1
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
2
|
David A, Tahrioui A, Duchesne R, Tareau AS, Maillot O, Barreau M, Feuilloley MGJ, Lesouhaitier O, Cornelis P, Bouffartigues E, Chevalier S. Membrane fluidity homeostasis is required for tobramycin-enhanced biofilm in Pseudomonas aeruginosa. Microbiol Spectr 2024; 12:e0230323. [PMID: 38411953 PMCID: PMC10986583 DOI: 10.1128/spectrum.02303-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 02/04/2024] [Indexed: 02/28/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, which causes chronic infections, especially in cystic fibrosis (CF) patients where it colonizes the lungs via the build-up of biofilms. Tobramycin, an aminoglycoside, is often used to treat P. aeruginosa infections in CF patients. Tobramycin at sub-minimal inhibitory concentrations enhances both biofilm biomass and thickness in vitro; however, the mechanism(s) involved are still unknown. Herein, we show that tobramycin increases the expression and activity of SigX, an extracytoplasmic sigma factor known to be involved in the biosynthesis of membrane lipids and membrane fluidity homeostasis. The biofilm enhancement by tobramycin is not observed in a sigX mutant, and the sigX mutant displays increased membrane stiffness. Remarkably, the addition of polysorbate 80 increases membrane fluidity of sigX-mutant cells in biofilm, restoring the tobramycin-enhanced biofilm formation. Our results suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.IMPORTANCEPrevious studies have shown that sub-lethal concentrations of tobramycin led to an increase biofilm formation in the case of infections with the opportunistic pathogen Pseudomonas aeruginosa. We show that the mechanism involved in this phenotype relies on the cell envelope stress response, triggered by the extracytoplasmic sigma factor SigX. This phenotype was abolished in a sigX-mutant strain. Remarkably, we show that increasing the membrane fluidity of the mutant strain is sufficient to restore the effect of tobramycin. Altogether, our data suggest the involvement of membrane fluidity homeostasis in biofilm development upon tobramycin exposure.
Collapse
Affiliation(s)
- Audrey David
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Ali Tahrioui
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Rachel Duchesne
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Anne-Sophie Tareau
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Olivier Maillot
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Magalie Barreau
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Marc G. J. Feuilloley
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Olivier Lesouhaitier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Pierre Cornelis
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Emeline Bouffartigues
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| | - Sylvie Chevalier
- Unité de recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, Université de Rouen Normandie, Normandie Université, Evreux, France
- Fédération de Recherche Normande Sécurité Sanitaire, bien être, Aliment Durable (SéSAD), Evreux, France
| |
Collapse
|
3
|
Yaeger LN, Ranieri MRM, Chee J, Karabelas-Pittman S, Rudolph M, Giovannoni AM, Harvey H, Burrows LL. A genetic screen identifies a role for oprF in Pseudomonas aeruginosa biofilm stimulation by subinhibitory antibiotics. NPJ Biofilms Microbiomes 2024; 10:30. [PMID: 38521769 PMCID: PMC10960818 DOI: 10.1038/s41522-024-00496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/05/2024] [Indexed: 03/25/2024] Open
Abstract
Biofilms are surface-associated communities of bacteria that grow in a self-produced matrix of polysaccharides, proteins, and extracellular DNA (eDNA). Sub-minimal inhibitory concentrations (sub-MIC) of antibiotics induce biofilm formation, potentially as a defensive response to antibiotic stress. However, the mechanisms behind sub-MIC antibiotic-induced biofilm formation are unclear. We show that treatment of Pseudomonas aeruginosa with multiple classes of sub-MIC antibiotics with distinct targets induces biofilm formation. Further, addition of exogenous eDNA or cell lysate failed to increase biofilm formation to the same extent as antibiotics, suggesting that the release of cellular contents by antibiotic-driven bacteriolysis is insufficient. Using a genetic screen for stimulation-deficient mutants, we identified the outer membrane porin OprF and the ECF sigma factor SigX as important. Similarly, loss of OmpA - the Escherichia coli OprF homolog - prevented sub-MIC antibiotic stimulation of E. coli biofilms. Our screen also identified the periplasmic disulfide bond-forming enzyme DsbA and a predicted cyclic-di-GMP phosphodiesterase encoded by PA2200 as essential for biofilm stimulation. The phosphodiesterase activity of PA2200 is likely controlled by a disulfide bond in its regulatory domain, and folding of OprF is influenced by disulfide bond formation, connecting the mutant phenotypes. Addition of reducing agent dithiothreitol prevented sub-MIC antibiotic biofilm stimulation. Finally, activation of a c-di-GMP-responsive promoter follows treatment with sub-MIC antibiotics in the wild-type but not an oprF mutant. Together, these results show that antibiotic-induced biofilm formation is likely driven by a signaling pathway that translates changes in periplasmic redox state into elevated biofilm formation through increases in c-di-GMP.
