1
|
Zhou J, Hu J, Liu J, Zhang W. Elucidating the gastroprotective mechanisms of Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb through UHPLC-MS/MS and systems network pharmacology. Sci Rep 2024; 14:27815. [PMID: 39537788 PMCID: PMC11560922 DOI: 10.1038/s41598-024-79483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb., commonly known as BaiMaoGen (BMG), a medicinal and edible traditional Chinese medicinal (TCM) herb commonly used in health supplements, has been observed to offer protective effects against gastrointestinal disorders. However, the specific bioactive compounds and their molecular mechanisms have not been fully elucidated. This study employed ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) and systematic network pharmacology to analyze and identify the key active components and their interactions with biological targets. Thirty-six main active compounds, including 3,4-dihydroxybenzoic acid and p-hydroxybenzoic acid, were identified and analyzed for their interaction with key protein targets using molecular docking and dynamic simulations. This combined approach highlighted the therapeutic pathways involved, particularly the PI3K/AKT signaling pathways, providing new insights into the molecular basis of BMG's gastroprotective effects. Our findings suggested that BMG's complex multi-target action can potentially be harnessed to develop effective treatments for gastrointestinal toxicity.
Collapse
Affiliation(s)
- Jiaxin Zhou
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianping Hu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jiancheng Liu
- School of Clinical Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Wenchun Zhang
- School of life science, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
2
|
Yan H, He B, He L, Ye H. Screening study on significant Chinese herb for anti-idiopathic pulmonary fibrosis by combining clinical experience prescriptions and molecular dynamics simulation technologies. J Biomol Struct Dyn 2024; 42:6393-6409. [PMID: 37963492 DOI: 10.1080/07391102.2023.2263792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/01/2023] [Indexed: 11/16/2023]
Abstract
Various techniques such as data mining, network pharmacology, molecular docking and molecular dynamics simulation were used in this study to screen and validate effective herbal medicines for the treatment of idiopathic pulmonary fibrosis (IPF) and to reveal their mechanisms of action at the molecular level. The use of this approach will provide new tools and ideas for future drug screening, especially for the application of herbal medicines in the treatment of complex diseases. Among them, the five identified core targets, including IL6, TP53, AKT1, VEGFA, and TNF, as well as a series of major active compounds, will be important references for future anti-IPF drug development. This information will accelerate the discovery and development of relevant drugs. Meanwhile, this study further confirmed the potential value of four Chinese herbal medicines, including Gancao, Danshen, Huangqin, and Sanqi, in the treatment of IPF. This will promote more clinical trials and practices to confirm and optimise the application of these herbs. Finally, this study is an important theoretical guide to enhance the advantages of Chinese herbal medicines in the prevention and treatment of major and difficult diseases, as well as to understand and utilise the potential efficacy of Chinese herbal medicines. This will further promote the scientific research and clinical application of herbal medicines and provide more possibilities for future disease treatmentCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haiting Yan
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Beibei He
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li He
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hua Ye
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Liu T, Zhuang XX, Tang YY, Gao YC, Gao JR. Mechanistic insights into Qiteng Xiaozhuo Granules' regulation of autophagy for chronic glomerulonephritis treatment: Serum pharmacochemistry, network pharmacology, and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117819. [PMID: 38286158 DOI: 10.1016/j.jep.2024.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qiteng Xiaozhuo Granules (QTXZG), a traditional Chinese medicine prescription, is widely acknowledged for its therapeutic efficacy and lack of discernible toxicity in clinical practice, substantiating its potential in the treatment of chronic glomerulonephritis (CGN). Nevertheless, the specific effectiveness and underlying mechanisms of QTXZG remain insufficiently explored. AIM OF THE STUDY The purpose of this study was to explore the mechanism of the QTXZG in the treatment of CGN via targeting autophagy based on serum pharmacochemistry, network pharmacology, and experimental validation. METHODS Serum samples from SD rats orally administered QTXZG were analyzed using UPLC-QE/MS to identify contained compounds. Network and functional enrichment analyses elucidated QTXZG's targets and biological mechanisms. Reliability was ensured through molecular docking, in vivo and in vitro experiments. RESULTS After oral administration of QTXZG, 39 enriched compounds in serum samples collected 1 h later were identified as potential active agents, with 508 potential targets recognized as QTXZG-specific targets. Through integration of various databases, intersection analysis of QTXZG targets, CGN-related genes, and autophagy-related targets identified 10 core autophagy-related targets for QTXZG in CGN. GO and KEGG analyses emphasized their roles in autophagy, inflammation, and immune processes, particularly emphasizing the enrichment of the AMPK/mTOR signaling pathway. Molecular docking results demonstrated strong binding affinities between QTXZG's key compounds and the predicted core targets. In animal experiments, QTXZG was found to ameliorate renal tissue damage in CGN model mice, significantly reducing serum creatinine (Scr) and blood urea nitrogen (BUN) levels. Importantly, both animal and cell experiments revealed QTXZG's ability to decrease excessive ROS and inflammatory factor release in mesangial cells. Furthermore, in vitro and in vivo experiments confirmed QTXZG's capacity to upregulate Beclin1 and LC3II/I expression, decrease p62 expression, and induce CGN autophagy through modulation of the AMPK/mTOR pathway. CONCLUSIONS This study indicated that QTXZG can induce autophagy in CGN by affecting the AMPK/mTOR pathway, and induction of autophagy may be one of the possible mechanisms of QTXZG's anti-CGN.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China.
