korea
| | - Wissam H Joumaa
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon
| | - Said El Shamieh
- Rammal Hassan Rammal Research Laboratory, PhyToxE Research Group, Faculty of Sciences, Lebanese University, Nabatieh, Lebanon.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
13
|
Abstract
Inherited retinal dystrophies (IRDs) are a heterogeneous group of diseases that affect more than 2 million people worldwide. Gene therapy (GT) has emerged as an exciting treatment modality with the potential to provide long-term benefit to patients. Today, gene addition is the most straightforward GT for autosomal recessive IRDs. However, there are three scenarios where this approach falls short. First, in autosomal dominant diseases caused by gain-of-function or dominant-negative mutations, the toxic mutated protein needs to be silenced. Second, a number of IRD genes exceed the limited carrying capacity of adeno-associated virus vectors. Third, there are still about 30% of patients with unknown mutations. In the first two contexts, precise editing tools, such as CRISPR-Cas9, base editors, or prime editors, are emerging as potential GT solutions for the treatment of IRDs. Here, we review gene editing tools based on CRISPR-Cas9 technology that have been used in vivo and the recent first-in-human application of CRISPR-Cas9 in an IRD.
Collapse
Affiliation(s)
- Juliette Pulman
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,CHNO des Quinze-Vingts, INSERM-DGOS CIC 1423, Paris, France.,Fondation Ophtalmologique Rothschild, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| |
Collapse
|
14
|
The genetic and phenotypic landscapes of Usher syndrome: from disease mechanisms to a new classification. Hum Genet 2022; 141:709-735. [PMID: 35353227 PMCID: PMC9034986 DOI: 10.1007/s00439-022-02448-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
Usher syndrome (USH) is the most common cause of deaf–blindness in humans, with a prevalence of about 1/10,000 (~ 400,000 people worldwide). Cochlear implants are currently used to reduce the burden of hearing loss in severe-to-profoundly deaf patients, but many promising treatments including gene, cell, and drug therapies to restore the native function of the inner ear and retinal sensory cells are under investigation. The traditional clinical classification of Usher syndrome defines three major subtypes—USH1, 2 and 3—according to hearing loss severity and onset, the presence or absence of vestibular dysfunction, and age at onset of retinitis pigmentosa. Pathogenic variants of nine USH genes have been initially reported: MYO7A, USH1C, PCDH15, CDH23, and USH1G for USH1, USH2A, ADGRV1, and WHRN for USH2, and CLRN1 for USH3. Based on the co-occurrence of hearing and vision deficits, the list of USH genes has been extended to few other genes, but with limited supporting information. A consensus on combined criteria for Usher syndrome is crucial for the development of accurate diagnosis and to improve patient management. In recent years, a wealth of information has been obtained concerning the properties of the Usher proteins, related molecular networks, potential genotype–phenotype correlations, and the pathogenic mechanisms underlying the impairment or loss of hearing, balance and vision. The advent of precision medicine calls for a clear and more precise diagnosis of Usher syndrome, exploiting all the existing data to develop a combined clinical/genetic/network/functional classification for Usher syndrome.
Collapse
|
15
|
Dal Cortivo G, Dell’Orco D. Calcium- and Integrin-Binding Protein 2 (CIB2) in Physiology and Disease: Bright and Dark Sides. Int J Mol Sci 2022; 23:ijms23073552. [PMID: 35408910 PMCID: PMC8999013 DOI: 10.3390/ijms23073552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 12/04/2022] Open
Abstract
Calcium- and integrin-binding protein 2 (CIB2) is a small EF-hand protein capable of binding Mg2+ and Ca2+ ions. While its biological function remains largely unclear, an increasing number of studies have shown that CIB2 is an essential component of the mechano-transduction machinery that operates in cochlear hair cells. Mutations in the gene encoding CIB2 have been associated with non-syndromic deafness. In addition to playing an important role in the physiology of hearing, CIB2 has been implicated in a multitude of very different processes, ranging from integrin signaling in platelets and skeletal muscle to autophagy, suggesting extensive functional plasticity. In this review, we summarize the current understanding of biochemical and biophysical properties of CIB2 and the biological roles that have been proposed for the protein in a variety of processes. We also highlight the many molecular aspects that remain unclarified and deserve further investigation.