Collapse
Affiliation(s)
- Luke N Yaeger
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Michael R M Ranieri
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jessica Chee
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Sawyer Karabelas-Pittman
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Madeleine Rudolph
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Alessio M Giovannoni
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Hanjeong Harvey
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Biochemistry and Biomedical Sciences and the Michael G. DeGroote Centre for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Vergoz D, Le H, Bernay B, Schaumann A, Barreau M, Nilly F, Desriac F, Tahrioui A, Giard JC, Lesouhaitier O, Chevalier S, Brunel JM, Muller C, Dé E. Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2023; 13:8. [PMID: 38275318 PMCID: PMC10812528 DOI: 10.3390/antibiotics13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The emergence of multi-drug resistant pathogens is a major public health problem, leading us to rethink and innovate our bacterial control strategies. Here, we explore the antibiofilm and antivirulence activities of nineteen 6-polyaminosterol derivatives (squalamine-based), presenting a modulation of their polyamine side chain on four major pathogens, i.e., carbapenem-resistant A. baumannii (CRAB) and P. aeruginosa (CRPA), methicillin-resistant S. aureus (MRSA), and vancomycin-resistant E. faecium (VRE) strains. We screened the effect of these derivatives on biofilm formation and eradication. Derivatives 4e (for CRAB, VRE, and MRSA) and 4f (for all the strains) were the most potent ones and displayed activities as good as those of conventional antibiotics. We also identified 11 compounds able to decrease by more than 40% the production of pyocyanin, a major virulence factor of P. aeruginosa. We demonstrated that 4f treatment acts against bacterial infections in Galleria mellonella and significantly prolonged larvae survival (from 50% to 80%) after 24 h of CRAB, VRE, and MRSA infections. As shown by proteomic studies, 4f triggered distinct cellular responses depending on the bacterial species but essentially linked to cell envelope. Its interesting antibiofilm and antivirulence properties make it a promising a candidate for use in therapeutics.
Collapse
Affiliation(s)
- Delphine Vergoz
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Hung Le
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Benoit Bernay
- Univ Caen Normandie, Proteogen Platform, US EMERODE, F-14000 Caen, France;
| | - Annick Schaumann
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| | - Magalie Barreau
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Flore Nilly
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Florie Desriac
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Ali Tahrioui
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Olivier Lesouhaitier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | | | - Cécile Muller
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, F-76000 Rouen, France; (M.B.); (F.N.); (F.D.); (A.T.); (O.L.); (S.C.)
| | - Emmanuelle Dé
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, F-76000 Rouen, France; (D.V.); (H.L.); (A.S.)
| |
Collapse
|
5
|
Thiroux A, Labanowski J, Venisse N, Crapart S, Boisgrollier C, Linares C, Berjeaud J, Villéger R, Crépin A. Exposure to endocrine disruptors promotes biofilm formation and contributes to increased virulence of Pseudomonas aeruginosa. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:740-756. [PMID: 37586891 PMCID: PMC10667657 DOI: 10.1111/1758-2229.13190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023]
Abstract
Anthropogenic activities contribute to the spread of chemicals considered as endocrine disruptors (ED) in freshwater ecosystems. While several studies have reported interactions of EDs with organisms in those ecosystems, very few have assessed the effect of these compounds on pathogenic bacteria. Here we have evaluated the impact of five EDs found in aquatic resources on the virulence of human pathogen P. aeruginosa. ED concentrations in French aquatic resources of bisphenol A (BPA), dibutyl phthalate (DBP), ethylparaben (EP), methylparaben (MP) and triclosan (TCS) at mean molar concentration were 1.13, 3.58, 0.53, 0.69, and 0.81 nM respectively. No impact on bacterial growth was observed at EDs highest tested concentration. Swimming motility of P. aeruginosa decreased to 28.4% when exposed to EP at 100 μM. Swarming motility increased, with MP at 1 nM, 10 and 100 μM (1.5-fold); conversely, a decrease of 78.5%, with DBP at 100 μM was observed. Furthermore, exposure to 1 nM BPA, DBP and EP increased biofilm formation. P. aeruginosa adhesion to lung cells was two-fold higher upon exposure to 1 nM EP. We demonstrate that ED exposure may simultaneously decrease mobility and increase cell adhesion and biofilm formation, which may promote colonisation and establishment of the pathogen.