| | - Xing Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China.
| | - Yong Yan Tang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China.
| | - Ya Chen Gao
- Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
4
|
YANG Y, CHEN X, YAO J, HU Y, WANG W. Efficacy of Danlou tablet on myocardial ischemia/ reperfusion injury assessed by network pharmacology and experimental verification. J TRADIT CHIN MED 2024; 44:131-144. [PMID: 38213248 PMCID: PMC10774729 DOI: 10.19852/j.cnki.jtcm.20231121.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/15/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the potential pharmacological mechanism of Danlou tablet (, DLT) with a long-term clinical application in the treatment of myocardial ischemia/reperfusion (I/R) injury through network pharmacology, molecular docking and experimental verification. METHODS The main chemical ingredients in DLT were retrieved from the Traditional Chinese Medicine (TCM) System Pharmacology Database, the TCM information database, the bioinformatics analysis tool for molecular mechanism of TCM, and HERB database. Disease targets of I/R were accessed from the databases of Online Mendelian Inheritance in Man, GeneCards, Therapeutic Target Database, and DisGeNET database. The overlaying genes of DLT and I/R were obtained from the Venny online platform. The core targets and protein-protein interaction network were constructed and analyzed via the Search Tool for the Retrieval of Interacting Genes Proteins database and Cytoscape software. Furthermore, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed by the Metascape platform. Based on the results, the component-target-pathway network was constructed and drafted via the Cytoscape software and the platform of Bioinformatics. Furthermore, we performed molecular docking to predict the binding information between chemical molecules and target proteins. Finally, oxygen-glucose deprivation/recovery (OGD/R)-induced H9c2 cardiomyocytes were used to validate the results of network pharmacology in vitro. RESULTS A total of 189 active chemical components in DLT and 849 correlative targets of I/R were screened. Of note, 133 overlaying genes found from the Venny online platform were concentrated into 28 core genes. Furthermore, the GO and KEGG pathway enrichment analysis presented that DLT might participate in 42 types of GO molecular functions, 747 types of GO biological processes, 19 types of GO cellular components, and 140 kinds of pathways to treat I/R. In the component-target-pathway network, the indirect relationship between herbs and their possible effective pathways was clarified. Based on the molecular docking, we speculated that Baicalein-prostaglandin G/H synthase 2 (PTGS2) with -3.24 kcal/mol, Luteolin-heat shock protein 90 alpha family class A member 1 (HSP90AA1) with -3.22 kcal/mol, Baicalein-HSP90AA1 with -3.13 kcal/mol, and Quercetin-HSP90AA1 with -3.05 kcal/mol possessed the strongest binding force of less than -3 kcal/mol, sequentially. Experimental verification showed that Quercetin, Luteolin, and Baicalein could increase the relative cell viability of OGD/R-stimulated cardiomyocytes, probably by suppressing PTGS2, and activating HSP90AA1 and estrogen receptor 1 expression. CONCLUSIONS We predicted the potential active compounds as the material basis of DLT that may provide a new approach to elucidate the novel pharmacological mechanism underlying the treatment of cardiac I/R damage.