Collapse
|
16
|
Floriot S, Bellutti L, Castille J, Moison P, Messiaen S, Passet B, Boulanger L, Boukadiri A, Tourpin S, Beauvallet C, Vilotte M, Riviere J, Péchoux C, Bertaud M, Vilotte JL, Livera G. CEP250 is Required for Maintaining Centrosome Cohesion in the Germline and Fertility in Male Mice. Front Cell Dev Biol 2022; 9:754054. [PMID: 35127699 PMCID: PMC8809461 DOI: 10.3389/fcell.2021.754054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/24/2021] [Indexed: 12/02/2022] Open
Abstract
Male gametogenesis involves both mitotic divisions to amplify germ cell progenitors that gradually differentiate and meiotic divisions. Centrosomal regulation is essential for both types of divisions, with centrioles remaining tightly paired during the interphase. Here, we generated and characterized the phenotype of mutant mice devoid of Cep250/C-Nap1, a gene encoding for a docking protein for fibers linking centrioles, and characterized their phenotype. The Cep250-/- mice presented with no major defects, apart from male infertility due to a reduction in the spermatogonial pool and the meiotic blockade. Spermatogonial stem cells expressing Zbtb16 were not affected, whereas the differentiating spermatogonia were vastly lost. These cells displayed abnormal γH2AX-staining, accompanied by an increase in the apoptotic rate. The few germ cells that survived at this stage, entered the meiotic prophase I and were arrested at a pachytene-like stage, likely due to synapsis defects and the unrepaired DNA double-strand breaks. In these cells, centrosomes split up precociously, with γ-tubulin foci being separated whereas these were closely associated in wild-type cells. Interestingly, this lack of cohesion was also observed in wild-type female meiocytes, likely explaining the normal fertility of Cep250-/- female mice. Taken together, this study proposes a specific requirement of centrosome cohesion in the male germline, with a crucial role of CEP250 in both differentiating spermatogonia and meiotic spermatocytes.
Collapse
Affiliation(s)
- Sandrine Floriot
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Laura Bellutti
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiations, IRCM/IBFJ CEA, Université de Paris, Université Paris-Saclay, Paris, France
- *Correspondence: Laura Bellutti, ; Gabriel Livera,
| | - Johan Castille
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Pauline Moison
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiations, IRCM/IBFJ CEA, Université de Paris, Université Paris-Saclay, Paris, France
| | - Sébastien Messiaen
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiations, IRCM/IBFJ CEA, Université de Paris, Université Paris-Saclay, Paris, France
| | - Bruno Passet
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Laurent Boulanger
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Abdelhak Boukadiri
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Sophie Tourpin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiations, IRCM/IBFJ CEA, Université de Paris, Université Paris-Saclay, Paris, France
| | | | - Marthe Vilotte
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Julie Riviere
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Christine Péchoux
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Maud Bertaud
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Jean-Luc Vilotte
- INRAe, AgroParisTech, Université Paris-Saclay, GABI, Jouy-en-Josas, France
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiations, IRCM/IBFJ CEA, Université de Paris, Université Paris-Saclay, Paris, France
- *Correspondence: Laura Bellutti, ; Gabriel Livera,
| |
Collapse
|
17
|
Abstract
Usher syndrome (USH) encompasses a group of clinically and genetically heterogenous disorders defined by the triad of sensorineural hearing loss (SNHL), vestibular dysfunction, and vision loss. USH is the most common cause of deaf blindness. USH is divided clinically into three subtypes-USH1, USH2, and USH3-based on symptom severity, progression, and age of onset. The underlying genetics of these USH forms are, however, significantly more complex, with over a dozen genes linked to the three primary clinical subtypes and other atypical USH phenotypes. Several of these genes are associated with other deaf-blindness syndromes that share significant clinical overlap with USH, pointing to the limits of a clinically based classification system. The genotype-phenotype relationships among USH forms also may vary significantly based on the location and type of mutation in the gene of interest. Understanding these genotype-phenotype relationships and associated natural disease histories is necessary for the successful development and application of gene-based therapies and precision medicine approaches to USH. Currently, the state of knowledge varies widely depending on the gene of interest. Recent studies utilizing next-generation sequencing technology have expanded the list of known pathogenic mutations in USH genes, identified new genes associated with USH-like phenotypes, and proposed algorithms to predict the phenotypic effects of specific categories of allelic variants. Further work is required to validate USH gene causality, and better define USH genotype-phenotype relationships and disease natural histories-particularly for rare mutations-to lay the groundwork for the future of USH treatment.
Collapse
|
18
|
Mansard L, Baux D, Vaché C, Blanchet C, Meunier I, Willems M, Faugère V, Baudoin C, Moclyn M, Bianchi J, Dollfus H, Gilbert-Dussardier B, Dupin-Deguine D, Bonneau D, Drumare I, Odent S, Zanlonghi X, Claustres M, Koenig M, Kalatzis V, Roux AF. The Study of a 231 French Patient Cohort Significantly Extends the Mutational Spectrum of the Two Major Usher Genes MYO7A and USH2A. Int J Mol Sci 2021; 22:ijms222413294. [PMID: 34948090 PMCID: PMC8703989 DOI: 10.3390/ijms222413294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/06/2023] Open
Abstract
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.