Collapse
Affiliation(s)
- Audrey Thiroux
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jérôme Labanowski
- Université de PoitiersUMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP)PoitiersFrance
| | - Nicolas Venisse
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
- Université de Poitiers, CHU de Poitiers, INSERMCentre d'investigation clinique CIC1402PoitiersFrance
| | - Stéphanie Crapart
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Chloé Boisgrollier
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Carlos Linares
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Jean‐Marc Berjeaud
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Romain Villéger
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| | - Alexandre Crépin
- Université de Poitiers, UMR CNRS 7267Ecologie et Biologie des InteractionsPoitiersFrance
| |
Collapse
|
6
|
Cornelis P, Tahrioui A, Lesouhaitier O, Bouffartigues E, Feuilloley M, Baysse C, Chevalier S. High affinity iron uptake by pyoverdine in Pseudomonas aeruginosa involves multiple regulators besides Fur, PvdS, and FpvI. Biometals 2023; 36:255-261. [PMID: 35171432 DOI: 10.1007/s10534-022-00369-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium which can cause serious infections among immune-depressed people including cystic fibrosis patients where it can colonize the lungs causing chronic infections. Iron is essential for P. aeruginosa and can be provided via three sources under aerobic conditions: its own siderophores pyochelin (PCH) and pyoverdine (PVD), xenosiderophores, or heme, respectively. Pyoverdine is the high affinity siderophore and its synthesis and uptake involve more than 30 genes organized in different operons. Its synthesis and uptake are triggered by iron scarcity via the Fur regulator and involves two extra cytoplasmic sigma factors (ECF), PvdS for the biosynthesis of PVD and FpvI for the uptake via the TonB-dependent FpvA outer membrane transporter and other periplasmic and inner membrane proteins. It appeared recently that the regulation of PVD biosynthesis and uptake involves other regulators, including other ECF factors, and LysR regulators. This is the case especially for the genes coding for periplasmic and inner membrane proteins involved in the reduction of Fe3+ to Fe2+ and the transport of ferrous iron to the cytoplasm that appears to represent a crucial step in the uptake process.
Collapse
Affiliation(s)
- Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France.
- Laboratorium Microbiologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Marc Feuilloley
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Christine Baysse
- CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Université de Rennes, Rennes, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| |
Collapse
|
7
|
Abstract
Pf4 is a filamentous bacteriophage integrated as a prophage into the genome of Pseudomonas aeruginosa PAO1. Pf4 virions can be produced without killing P. aeruginosa. However, cell lysis can occur during superinfection when Pf virions successfully infect a host lysogenized by a Pf superinfective variant. We have previously shown that infection of P. aeruginosa PAO1 with a superinfective Pf4 variant abolished twitching motility and altered biofilm architecture. More precisely, most of the cells embedded into the biofilm were showing a filamentous morphology, suggesting the activation of the cell envelope stress response involving both AlgU and SigX extracytoplasmic function sigma factors. Here, we show that Pf4 variant infection results in a drastic dysregulation of 3,360 genes representing about 58% of P. aeruginosa genome; of these, 70% of the virulence factors encoding genes show a dysregulation. Accordingly, Pf4 variant infection (termed Pf4*) causes in vivo reduction of P. aeruginosa virulence and decreased production of N-acyl-homoserine lactones and 2-alkyl-4-quinolones quorum-sensing molecules and related virulence factors, such as pyocyanin, elastase, and pyoverdine. In addition, the expression of genes involved in metabolism, including energy generation and iron homeostasis, was affected, suggesting further relationships between virulence and central metabolism. Altogether, these data show that Pf4 phage variant infection results in complex network dysregulation, leading to reducing acute virulence in P. aeruginosa. This study contributes to the comprehension of the bacterial response to filamentous phage infection. IMPORTANCE Filamentous bacteriophages can become superinfective and infect P. aeruginosa, even though they are inserted in the genome as lysogens. Despite this productive infection, growth of the host is only mildly affected, allowing the study of the interaction between the phage and the host, which is not possible in the case of lytic phages killing rapidly their host. Here, we demonstrate by transcriptome and phenotypic analysis that the infection by a superinfective filamentous phage variant causes a massive disruption in gene expression, including those coding for virulence factors and metabolic pathways.
Collapse
|
8
|
Louis M, Tahrioui A, Verdon J, David A, Rodrigues S, Barreau M, Manac’h M, Thiroux A, Luton B, Dupont C, Calvé ML, Bazire A, Crépin A, Clabaut M, Portier E, Taupin L, Defontaine F, Clamens T, Bouffartigues E, Cornelis P, Feuilloley M, Caillon J, Dufour A, Berjeaud JM, Lesouhaitier O, Chevalier S. Effect of Phthalates and Their Substitutes on the Physiology of Pseudomonas aeruginosa. Microorganisms 2022; 10:microorganisms10091788. [PMID: 36144390 PMCID: PMC9502294 DOI: 10.3390/microorganisms10091788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Phthalates are used in a variety of applications—for example, as plasticizers in polyvinylchloride products to improve their flexibility—and can be easily released into the environment. In addition to being major persistent organic environmental pollutants, some phthalates are responsible for the carcinogenicity, teratogenicity, and endocrine disruption that are notably affecting steroidogenesis in mammals. Numerous studies have thus focused on deciphering their effects on mammals and eukaryotic cells. While multicellular organisms such as humans are known to display various microbiota, including all of the microorganisms that may be commensal, symbiotic, or pathogenic, few studies have aimed at investigating the relationships between phthalates and bacteria, notably regarding their effects on opportunistic pathogens and the severity of the associated pathologies. Herein, the effects of phthalates and their substitutes were investigated on the human pathogen, Pseudomonas aeruginosa, in terms of physiology, virulence, susceptibility to antibiotics, and ability to form biofilms. We show in particular that most of these compounds increased biofilm formation, while some of them enhanced the bacterial membrane fluidity and altered the bacterial morphology.