Collapse
Affiliation(s)
- Ye YANG
- 1 School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaoyang CHEN
- 2 School of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Junkai YAO
- 1 School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yueyao HU
- 1 School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei WANG
- 2 School of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
5
|
Shi Y, Sheng P, Zhao Y, Wang X, Xu X, Sun S. Based on Bioinformatics to Explore the Mechanism of "Tangzhiqing" Decoction Alleviating Type 2 Diabetes-associated Cognitive Dysfunction in Mice by Regulating Hippocampal Neuron Apoptosis and Autophagy. Comb Chem High Throughput Screen 2024; 27:2565-2582. [PMID: 37990900 DOI: 10.2174/0113862073255849231030114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Diabetic cognitive dysfunction (DCD) is emerging as a chronic complication of diabetes that is gaining increasing international recognition. The traditional Chinese medicine (TCM) formulation, Tangzhiqing decoction (TZQ), has shown the capacity to modulate the memory function of mice with DCD by ameliorating insulin resistance. Nevertheless, the precise mechanism underlying the effects of TZQ remains elusive. METHODS The chemical constituents of TZQ were screened using TCMSP databases, and DCDassociated disease targets were retrieved from various databases. Subsequently, core targets were identified through network topology analysis. The core targets underwent analysis using Gene Ontology (GO) functional annotations and enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Models were established through high-fat and high-glucose diet feeding along with intraperitoneal injection of streptozotocin (STZ). TZQ and metformin were administered at varying doses over 8 weeks. The Morris water maze was employed to evaluate the cognitive capabilities of each rat group, while indicators of oxidative stress and insulin were assessed in mice. Neuronal apoptosis in distinct groups of mice's hippocampi was detected using TdT-mediated dUTP Nick-End Labeling (TUNEL), and western blot (WB) analysis was conducted to assess the expression of apoptosis- and autophagy-related proteins, including Bax, Bcl2, Caspase3, Caspase8, Beclin1, ATG7, LC3, p62, and Lamp2, within the hippocampus. RESULTS TZQ exhibited the capacity to modulate neuronal autophagy, ameliorate endoplasmic reticulum stress, apoptosis, inflammation, and oxidative stress, as well as to regulate synaptic plasticity and conduction. TZQ mitigated cognitive dysfunction in mice, while also regulating hippocampal inflammation and apoptosis. Additionally, it influenced the protein expression of autophagy-related factors such as Bax, Bcl2, Caspase3, Caspase8, Beclin1, ATG7, and LC3. Notably, this modulation significantly reduced neuronal apoptosis in the hippocampus and curbed excessive autophagy. CONCLUSION TZQ demonstrated a substantial reduction in neuronal apoptosis within the hippocampus and effectively suppressed excessive autophagy.
Collapse
Affiliation(s)
- Yinli Shi
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Pei Sheng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yun Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xu Wang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiru Xu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Sifan Sun
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
6
|
Shi Y, Sheng P, Guo M, Chen K, Zhao Y, Wang X, Wu M, Li B. Banxia Xiexin Decoction Prevents HT22 Cells from High Glucose-induced Neurotoxicity via JNK/SIRT1/Foxo3a Signaling Pathway. Curr Comput Aided Drug Des 2024; 20:911-927. [PMID: 37608672 DOI: 10.2174/1573409920666230822110258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/27/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Type 2 diabetes-associated cognitive dysfunction (DCD) is a chronic complication of diabetes that has gained international attention. The medicinal compound Banxia Xiexin Decoction (BXXXD) from traditional Chinese medicine (TCM) has shown potential in improving insulin resistance, regulating endoplasmic reticulum stress (ERS), and inhibiting cell apoptosis through various pathways. However, the specific mechanism of action and medical value of BXXXD remain unclear. METHODS We utilized TCMSP databases to screen the chemical constituents of BXXXD and identified DCD disease targets through relevant databases. By using Stitch and String databases, we imported the data into Cytoscape 3.8.0 software to construct a protein-protein interaction (PPI) network and subsequently identified core targets through network topology analysis. The core targets were subjected to Gene Ontology (GO) functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. The results were further validated through in vitro experiments. RESULTS Network pharmacology analysis revealed the screening of 1490 DCD-related targets and 190 agents present in BXXXD. The topological analysis and enrichment analysis conducted using Cytoscape software identified 34 core targets. Additionally, GO and KEGG pathway analyses yielded 104 biological targets and 97 pathways, respectively. BXXXD exhibited its potential in treating DCD by controlling synaptic plasticity and conduction, suppressing apoptosis, reducing inflammation, and acting as an antioxidant. In a high glucose (HG) environment, the expression of JNK, Foxo3a, SIRT1, ATG7, Lamp2, and LC3 was downregulated. BXXXD intervention on HT22 cells potentially involved inhibiting excessive oxidative stress, promoting neuronal autophagy, and increasing the expression levels of JNK, SIRT1, Foxo3a, ATG7, Lamp2, and LC3. Furthermore, the neuroprotective effect of BXXXD was partially blocked by SP600125, while quercetin enhanced the favorable role of BXXXD in the HG environment. CONCLUSION BXXXD exerts its effects on DCD through multiple components, targets, levels, and pathways. It modulates the JNK/SIRT1/Foxo3a signaling pathway to mitigate autophagy inhibition and apoptotic damage in HT22 cells induced by HG. These findings provide valuable perspectives and concepts for future clinical trials and fundamental research.