Collapse
Affiliation(s)
- Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - David Baux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Catherine Blanchet
- National Reference Centre for Inherited Sensory Diseases, University Montpellier, CHU Montpellier, F-34000 Montpellier, France;
- Oto Laryngology Department, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- National Reference Centre for Inherited Sensory Diseases, University Montpellier, CHU Montpellier, F-34000 Montpellier, France;
| | - Marjolaine Willems
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- Medical Genetics Department, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France
| | - Valérie Faugère
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Corinne Baudoin
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Melody Moclyn
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Julie Bianchi
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Helene Dollfus
- Reference Center for Rare Affections in Ophthalmology Genetics (CARGO), Institute of Medical Genetics of Alsace, University of Strasbourg, CHU Strasbourg, F-67000 Strasbourg, France;
| | | | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, F-31000 Toulouse, France;
| | - Dominique Bonneau
- Medical Genetics Department, University of Angers, CHU Angers, F-49000 Angers, France;
| | - Isabelle Drumare
- Vision and Neuro-Ophthalmology Department, University of Lille, CHU Lille, F-59000 Lille, France;
| | - Sylvie Odent
- Clinical Genetics Service, University Hospital, Genetics and Development Institute of Rennes IDGDR, UMR6290 University of Rennes, F-35000 Rennes, France;
| | - Xavier Zanlonghi
- Center of Competence for Rare Diseases, Jules Verne Clinic, F-44000 Nantes, France;
| | - Mireille Claustres
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Michel Koenig
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Anne-Françoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- Correspondence:
| |
Collapse
|
19
|
Miles A, Blair C, Emili A, Tropepe V. Usher syndrome type 1-associated gene, pcdh15b, is required for photoreceptor structural integrity in zebrafish. Dis Model Mech 2021; 14:272551. [PMID: 34668518 PMCID: PMC8669488 DOI: 10.1242/dmm.048965] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022] Open
Abstract
Blindness associated with Usher syndrome type 1 (USH1) is typically characterized as rod photoreceptor degeneration, followed by secondary loss of cones. The mechanisms leading to blindness are unknown because most genetic mouse models only recapitulate auditory defects. We generated zebrafish mutants for one of the USH1 genes, protocadherin-15b (pcdh15b), a putative cell adhesion molecule. Zebrafish Pcdh15 is expressed exclusively in photoreceptors within calyceal processes (CPs), at the base of the outer segment (OS) and within the synapse. In our mutants, rod and cone photoreceptor integrity is compromised, with early and progressively worsening abnormal OS disc growth and detachment, in part due to weakening CP contacts. These effects were attenuated or exacerbated by growth in dark and bright-light conditions, respectively. We also describe novel evidence for structural defects in synapses of pcdh15b mutant photoreceptors. Cell death does not accompany these defects at early stages, suggesting that photoreceptor structural defects, rather than overt cell loss, may underlie vision deficits. Thus, we present the first genetic animal model of a PCDH15-associated retinopathy that can be used to understand the aetiology of blindness in USH1. This article has an associated First Person interview with the first author of the paper. Summary: We present one of the first genetic animal mutants for PCDH15 that displays a severe, early retinopathy and suggests that zebrafish could be a useful model for PCDH15-associated retinal phenotypes.
Collapse
Affiliation(s)
- Amanda Miles
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Clarke Blair
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA 02118, USA
| | - Vincent Tropepe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
20
|
Abstract
To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| |
Collapse
|
21
|
Roman-Naranjo P, Moleon MDC, Aran I, Escalera-Balsera A, Soto-Varela A, Bächinger D, Gomez-Fiñana M, Eckhard AH, Lopez-Escamez JA. Rare coding variants involving MYO7A and other genes encoding stereocilia link proteins in familial meniere disease. Hear Res 2021; 409:108329. [PMID: 34391192 DOI: 10.1016/j.heares.2021.108329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/27/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022]
Abstract
The MYO7A gene encodes a motor protein with a key role in the organization of stereocilia in auditory and vestibular hair cells. Rare variants in the MYO7A (myosin VIIA) gene may cause autosomal dominant (AD) or autosomal recessive (AR) sensorineural hearing loss (SNHL) accompanied by vestibular dysfunction or retinitis pigmentosa (Usher syndrome type 1B). Familial Meniere's disease (MD) is a rare inner ear syndrome mainly characterized by low-frequency sensorineural hearing loss and episodic vertigo associated with tinnitus. Familial aggregation has been found in 6-8% of sporadic cases, and most of the reported genes were involved in single families. Thus, this study aimed to search for relevant genes not previously linked to familial MD. Through exome sequencing and segregation analysis in 62 MD families, we have found a total of 1 novel and 8 rare heterozygous variants in the MYO7A gene in 9 non-related families. Carriers of rare variants in MYO7A showed autosomal dominant or autosomal recessive SNHL in familial MD. Additionally, some novel and rare variants in other genes involved in the organization of the stereocilia links such as CDH23, PCDH15 or ADGRV1 co-segregated in the same patients. Our findings reveal a co-segregation of rare variants in the MYO7A gene and other structural myosin VIIA binding proteins involved in the tip and ankle links of the hair cell stereocilia. We suggest that recessive digenic inheritance involving these genes could affect the ultrastructure of the stereocilia links in familial MD.