Collapse
Affiliation(s)
- Mélissande Louis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Ali Tahrioui
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Julien Verdon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Audrey David
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sophie Rodrigues
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Magalie Barreau
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Maëliss Manac’h
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Audrey Thiroux
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Baptiste Luton
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Charly Dupont
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marie Le Calvé
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexis Bazire
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Alexandre Crépin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Maximilien Clabaut
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Emilie Portier
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Laure Taupin
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Florian Defontaine
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Thomas Clamens
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Emeline Bouffartigues
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Pierre Cornelis
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Marc Feuilloley
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Jocelyne Caillon
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- EA3826 Thérapeutiques Cliniques et Expérimentales des Infections, Faculté de Médecine, Université de Nantes, F-44000 Nantes, France
| | - Alain Dufour
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Université de Bretagne-Sud, EA 3884, LBCM, IUEM, F-56100 Lorient, France
| | - Jean-Marc Berjeaud
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- CNRS UMR7267 Ecologie et Biologie des Interactions (EBI), Université de Poitiers, F-86000 Poitiers, France
| | - Olivier Lesouhaitier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
| | - Sylvie Chevalier
- Unité de Recherche Communication Bactérienne et Stratégies Anti-Infectieuses, CBSA UR4312, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- SéSAD, Fédération de Recherche “Sécurité Sanitaire, Bien Être, Aliment Durable”, Université de Rouen-Normandie, Normandie Université, F-27000 Évreux, France
- IMPERIAL Project Consortium, ANSES, F-94706 Maisons-Alfort, France
- Correspondence: ; Tel.: +33-2-32-29-15-60
| |
Collapse
|
9
|
Sauvage S, Gaviard C, Tahrioui A, Coquet L, Le H, Alexandre S, Ben Abdelkrim A, Bouffartigues E, Lesouhaitier O, Chevalier S, Jouenne T, Hardouin J. Impact of Carbon Source Supplementations on Pseudomonas aeruginosa Physiology. J Proteome Res 2022; 21:1392-1407. [PMID: 35482949 DOI: 10.1021/acs.jproteome.1c00936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen highly resistant to a wide range of antimicrobial agents, making its infections very difficult to treat. Since microorganisms need to perpetually adapt to their surrounding environment, understanding the effect of carbon sources on P. aeruginosa physiology is therefore essential to avoid increasing drug-resistance and better fight this pathogen. By a global proteomic approach and phenotypic assays, we investigated the impact of various carbon source supplementations (glucose, glutamate, succinate, and citrate) on the physiology of the P. aeruginosa PA14 strain. A total of 581 proteins were identified as differentially expressed in the 4 conditions. Most of them were more abundant in citrate supplementation and were involved in virulence, motility, biofilm development, and antibiotic resistance. Phenotypic assays were performed to check these hypotheses. By coupling all this data, we highlight the importance of the environment in which the bacterium evolves on its metabolism, and thus the necessity to better understand the metabolic pathways implied in its adaptative response according to the nutrient availability.
Collapse
Affiliation(s)
- Salomé Sauvage
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Charlotte Gaviard
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Ali Tahrioui
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Laurent Coquet
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Hung Le
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France
| | - Stéphane Alexandre
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France
| | - Ahmed Ben Abdelkrim
- Lactanet, Valacta, 555 Boul des Anciens-Combattants, Sainte-Anne-de-Bellevue, Québec H9X 3R4, Canada
| | - Emeline Bouffartigues
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Sylvie Chevalier
- Laboratoire de microbiologie signaux et microenvironnement, LMSM EA4312, 55 rue Saint-Germain, 27000 Evreux, France
| | - Thierry Jouenne
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Normandie Université, UNIROUEN, INSA, CNRS Polymers, Biopolymers, Surface Laboratory, 76821 Mont-Saint-Aignan cedex, France.,PISSARO Proteomic Facility, IRIB, 76820 Mont-Saint-Aignan, France
| |
Collapse
|
10
|
Monteagudo-Cascales E, Santero E, Canosa I. The Regulatory Hierarchy Following Signal Integration by the CbrAB Two-Component System: Diversity of Responses and Functions. Genes (Basel) 2022; 13:genes13020375. [PMID: 35205417 PMCID: PMC8871633 DOI: 10.3390/genes13020375] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
CbrAB is a two-component system, unique to bacteria of the family Pseudomonaceae, capable of integrating signals and involved in a multitude of physiological processes that allow bacterial adaptation to a wide variety of varying environmental conditions. This regulatory system provides a great metabolic versatility that results in excellent adaptability and metabolic optimization. The two-component system (TCS) CbrA-CbrB is on top of a hierarchical regulatory cascade and interacts with other regulatory systems at different levels, resulting in a robust output. Among the regulatory systems found at the same or lower levels of CbrAB are the NtrBC nitrogen availability adaptation system, the Crc/Hfq carbon catabolite repression cascade in Pseudomonas, or interactions with the GacSA TCS or alternative sigma ECF factor, such as SigX. The interplay between regulatory mechanisms controls a number of physiological processes that intervene in important aspects of bacterial adaptation and survival. These include the hierarchy in the use of carbon sources, virulence or resistance to antibiotics, stress response or definition of the bacterial lifestyle. The multiple actions of the CbrAB TCS result in an important competitive advantage.