Collapse
Affiliation(s)
- Yinli Shi
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Pei Sheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Guo
- Southeast University, Zhongda Hospital Southeast University, Nanjing, China
| | - Kai Chen
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Zhao
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Wang
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mianhua Wu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Li
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Wang Y, Chen X, Wang Y, Zhong H, Liu L, Ye Y. Network pharmacology integrated with molecular docking technology to reveal the potential mechanism of Shuganfang against drug-induced liver injury. Medicine (Baltimore) 2023; 102:e36349. [PMID: 38050247 PMCID: PMC10695566 DOI: 10.1097/md.0000000000036349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/06/2023] Open
Abstract
This study aimed to investigate the active composition and mechanism of the Shuganfang (SGF) in treating drug-induced liver injury (DILI) using network pharmacology and molecular docking. The potential active ingredients and targets of SGF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) database. DILI-related targets were queried from various databases including GEO, GeneCards, OMIM, NCBI, and DisGeNET. The STRING database was used to establish a protein-protein interaction (PPI) network. DAVID was utilized for conducting gene ontology (GO) function enrichment and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses. The data visualization and analysis of herb-ingredient-target and disease-pathway-target-ingredient networks were conducted using Cytoscape software (version 3.7.2). PyMoL and AutoDock software was used to select the best binding target for molecular docking. A total of 177 active ingredients,126 targets and 10112 disease targets were obtained, including 122 intersection targets. The identified potential active ingredients consisted of quercetin, kaempferol, luteolin, tanshinone IIa, nobiletin, isorhamnetin, beta-sitosterol and naringenin. The core targets implicated in the study were IL6, estrogen receptor 1 (ESR1), hypoxia-inducible factor alpha subunit 1 (HIF1A), MYC and vascular endothelial growth factor A (VEGFA). KEGG analysis revealed that the treatment of DILI with SGF mainly acted through apoptosis, the PI3K-Akt signaling pathway, and the tumor necrosis factor (TNF) signaling pathway. Furthermore, the binding affinities between the potential ingredients and the core targets were subsequently confirmed through molecular docking experiments. The findings indicated that the docking outcomes remained consistent and demonstrated a favorable capacity for binding. SGF exerts a therapeutic effect on DILI through multiple active ingredients, multiple targets and multiple pathways. Our findings contribute to a positive investigation and establish a theoretical basis for further extensive exploration of SGF as a potential treatment for DILI in future research.