Collapse
Affiliation(s)
- P Roman-Naranjo
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain
| | - M D C Moleon
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain; Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain
| | - I Aran
- Department of Otolaryngology, Complexo Hospitalario de Pontevedra, Pontevedra, Spain
| | - A Escalera-Balsera
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain
| | - A Soto-Varela
- Division of Otoneurology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario, Santiago de Compostela, Spain
| | - D Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - M Gomez-Fiñana
- Department of Otolaryngology, Hospital de Poniente, El Ejido, Almeria, Spain
| | - A H Eckhard
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - J A Lopez-Escamez
- Otology & Neurotology Group CTS 495, Department of Genomic Medicine, Centro Pfizer-Universidad de Granada-Junta de Andalucía de Genómica e Investigación Oncológica, GENYO, Granada, Spain; Department of Otolaryngology, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Spain; Department of Surgery, Division of Otolaryngology, Universidad de Granada, Granada, Spain.
| |
Collapse
|
22
|
Genetics, pathogenesis and therapeutic developments for Usher syndrome type 2. Hum Genet 2021; 141:737-758. [PMID: 34331125 DOI: 10.1007/s00439-021-02324-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022]
Abstract
Usher syndrome (USH) is a rare, autosomal recessively inherited disorder resulting in a combination of sensorineural hearing loss and a progressive loss of vision resulting from retinitis pigmentosa (RP), occasionally accompanied by an altered vestibular function. More and more evidence is building up indicating that also sleep deprivation, olfactory dysfunction, deficits in tactile perception and reduced sperm motility are part of the disease etiology. USH can be clinically classified into three different types, of which Usher syndrome type 2 (USH2) is the most prevalent. In this review, we, therefore, assess the genetic and clinical aspects, available models and therapeutic developments for USH2. Mutations in USH2A, ADGRV1 and WHRN have been described to be responsible for USH2, with USH2A being the most frequently mutated USH-associated gene, explaining 50% of all cases. The proteins encoded by the USH2 genes together function in a dynamic protein complex that, among others, is found at the photoreceptor periciliary membrane and at the base of the hair bundles of inner ear hair cells. To unravel the pathogenic mechanisms underlying USH2, patient-derived cellular models and animal models including mouse, zebrafish and drosophila, have been generated that all in part mimic the USH phenotype. Multiple cellular and genetic therapeutic approaches are currently under development for USH2, mainly focused on preserving or partially restoring the visual function of which one is already in the clinical phase. These developments are opening a new gate towards a possible treatment for USH2 patients.
Collapse
|
23
|
Fuster-García C, García-Bohórquez B, Rodríguez-Muñoz A, Aller E, Jaijo T, Millán JM, García-García G. Usher Syndrome: Genetics of a Human Ciliopathy. Int J Mol Sci 2021; 22:6723. [PMID: 34201633 PMCID: PMC8268283 DOI: 10.3390/ijms22136723] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome (USH) is an autosomal recessive syndromic ciliopathy characterized by sensorineural hearing loss, retinitis pigmentosa and, sometimes, vestibular dysfunction. There are three clinical types depending on the severity and age of onset of the symptoms; in addition, ten genes are reported to be causative of USH, and six more related to the disease. These genes encode proteins of a diverse nature, which interact and form a dynamic protein network called the "Usher interactome". In the organ of Corti, the USH proteins are essential for the correct development and maintenance of the structure and cohesion of the stereocilia. In the retina, the USH protein network is principally located in the periciliary region of the photoreceptors, and plays an important role in the maintenance of the periciliary structure and the trafficking of molecules between the inner and the outer segments of photoreceptors. Even though some genes are clearly involved in the syndrome, others are controversial. Moreover, expression of some USH genes has been detected in other tissues, which could explain their involvement in additional mild comorbidities. In this paper, we review the genetics of Usher syndrome and the spectrum of mutations in USH genes. The aim is to identify possible mutation associations with the disease and provide an updated genotype-phenotype correlation.
Collapse
Affiliation(s)
- Carla Fuster-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Belén García-Bohórquez
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
- Genetics Unit, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - José M. Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), 46026 Valencia, Spain; (C.F.-G.); (B.G.-B.); (A.R.-M.); (E.A.); (T.J.); (G.G.-G.)