Collapse
Affiliation(s)
| | - Eduardo Santero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
| | - Inés Canosa
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo, CSIC, Junta de Andalucía, 41013 Seville, Spain;
- Correspondence: ; Tel.: +34-954349052
| |
Collapse
|
11
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Ramsay KA, McTavish SM, Wardell SJT, Lamont IL. The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Front Microbiol 2021; 12:789550. [PMID: 34987489 PMCID: PMC8721600 DOI: 10.3389/fmicb.2021.789550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant.
Collapse
Affiliation(s)
| | | | | | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Clabaut M, Boukerb AM, Mlouka AB, Suet A, Tahrioui A, Verdon J, Barreau M, Maillot O, Le Tirant A, Karsybayeva M, Kremser C, Redziniak G, Duclairoir-Poc C, Pichon C, Hardouin J, Cosette P, Chevalier S, Feuilloley MGJ. Variability of the response of human vaginal Lactobacillus crispatus to 17β-estradiol. Sci Rep 2021; 11:11533. [PMID: 34075148 PMCID: PMC8169910 DOI: 10.1038/s41598-021-91017-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
We previously showed that the physiological concentration of 17β-estradiol in the vaginal environment is sufficient to affect the membrane dynamics and adhesion phenotype of the Lactobacillus crispatus strain CIP104459. However, L. crispatus is a heterogeneous species. Here, we investigated the effect of 17β-estradiol on the recently isolated L. crispatus vaginal strain V4, related to a cluster distant from CIP104459 and at the limit of being a different subspecies. Grown in the same medium, the two strains expressed a highly similar pool of proteins. However, in contrast to CIP104459, L. crispatus V4 showed high aggregation potential and 17β-estradiol promoted this phenotype. This effect was associated with large changes in cell-surface polarity and Lewis acid/base properties. In addition, we observed no effect on the membrane dynamics, contrary to CIP104459. These results can be explained by differences in the properties and organization of the S layer between the two strains. However, as for CIP104459, 17β-estradiol increased biosurfactant production of L. crispatus V4 and their adhesion to vaginal cells. This suggests that 17β-estradiol agonists would be valuable tools to favor a stable re-implantation of L. crispatus in the vaginal mucosa.
Collapse
Affiliation(s)
- Maximilien Clabaut
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Amine M Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Amine Ben Mlouka
- Laboratory «Polymères, Biopolymères, Surfaces» (UMR 6270 CNRS), Proteomic Platform PISSARO University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Amandine Suet
- Centre de Biophysique Moléculaire, UPR4301 French National Centre for Scientific Research, Orléans, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Julien Verdon
- Laboratoire EBI, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Magalie Barreau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | | | | | | | | | - Cécile Duclairoir-Poc
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Chantal Pichon
- Centre de Biophysique Moléculaire, UPR4301 French National Centre for Scientific Research, Orléans, France
| | - Julie Hardouin
- Laboratory «Polymères, Biopolymères, Surfaces» (UMR 6270 CNRS), Proteomic Platform PISSARO University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Pascal Cosette
- Laboratory «Polymères, Biopolymères, Surfaces» (UMR 6270 CNRS), Proteomic Platform PISSARO University of Rouen Normandy, Mont-Saint-Aignan, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), Rouen Normandie Université, 55 rue Saint-Germain, 27000, Evreux, France.
| |
Collapse
|
14
|
Effect of 17β-estradiol on a human vaginal Lactobacillus crispatus strain. Sci Rep 2021; 11:7133. [PMID: 33785829 PMCID: PMC8010061 DOI: 10.1038/s41598-021-86628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Lactobacilli and estrogens play essential roles in vaginal homeostasis. We investigated the potential direct effect of 17β-estradiol on a vaginal strain of Lactobacillus crispatus, the major bacterial species of the vaginal microbiota. 17β-estradiol (10-6 to 10-10 M) had no effect on L. crispatus growth, but markedly affected the membrane dynamics of this bacterium. This effect appeared consistent with a signal transduction process. The surface polarity and aggregation potential of the bacterium were unaffected by exposure to 17β-estradiol, but its mean size was significantly reduced. 17β-estradiol also promoted biosurfactant production by L. crispatus and adhesion to vaginal VK2/E6E7 cells, but had little effect on bacterial biofilm formation activity. Bioinformatic analysis of L. crispatus identified a membrane lipid raft-associated stomatin/prohibitin/flotillin/HflK domain containing protein as a potential 17β-estradiol binding site. Overall, our results reveal direct effects of 17β-estradiol on L. crispatus. These effects are of potential importance in the physiology of the vaginal environment, through the promotion of lactobacillus adhesion to the mucosa and protection against pathogens.