Collapse
Affiliation(s)
- Ying Wang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Xueying Chen
- The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Wang
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Hong Zhong
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Liqin Liu
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Yang Ye
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| |
Collapse
|
8
|
Liu W, Yuan L, Che M, Hou S, Meng F, Xu D, Nan Y. Exploring the mechanism of Dahuang-Tusizi drug pair in the treatment of diabetes nephropathy based on network pharmacology and immune infiltration analysis. Medicine (Baltimore) 2023; 102:e36196. [PMID: 38013385 PMCID: PMC10681581 DOI: 10.1097/md.0000000000036020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023] Open
Abstract
The study aimed to explore the key targets and molecular mechanisms of Dahuang-Tusizi drug pair (DTDP) in the treatment of diabetes nephropathy (DN) based on the GEO database by using network pharmacology combined with molecular docking and immune infiltration. The active components of the DTDP were screened using the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database. The differential genes of DN were retrieved from GEO databases. Next, the intersecting targets of drug and disease were imported into the String database for protein-protein interactions network analysis, and the core targets were identified through topological analysis. Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed with the help of the Metascape database and gene set enrichment analysis database. Subsequently, molecular docking was performed to verify the binding activity of the key component and the key target. The Nephroseq V5 database was used to verify the clinical relevance of DN and core genes. Finally, the Using CIBERSORT Algorithm to analyze the immune Infiltration of DN Gene Chip. The network analysis showed that 25 active ingredients of DTDP were associated with 22 targets in DN. The key active ingredients (Sesamin, quercetin, EUPATIN, matrine, beta-sitosterol, isorhamnetin, etc.) and the core targets (JUN, EGF, CD44, FOS, KDR, CCL2, PTGS2, and MMP2) were further identified. Enrichment analysis revealed signaling pathways including TNF, MAPK, and IL-17 signaling pathway. Molecular docking results showed that there was a strong affinity between the key components and core targets. The results of immune infiltration found that the proportion of macrophages in DN tissues was significantly increased. Our findings demonstrated that the characteristics of DTDP in treating DN are "multiple components, multiple targets and multiple pathways." We predicted that DTDP may inhibit inflammation related pathways by regulating key genes, reducing macrophage infiltration. Thus, inhibiting inflammatory response to reduce glomerular damage and delay the development of DN.
Collapse
Affiliation(s)
- Wenjing Liu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Mengying Che
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Shaozhang Hou
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fandi Meng
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Duojie Xu
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
Xiang L, Cai X, Zhao X, Liu Y, Xiao Y, Jiang P, Yin L, Song D, Jiang X. Uncovering the mechanism of Qidan Dihuang Granule in the treatment of diabetic kidney disease combined network pharmacology, UHPLC-MS/MS with experimental validation. Heliyon 2023; 9:e21714. [PMID: 37954274 PMCID: PMC10638057 DOI: 10.1016/j.heliyon.2023.e21714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Background and aim Diabetic Kidney Disease (DKD) is a common microvascular complication of diabetes mellitus. Multi-center, randomized controlled trials have shown that Qidan Dihuang Granule (QDDHG) reduces the levels of albuminuria of DKD. However, the specific mechanisms of QDDHG on DKD are not clarified. Thus, this study utilized network pharmacology, UHPLC-MS/MS (Ultra-High Performance Liquid Chromatography - Mass Spectrometry) and animal experiments to reveal the mechanisms of QDDHG on DKD. Experimental procedure Screening and retrieving active ingredients and corresponding targets of QDDHG on DKD through the TCMSP, ETCM, Disgenet, GeneCards, Omim and DrugBank databases. The PPI were performed with BioGrid, STRING, OmniPath, InWeb-IM. AutoDock Vina molecular docking module to estimate the validation from the compounds and target proteins. Free energy to estimate the binding affinity for identified compounds and target proteins. The ingredients of QDDHG were analyzed utilizing UHPLC-MS/MS. In vivo experiment with db/db mice were used to verify the targets and pathway predicted by network pharmacology. Results and conclusion The results demonstrated that QDDHG has 18 active compounds and 13 target proteins of QDDHG exerted a crucial role in treatment of DKD. QDDHG affect the multiple biological processes included cellular response to lipid, response to oxidative stress, and various pathways, such as AGE-RAGE, PI3K-Akt, MAPK, TNF, EGFR, STAT3. The results of UHPLC-MS/MS showed that six ingredients predicted by network pharmacology were also verified in experiment. In vivo experiment verified the effects of QDDHG on protecting the renal function mainly through inhibited the expression of EGFR, STAT3 and pERK in the db/db mice.