- Unidad Mixta de Enfermedades Raras IIS La Fe-Centro de Investigación Príncipe Felipe, 46026 Valencia, Spain
- Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain
| |
Collapse
|
24
|
Fu J, Cheng J, Zhou Q, Khan MA, Duan C, Peng J, Lv H, Fu J. Novel compound heterozygous nonsense variants, p.L150* and p.Y3565*, of the USH2A gene in a Chinese pedigree are associated with Usher syndrome type IIA. Mol Med Rep 2020; 22:3464-3472. [PMID: 32945453 PMCID: PMC7453661 DOI: 10.3892/mmr.2020.11400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Usher syndrome refers to a group of genetically and clinically heterogeneous autosomal recessive diseases with retinitis pigmentosa (RP) and hearing deficiencies. The association between Usher syndrome-causative genes and resultant Usher syndrome phenotypes in patients are highly variable. In the present study, a Chinese family with Usher syndrome was recruited, and targeted next-generation sequencing, Sanger sequencing and segregation analysis were performed. The expression profiles and functional effects of the pathogenic variants of USH2A identified were analyzed. Novel nonsense compound heterozygous variants, c.T449G (p.L150*) and c.T10695A (p.Y3565*), were identified in the USH2A gene, which showed co-segregation with the disease phenotype causing Usher syndrome type IIA in the recruited Chinese pedigree. The p.L150* variant was predicted to produce a truncated protein which lacked almost all the functional domains of USH2A, whereas the p.Y3565* variant is located in one of the fibronectin type 3 domains, resulting in the loss of several fibronectin type 3 domains at the C-terminus of USH2A by producing the truncated protein. It was shown that Ush2a mRNA expression levels were higher in the retina compared with those in the eye tissues (lens, sclera and cornea), uterus, ovary, breast, testis, spleen, kidney, liver, intestine, brain, skeletal muscle and blood. Additionally, the protein structure was shown to be highly conserved by comparing Homo sapiens USH2A to eight other species. To the best of our knowledge, the present study is the first to identify two novel pathogenic variants, c.T449G (p.L150*) and c.T10695A (p.Y3565*), in the USH2A gene in a patient with Usher syndrome type IIA, thereby expanding the known spectrums of USH2A causative mutations. The present discovery may assist in understanding the molecular pathogenesis underlying the development of RP and Usher syndrome type IIA, and in the development of diagnostic, therapeutic and genetic counseling strategies in patients with Usher syndrome type IIA disease.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Qi Zhou
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Md Asaduzzaman Khan
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chengxia Duan
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiangzhou Peng
- Department of Thoracic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, P.R. China
| | - Hongbin Lv
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. ChinaDepartment of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000
| |
Collapse
|
25
|
Bolz HJ. Usher syndrome: diagnostic approach, differential diagnoses and proposal of an updated function-based genetic classification. MED GENET-BERLIN 2020. [DOI: 10.1515/medgen-2020-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Usher syndrome (USH) manifests with congenital and apparently isolated hearing loss, followed by retinal degeneration in later life. Therefore, and because of its high prevalence in the congenitally hearing-impaired population, USH is one of the most relevant deafness syndromes. Next-generation sequencing (NGS)-based testing can now provide most analyzed USH patients with a molecular diagnosis, based on mutations in 11 genes. Given the availability of several excellent articles on the clinical and biochemical basis of USH, this short review focuses on critical assessment of new genes announced as USH genes, clinical and genetic differential diagnoses and therapeutic developments. Because obsolete loci, disproved USH genes and the inclusion of genes whose mutations cause similar phenotypes have increasingly blurred genetic classification, a revision based on phenotype restricted to genes related to the Usher protein complex is proposed.
Collapse
Affiliation(s)
- Hanno J. Bolz
- Senckenberg Centre for Human Genetics , Weismüllerstr. 50 , Frankfurt am Main , Germany
| |
Collapse
|
26
|
Bondarev AD, Attwood MM, Jonsson J, Chubarev VN, Tarasov VV, Schiöth HB. Opportunities and challenges for drug discovery in modulating Adhesion G protein-coupled receptor (GPCR) functions. Expert Opin Drug Discov 2020; 15:1291-1307. [DOI: 10.1080/17460441.2020.1791075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Andrey D. Bondarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Misty M. Attwood
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Jörgen Jonsson
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - Vladimir N. Chubarev
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vadim V. Tarasov
- Department of Pharmacology, Institute of Pharmacy, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Helgi B. Schiöth
- Department Of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
- Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
27
|
Nolen RM, Hufnagel RB, Friedman TB, Turriff AE, Brewer CC, Zalewski CK, King KA, Wafa TT, Griffith AJ, Brooks BP, Zein WM. Atypical and ultra-rare Usher syndrome: a review. Ophthalmic Genet 2020; 41:401-412. [PMID: 32372680 DOI: 10.1080/13816810.2020.1747090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Usher syndrome has classically been described as a combination of hearing loss and rod-cone dystrophy; vestibular dysfunction is present in many patients. Three distinct clinical subtypes were documented in the late 1970s. Genotyping efforts have led to the identification of several genes associated with the disease. Recent literature has seen multiple publications referring to "atypical" Usher syndrome presentations. This manuscript reviews the molecular etiology of Usher syndrome, highlighting rare presentations and molecular causes. Reports of "atypical" disease are summarized noting the wide discrepancy in the spectrum of phenotypic deviations from the classical presentation. Guidelines for establishing a clear nomenclature system are suggested.