Collapse
|
15
|
Azuama OC, Ortiz S, Quirós-Guerrero L, Bouffartigues E, Tortuel D, Maillot O, Feuilloley M, Cornelis P, Lesouhaitier O, Grougnet R, Boutefnouchet S, Wolfender JL, Chevalier S, Tahrioui A. Tackling Pseudomonas aeruginosa Virulence by Mulinane-Like Diterpenoids from Azorella atacamensis. Biomolecules 2020; 10:E1626. [PMID: 33276611 PMCID: PMC7761567 DOI: 10.3390/biom10121626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is an important multidrug-resistant human pathogen by dint of its high intrinsic, acquired, and adaptive resistance mechanisms, causing great concern for immune-compromised individuals and public health. Additionally, P. aeruginosa resilience lies in the production of a myriad of virulence factors, which are known to be tightly regulated by the quorum sensing (QS) system. Anti-virulence therapy has been adopted as an innovative alternative approach to circumvent bacterial antibiotic resistance. Since plants are known repositories of natural phytochemicals, herein, we explored the anti-virulence potential of Azorella atacamensis, a medicinal plant from the Taira Atacama community (Calama, Chile), against P. aeruginosa. Interestingly, A. atacamensis extract (AaE) conferred a significant protection for human lung cells and Caenorhabditis elegans nematodes towards P. aeruginosa pathogenicity. The production of key virulence factors was decreased upon AaE exposure without affecting P. aeruginosa growth. In addition, AaE was able to decrease QS-molecules production. Furthermore, metabolite profiling of AaE and its derived fractions achieved by combination of a molecular network and in silico annotation allowed the putative identification of fourteen diterpenoids bearing a mulinane-like skeleton. Remarkably, this unique interesting group of diterpenoids seems to be responsible for the interference with virulence factors as well as on the perturbation of membrane homeostasis of P. aeruginosa. Hence, there was a significant increase in membrane stiffness, which appears to be modulated by the cell wall stress response ECFσ SigX, an extracytoplasmic function sigma factor involved in membrane homeostasis as well as P. aeruginosa virulence.
Collapse
Affiliation(s)
- Onyedikachi Cecil Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
- Department of Biological Sciences, Alex-Ekwueme Federal University, Ndufu Alike Ikwo PMB1010, Nigeria
| | - Sergio Ortiz
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Luis Quirós-Guerrero
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Raphaël Grougnet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Sabrina Boutefnouchet
- Équipe Produits Naturels, Analyses et Synthèses (PNAS), CiTCoM UMR 8038 CNRS, Faculté de Pharmacie, Université de Paris, 75006 Paris, France; (S.O.); (R.G.); (S.B.)
| | - Jean-Luc Wolfender
- Phytochemistry and Bioactive Natural Products, School of Pharmaceutical Science, University of Geneva, 1211 Geneva, Switzerland; (L.Q.-G.); (J.-L.W.)
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSW), University of Geneva, CMU, 1211 Geneva, Switzerland
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement, Normandie Université, Université de Rouen Normandie, LMSM EA4312, 27000 Évreux, France; (O.C.A.); (E.B.); (D.T.); (O.M.); (M.F.); (P.C.); (O.L.); (S.C.)
- Fédération de Recherche Sécurité Sanitaire, Bien-Être, Aliments Durables (SéSAD), Normandie Université, Université de Rouen Normandie, 27000 Évreux, France
| |
Collapse
|
16
|
Activation of the Cell Wall Stress Response in Pseudomonas aeruginosa Infected by a Pf4 Phage Variant. Microorganisms 2020; 8:microorganisms8111700. [PMID: 33143386 PMCID: PMC7693463 DOI: 10.3390/microorganisms8111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa PAO1 has an integrated Pf4 prophage in its genome, encoding a relatively well-characterized filamentous phage, which contributes to the bacterial biofilm organization and maturation. Pf4 variants are considered as superinfectives when they can re-infect and kill the prophage-carrying host. Herein, the response of P. aeruginosa H103 to Pf4 variant infection was investigated. This phage variant caused partial lysis of the bacterial population and modulated H103 physiology. We show by confocal laser scanning microscopy that a Pf4 variant-infection altered P. aeruginosa H103 biofilm architecture either in static or dynamic conditions. Interestingly, in the latter condition, numerous cells displayed a filamentous morphology, suggesting a link between this phenotype and flow-related forces. In addition, Pf4 variant-infection resulted in cell envelope stress response, mostly mediated by the AlgU and SigX extracytoplasmic function sigma factors (ECFσ). AlgU and SigX involvement may account, at least partly, for the enhanced expression level of genes involved in the biosynthesis pathways of two matrix exopolysaccharides (Pel and alginates) and bis-(3′-5′)-cyclic dimeric guanosine monophosphate (c-di-GMP) metabolism.