Collapse
Affiliation(s)
- Rosalie M Nolen
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Amy E Turriff
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Carmen C Brewer
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Christopher K Zalewski
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Kelly A King
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Talah T Wafa
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute of Deafness and Other Communication Disorders, National Institutes of Health , Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| | - Wadih M Zein
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
28
|
Corso-Díaz X, Gentry J, Rebernick R, Jaeger C, Brooks MJ, van Asten F, Kooragayala K, Gieser L, Nellissery J, Covian R, Cogliati T, Mondal AK, Jiang K, Swaroop A. Genome-wide Profiling Identifies DNA Methylation Signatures of Aging in Rod Photoreceptors Associated with Alterations in Energy Metabolism. Cell Rep 2020; 31:107525. [PMID: 32320661 PMCID: PMC7228806 DOI: 10.1016/j.celrep.2020.107525] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/11/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022] Open
Abstract
Aging-associated functional decline is accompanied by alterations in the epigenome. To explore DNA modifications that could influence visual function with age, we perform whole-genome bisulfite sequencing of purified mouse rod photoreceptors at four ages and identify 2,054 differentially methylated regions (DMRs). We detect many DMRs during early stages of aging and in rod regulatory regions, and some of these cluster at chromosomal hotspots, especially on chromosome 10, which includes a longevity interactome. Integration of methylome to age-related transcriptome changes, chromatin signatures, and first-order protein-protein interactions uncover an enrichment of DMRs in altered pathways that are associated with rod function, aging, and energy metabolism. In concordance, we detect reduced basal mitochondrial respiration and increased fatty acid dependency with retinal age in ex vivo assays. Our study reveals age-dependent genomic and chromatin features susceptible to DNA methylation changes in rod photoreceptors and identifies a link between DNA methylation and energy metabolism in aging.
Collapse
Affiliation(s)
- Ximena Corso-Díaz
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Gentry
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Rebernick
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Catherine Jaeger
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew J Brooks
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Freekje van Asten
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keshav Kooragayala
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Linn Gieser
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tiziana Cogliati
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anupam K Mondal
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ke Jiang
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, 6 Center Drive, MSC0610, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Hossain D, Shih SYP, Xiao X, White J, Tsang WY. Cep44 functions in centrosome cohesion by stabilizing rootletin. J Cell Sci 2020; 133:jcs239616. [PMID: 31974111 PMCID: PMC7044459 DOI: 10.1242/jcs.239616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
The centrosome linker serves to hold the duplicated centrosomes together until they separate in late G2/early mitosis. Precisely how the linker is assembled remains an open question. In this study, we identify Cep44 as a novel component of the linker in human cells. Cep44 localizes to the proximal end of centrioles, including mother and daughter centrioles, and its ablation leads to loss of centrosome cohesion. Cep44 does not impinge on the stability of C-Nap1 (also known as CEP250), LRRC45 or Cep215 (also known as CDK5RAP2), and vice versa, and these proteins are independently recruited to the centrosome. Rather, Cep44 associates with rootletin and regulates its stability and localization to the centrosome. Our findings reveal a role of the previously uncharacterized protein Cep44 for centrosome cohesion and linker assembly.
Collapse
Affiliation(s)
- Delowar Hossain
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Sunny Y-P Shih
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Xintong Xiao
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - Julia White
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
| | - William Y Tsang
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Faculté de Médecine, Département de pathologie et Biologie Cellulaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
30
|
Remo A, Li X, Schiebel E, Pancione M. The Centrosome Linker and Its Role in Cancer and Genetic Disorders. Trends Mol Med 2020; 26:380-393. [PMID: 32277932 DOI: 10.1016/j.molmed.2020.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Centrosome cohesion, the joining of the two centrosomes of a cell, is increasingly appreciated as a major regulator of cell functions such as Golgi organization and cilia positioning. One major element of centrosome cohesion is the centrosome linker that consists of a growing number of proteins. The timely disassembly of the centrosome linker enables centrosomes to separate and assemble a functional bipolar mitotic spindle that is crucial for maintaining genomic integrity. Exciting new findings link centrosome linker defects to cell transformation and genetic disorders. We review recent data on the molecular mechanisms of the assembly and disassembly of the centrosome linker, and discuss how defects in the proper execution of these processes cause DNA damage and genomic instability leading to disease.