Collapse
|
17
|
Bouffartigues E, Si Hadj Mohand I, Maillot O, Tortuel D, Omnes J, David A, Tahrioui A, Duchesne R, Azuama CO, Nusser M, Brenner-Weiss G, Bazire A, Connil N, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P, Chevalier S. The Temperature-Regulation of Pseudomonas aeruginosa cmaX-cfrX-cmpX Operon Reveals an Intriguing Molecular Network Involving the Sigma Factors AlgU and SigX. Front Microbiol 2020; 11:579495. [PMID: 33193206 PMCID: PMC7641640 DOI: 10.3389/fmicb.2020.579495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/23/2020] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable Gram-negative opportunistic pathogen, notably due to its large number of transcription regulators. The extracytoplasmic sigma factor (ECFσ) AlgU, responsible for alginate biosynthesis, is also involved in responses to cell wall stress and heat shock via the RpoH alternative σ factor. The SigX ECFσ emerged as a major regulator involved in the envelope stress response via membrane remodeling, virulence and biofilm formation. However, their functional interactions to coordinate the envelope homeostasis in response to environmental variations remain to be determined. The regulation of the putative cmaX-cfrX-cmpX operon located directly upstream sigX was investigated by applying sudden temperature shifts from 37°C. We identified a SigX- and an AlgU- dependent promoter region upstream of cfrX and cmaX, respectively. We show that cmaX expression is increased upon heat shock through an AlgU-dependent but RpoH independent mechanism. In addition, the ECFσ SigX is activated in response to valinomycin, an agent altering the membrane structure, and up-regulates cfrX-cmpX transcription in response to cold shock. Altogether, these data provide new insights into the regulation exerted by SigX and networks that are involved in maintaining envelope homeostasis.
Collapse
Affiliation(s)
- Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ishac Si Hadj Mohand
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Jordane Omnes
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Audrey David
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Rachel Duchesne
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Cecil Onyedikachi Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Michael Nusser
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexis Bazire
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Nathalie Connil
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Marc G J Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines (LBCM) EA3884, IUEM, Université de Bretagne-Sud, Lorient, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement (LMSM) EA 4312, Normandie Université, Université de Rouen Normandie, Centre de Sécurité Sanitaire de Normandie, Evreux, France
| |
Collapse
|
18
|
Sauvage S, Hardouin J. Exoproteomics for Better Understanding Pseudomonas aeruginosa Virulence. Toxins (Basel) 2020; 12:E571. [PMID: 32899849 PMCID: PMC7551764 DOI: 10.3390/toxins12090571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is the most common human opportunistic pathogen associated with nosocomial diseases. In 2017, the World Health Organization has classified P. aeruginosa as a critical agent threatening human health, and for which the development of new treatments is urgently necessary. One interesting avenue is to target virulence factors to understand P. aeruginosa pathogenicity. Thus, characterising exoproteins of P. aeruginosa is a hot research topic and proteomics is a powerful approach that provides important information to gain insights on bacterial virulence. The aim of this review is to focus on the contribution of proteomics to the studies of P. aeruginosa exoproteins, highlighting its relevance in the discovery of virulence factors, post-translational modifications on exoproteins and host-pathogen relationships.
Collapse
Affiliation(s)
- Salomé Sauvage
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, CEDEX, F-76821 Mont-Saint-Aignan, France;
- PISSARO Proteomics Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, UMR 6270 CNRS, University of Rouen, CEDEX, F-76821 Mont-Saint-Aignan, France;
- PISSARO Proteomics Facility, IRIB, F-76820 Mont-Saint-Aignan, France
| |
Collapse
|
19
|
Tahrioui A, Ortiz S, Azuama OC, Bouffartigues E, Benalia N, Tortuel D, Maillot O, Chemat S, Kritsanida M, Feuilloley M, Orange N, Michel S, Lesouhaitier O, Cornelis P, Grougnet R, Boutefnouchet S, Chevalier S. Membrane-Interactive Compounds From Pistacia lentiscus L. Thwart Pseudomonas aeruginosa Virulence. Front Microbiol 2020; 11:1068. [PMID: 32528451 PMCID: PMC7264755 DOI: 10.3389/fmicb.2020.01068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/29/2020] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa is capable to deploy a collection of virulence factors that are not only essential for host infection and persistence, but also to escape from the host immune system and to become more resistant to drug therapies. Thus, developing anti-virulence agents that may directly counteract with specific virulence factors or disturb higher regulatory pathways controlling the production of virulence armories are urgently needed. In this regard, this study reports that Pistacia lentiscus L. fruit cyclohexane extract (PLFE1) thwarts P. aeruginosa virulence by targeting mainly the pyocyanin pigment production by interfering with 4-hydroxy-2-alkylquinolines molecules production. Importantly, the anti-virulence activity of PLFE1 appears to be associated with membrane homeostasis alteration through the modulation of SigX, an extracytoplasmic function sigma factor involved in cell wall stress response. A thorough chemical analysis of PLFE1 allowed us to identify the ginkgolic acid (C17:1) and hydroginkgolic acid (C15:0) as the main bioactive membrane-interactive compounds responsible for the observed increased membrane stiffness and anti-virulence activity against P. aeruginosa. This study delivers a promising perspective for the potential future use of PLFE1 or ginkgolic acid molecules as an adjuvant therapy to fight against P. aeruginosa infections.