Collapse
Affiliation(s)
- Andrea Remo
- Pathology Unit, Mater Salutis Hospital, Azienda Unità Locale Socio Sanitaria (AULSS) 9 'Scaligera', Verona, Italy
| | - Xue Li
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany; Heidelberg Biosciences International Graduate School (HBIGS), Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), Deutsches Krebsforschungszentrum (DKFZ)-ZMBH Allianz, Heidelberg, Germany.
| | - Massimo Pancione
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
| |
Collapse
|
31
|
Fuster-García C, García-García G, Jaijo T, Blanco-Kelly F, Tian L, Hakonarson H, Ayuso C, Aller E, Millán JM. Expanding the Genetic Landscape of Usher-Like Phenotypes. Invest Ophthalmol Vis Sci 2020; 60:4701-4710. [PMID: 31725169 DOI: 10.1167/iovs.19-27470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Usher syndrome (USH) is a rare disorder characterized by retinitis pigmentosa (RP) and sensorineural hearing loss. Several genes are responsible for the disease, but not all cases are explained by mutations in any of these, supporting the fact that there remain other unknown genes that have a role in the syndrome. We aimed to find the genetic cause of presumed USH patients lacking pathogenic mutations in the known USH genes. Methods Whole exome sequencing was performed on a priori USH-diagnosed subjects from nine unrelated families, which had shown negative results for an USH-targeted panel in a previous study. Results We identified possible pathogenic variants in six of the studied families. One patient harbored mutations in REEP6 and TECTA, each gene tentatively causative of one of the two main symptoms of the disease, mimicking the syndrome. In three patients, only the retinal degeneration causative mutations were detected (involving EYS, WDR19, and CNGB1 genes). Another family manifested a dementia-linked retinal dystrophy dependent on an allele dosage in the GRN gene. Last, another case presented a homozygous mutation in ASIC5, a gene not yet associated with USH. Conclusions Our findings demonstrate that pending cases should be clinically and genetically carefully assessed, since more patients than expected may be either related phenocopies or affected by a more complex disease encompassing additional symptoms rather than classical USH.
Collapse
Affiliation(s)
- Carla Fuster-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Gema García-García
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Teresa Jaijo
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Fiona Blanco-Kelly
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Servicio de Genética, Fundación Jiménez Díaz, University Hospital, Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, UAM, Madrid, Spain
| | - Lifeng Tian
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Pennsylvania, United States.,Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Carmen Ayuso
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Servicio de Genética, Fundación Jiménez Díaz, University Hospital, Instituto de Investigación Sanitaria Fundación Jiménez Díaz IIS-FJD, UAM, Madrid, Spain
| | - Elena Aller
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain.,Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - José M Millán
- Grupo de Investigación en Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
32
|
Ataluren for the Treatment of Usher Syndrome 2A Caused by Nonsense Mutations. Int J Mol Sci 2019; 20:ijms20246274. [PMID: 31842393 PMCID: PMC6940777 DOI: 10.3390/ijms20246274] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
The identification of genetic defects that underlie inherited retinal diseases (IRDs) paves the way for the development of therapeutic strategies. Nonsense mutations caused approximately 12% of all IRD cases, resulting in a premature termination codon (PTC). Therefore, an approach that targets nonsense mutations could be a promising pharmacogenetic strategy for the treatment of IRDs. Small molecules (translational read-through inducing drugs; TRIDs) have the potential to mediate the read-through of nonsense mutations by inducing expression of the full-length protein. We provide novel data on the read-through efficacy of Ataluren on a nonsense mutation in the Usher syndrome gene USH2A that causes deaf-blindness in humans. We demonstrate Ataluren´s efficacy in both transiently USH2AG3142*-transfected HEK293T cells and patient-derived fibroblasts by restoring USH2A protein expression. Furthermore, we observed enhanced ciliogenesis in patient-derived fibroblasts after treatment with TRIDs, thereby restoring a phenotype that is similar to that found in healthy donors. In light of recent findings, we validated Ataluren´s efficacy to induce read-through on a nonsense mutation in USH2A-related IRD. In line with published data, our findings support the use of patient-derived fibroblasts as a platform for the validation of preclinical therapies. The excellent biocompatibility combined with sustained read-through efficacy makes Ataluren an ideal TRID for treating nonsense mutations based IRDs.
Collapse
|
33
|
Santana EE, Fuster-García C, Aller E, Jaijo T, García-Bohórquez B, García-García G, Millán JM, Lantigua A. Genetic Screening of the Usher Syndrome in Cuba. Front Genet 2019; 10:501. [PMID: 31231422 PMCID: PMC6558366 DOI: 10.3389/fgene.2019.00501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Background Usher syndrome (USH) is a recessive inherited disease characterized by sensorineural hearing loss, retinitis pigmentosa, and sometimes, vestibular dysfunction. Although the molecular epidemiology of Usher syndrome has been well studied in Europe and United States, there is a lack of studies in other regions like Africa or Central and South America. Methods We designed a NGS panel that included the 10 USH causative genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, ADGRV1, WHRN, and CLRN1), four USH associated genes (HARS, PDZD7, CEP250, and C2orf71), and the region comprising the deep-intronic c.7595-2144A>G mutation in USH2A. Results NGS sequencing was performed in 11 USH patients from Cuba. All the cases were solved. We found the responsible mutations in the USH2A, ADGRV1, CDH23, PCDH15, and CLRN1 genes. Four mutations have not been previously reported. Two mutations are recurrent in this study: c.619C>T (p.Arg207∗) in CLRN1, previously reported in two unrelated Spanish families of Basque origin, and c.4488G>C (p.Gln1496His) in CDH23, first described in a large Cuban family. Additionally, c.4488G>C has been reported two more times in the literature in two unrelated families of Spanish origin. Conclusion Although the sample size is very small, it is tempting to speculate that the gene frequencies in Cuba are distinct from other populations mainly due to an “island effect” and genetic drift. The two recurrent mutations appear to be of Spanish origin. Further studies with a larger cohort are needed to elucidate the real genetic landscape of Usher syndrome in the Cuban population.
Collapse
Affiliation(s)
- Elayne E Santana
- Centro Provincial de Genética, Universidad de Ciencias Médicas de Holguín, Holguín, Cuba
| | - Carla Fuster-García
- Health Research Institute La Fe, University Hospital La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Elena Aller
- Health Research Institute La Fe, University Hospital La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - Teresa Jaijo
- Health Research Institute La Fe, University Hospital La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | | | - Gema García-García
- Health Research Institute La Fe, University Hospital La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | - José M Millán
- Health Research Institute La Fe, University Hospital La Fe, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain
| | | |
Collapse
|
34
|
Pater JA, Green J, O'Rielly DD, Griffin A, Squires J, Burt T, Fernandez S, Fernandez B, Houston J, Zhou J, Roslin NM, Young TL. Novel Usher syndrome pathogenic variants identified in cases with hearing and vision loss. BMC MEDICAL GENETICS 2019; 20:68. [PMID: 31046701 PMCID: PMC6498547 DOI: 10.1186/s12881-019-0777-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Background Usher syndrome, the most common form of inherited deaf-blindness, is unlike many other forms of syndromic hereditary hearing loss in that the extra aural clinical manifestations are also detrimental to communication. Usher syndrome patients with early onset deafness also experience vision loss due to progressive retinitis pigmentosa that can lead to legal blindness in their third or fourth decade. Methods Using a multi-omic approach, we identified three novel pathogenic variants in two Usher syndrome genes (USH2A and ADGRV1) in cases initially referred for isolated vision or hearing loss. Results In a multiplex hearing loss family, two affected sisters, the product of a second cousin union, are homozygous for a novel nonsense pathogenic variant in ADGRV1 (c.17062C > T, p.Arg5688*), predicted to create a premature stop codon near the N-terminus of ADGRV1. Ophthalmological examination of the sisters confirmed typical retinitis pigmentosa and prompted a corrected Usher syndrome diagnosis. In an unrelated clinical case, a child with hearing loss tested positive for two novel USH2A splicing variants (c.5777-1G > A, p. Glu1926_Ala1952del and c.10388-2A > G, p.Asp3463Alafs*6) and RNA studies confirmed that both pathogenic variants cause splicing errors. Interestingly, these same USH2A variants are also identified in another family with vision loss where subsequent clinical follow-up confirmed pre-existing hearing loss since early childhood, eventually resulting in a reassigned diagnosis of Usher syndrome. Conclusion These findings provide empirical evidence to increase Usher syndrome surveillance of at-risk children. Given that novel antisense oligonucleotide therapies have been shown to rescue retinal degeneration caused by USH2A splicing pathogenic variants, these solved USH2A patients may now be eligible to be enrolled in therapeutic trials.
Collapse
Affiliation(s)
- Justin A Pater
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada
| | - Jane Green
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada
| | - Darren D O'Rielly
- Molecular Diagnostic Laboratory, Eastern Health, Craig L. Dobbin Genetics Research Centre, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
| | - Anne Griffin
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada
| | - Jessica Squires
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada
| | - Taylor Burt
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada
| | - Sara Fernandez
- Provincial Medical Genetics, Craig L. Dobbin Research Centre, Eastern Health, 300 Prince Phillip Drive, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
| | - Bridget Fernandez
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada.,Provincial Medical Genetics, Craig L. Dobbin Research Centre, Eastern Health, 300 Prince Phillip Drive, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
| | - Jim Houston
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada
| | - Jiayi Zhou
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, 686 Bay Street, Toronto, Ontario, M5G 0A4, Canada
| | - Terry-Lynn Young
- Craig L. Dobbin Research Centre, Discipline of Genetics, Faculty of Medicine, Memorial University, St. John's, Newfoundland & Labrador, AIB 3V6, Canada. .,Molecular Diagnostic Laboratory, Eastern Health, Craig L. Dobbin Genetics Research Centre, Faculty of Medicine, Memorial University, 300 Prince Phillip Drive, St. John's, Newfoundland and Labrador, A1B 3V6, Canada.
| |
Collapse
|