Collapse
Affiliation(s)
- Ali Tahrioui
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sergio Ortiz
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Onyedikachi Cecil Azuama
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Emeline Bouffartigues
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Nabiha Benalia
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Damien Tortuel
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Olivier Maillot
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Smain Chemat
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques, CRAPC, Bou Ismaïl, Algeria
| | - Marina Kritsanida
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Marc Feuilloley
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Nicole Orange
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Sylvie Michel
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Pierre Cornelis
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| | - Raphaël Grougnet
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Sabrina Boutefnouchet
- CiTCoM UMR 8038 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Équipe Produits Naturels, Analyses et Synthèses (PNAS), Université Paris Descartes, Paris, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, Évreux, France
| |
Collapse
|
20
|
Multidrug Adaptive Resistance of Pseudomonas aeruginosa Swarming Cells. Antimicrob Agents Chemother 2020; 64:AAC.01999-19. [PMID: 31844008 DOI: 10.1128/aac.01999-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/10/2019] [Indexed: 01/25/2023] Open
Abstract
Swarming surface motility is a complex adaptation leading to multidrug antibiotic resistance and virulence factor production in Pseudomonas aeruginosa Here, we expanded previous studies to demonstrate that under swarming conditions, P. aeruginosa PA14 is more resistant to multiple antibiotics, including aminoglycosides, β-lactams, chloramphenicol, ciprofloxacin, tetracycline, trimethoprim, and macrolides, than swimming cells, but is not more resistant to polymyxin B. We investigated the mechanism(s) of swarming-mediated antibiotic resistance by examining the transcriptomes of swarming cells and swarming cells treated with tobramycin by transcriptomics (RNA-Seq) and reverse transcriptase quantitative PCR (qRT-PCR). RNA-Seq of swarming cells (versus swimming) revealed 1,581 dysregulated genes, including 104 transcriptional regulators, two-component systems, and sigma factors, numerous upregulated virulence and iron acquisition factors, and downregulated ribosomal genes. Strain PA14 mutants in resistome genes that were dysregulated under swarming conditions were tested for their ability to swarm in the presence of tobramycin. In total, 41 mutants in genes dysregulated under swarming conditions were shown to be more resistant to tobramycin under swarming conditions, indicating that swarming-mediated tobramycin resistance was multideterminant. Focusing on two genes downregulated under swarming conditions, both prtN and wbpW mutants were more resistant to tobramycin, while the prtN mutant was additionally resistant to trimethoprim under swarming conditions; complementation of these mutants restored susceptibility. RNA-Seq of swarming cells treated with subinhibitory concentrations of tobramycin revealed the upregulation of the multidrug efflux pump MexXY and downregulation of virulence factors.
Collapse
|
21
|
Otero-Asman JR, Wettstadt S, Bernal P, Llamas MA. Diversity of extracytoplasmic function sigma (σ ECF ) factor-dependent signaling in Pseudomonas. Mol Microbiol 2019; 112:356-373. [PMID: 31206859 DOI: 10.1111/mmi.14331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 12/23/2022]
Abstract
Pseudomonas bacteria are widespread and are found in soil and water, as well as pathogens of both plants and animals. The ability of Pseudomonas to colonize many different environments is facilitated by the multiple signaling systems these bacteria contain that allow Pseudomonas to adapt to changing circumstances by generating specific responses. Among others, signaling through extracytoplasmic function σ (σECF ) factors is extensively present in Pseudomonas. σECF factors trigger expression of functions required under particular conditions in response to specific signals. This manuscript reviews the phylogeny and biological roles of σECF factors in Pseudomonas, and highlights the diversity of σECF -signaling pathways of this genus in terms of function and activation. We show that Pseudomonas σECF factors belong to 16 different phylogenetic groups. Most of them are included within the iron starvation group and are mainly involved in iron acquisition. The second most abundant group is formed by RpoE-like σECF factors, which regulate the responses to cell envelope stress. Other groups controlling solvent tolerance, biofilm formation and the response to oxidative stress, among other functions, are present in lower frequency. The role of σECF factors in the virulence of Pseudomonas pathogenic species is described.
Collapse
Affiliation(s)
- Joaquín R Otero-Asman
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Sarah Wettstadt
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Patricia Bernal
- Department of Biology, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain
| |
Collapse
|