Collapse
Affiliation(s)
- Lei Xiang
- Department of Nephrology Internal Medicine, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China
- Clinical Laboratory, Guangzhou Cadre Health Management Center, Guangzhou No.11 People's Hospital, Guangzhou, 510530, China
- Department of Nephrology Internal Medicine, University of Chinese Academy of Science-Shenzhen Hospital, 518107, Shenzhen, China
| | - Xiangsheng Cai
- Clinical Laboratory, Guangzhou Cadre Health Management Center, Guangzhou No.11 People's Hospital, Guangzhou, 510530, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Yuanling Liu
- Administrative Department, Guangdong Women and Children Hospital, 510010, Guangzhou, China
| | - Ya Xiao
- School of Traditional Chinese Medicine, Jinan University, 510632, Guangzhou, China
| | - Pingping Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, 510062, Guangzhou, China
| | - Lianghong Yin
- Department of Nephrology Internal Medicine, The First Affiliated Hospital of Jinan University, 510630, Guangzhou, China
| | - Dan Song
- Department of Nephrology Internal Medicine, University of Chinese Academy of Science-Shenzhen Hospital, 518107, Shenzhen, China
| | - Xuefeng Jiang
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| |
Collapse
|
10
|
Tang X, Zhan Y, Yang B, Du B, Huang J. Exploring the mechanism of Semen Strychni in treating amyotrophic lateral sclerosis based on network pharmacology. Medicine (Baltimore) 2023; 102:e35101. [PMID: 37682161 PMCID: PMC10489316 DOI: 10.1097/md.0000000000035101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Semen Strychni (SS), known as an agonist of central nervous system, is a traditional herb widely used in treating amyotrophic lateral sclerosis (ALS) in small doses to relieve muscle weakness and improve muscle strength. However, the potential mechanisms and the main components of SS in treating ALS remain unclear. To explore the underlying mechanism of SS in treating ALS based on network pharmacology and molecular docking. The active components of SS were obtained using TCMSP, Herb, ETCM, and BATMAN-TCM. The targets of SS were gained from PharmMapper. The targets of ALS were searched on Genecards, Drugbank, DisGeNET, OMIM, TTD and GEO database. After obtaining the coincidence targets, we submitted them to the STRING database to build a protein-protein interaction network. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed subsequently. The active components and targets were further investigated using molecular docking technology. 395 targets of SS and 1925 targets of ALS were obtained with 125 common targets. The protein-protein interaction analysis indicated that SRC, AKT1, MAPK1, EGFR, and HSP90AA1 received the higher degree value and were considered the central genes. The Ras, PI3K-Akt, and MAPK signaling pathway could be involved in the treatment of ALS. Brucine-N-oxide obtained the lowest binding energy in molecular docking. This study explored the mechanism of SS in the treatment of ALS and provides a new perspective for future study. However, further experimental studies are needed to validate the therapeutic effect.
Collapse
Affiliation(s)
- Xiaohui Tang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingshi Zhan
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Biying Yang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Baoxin Du
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jingyan Huang
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
11
|
Zhang W, Zhou Q, Chen X, Zhao J, Shi J, Chen L. Exploring potential pharmacological mechanisms of Yiqi Tuomin Decoction in the treatment of allergic rhinitis utilizing network pharmacology prediction and molecular docking-based strategies: experimental research. Ann Med Surg (Lond) 2023; 85:2662-2676. [PMID: 37363456 PMCID: PMC10289499 DOI: 10.1097/ms9.0000000000000804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/01/2023] [Indexed: 06/28/2023] Open
Abstract
Yiqi Tuomin Decoction (YTD), which originated from the theory of lung deficiency and cold in Chinese medicine, is a common Chinese herbal formula used against allergic rhinitis (AR). In our otolaryngology department, this prescription has been used to treat so many AR patients with lung-deficiency-related colds for nearly 30 years. However, the mechanism of its ingredient-target is still unclear. Based on our early experiments and clinical case studies, in this paper, we explore the mechanism of YTD systematically against AR using bioinformatic methods of network pharmacology and molecular docking. Methods The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to screen the active ingredients and targets of YTD. The AR-related targets were retrieved from OMIM, GeneCards, TTD, DisGeNET, DrugBank databases, and PharmGKB. The Venn database was used to screen the potential core targets. After that, the STRING database was used to construct the protein-protein interaction (PPI) of the core targets and then visualize it by Cytoscape. The Gene Ontology (GO)-enriched processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the core targets were analyzed by the KOBAS-I database and Sangerbox. Molecular docking was used to assess interactions between potential targets and active ingredients. Results A total of 169 active ingredients and 238 targets of YTD were predicted. YTD shared 115 common targets with AR from the Venn database. The GO-enriched processes and KEGG pathways indicate that genes involved in inflammation and oxidative stress, accompanying the MAPK signaling pathway, Th17 cell differentiation, IL-17 signaling pathway, and Th1 and Th2 cell differentiation, may play a mediated effect in YTD. The docking results showed good binding ability between the active ingredients and the selected targets. Conclusions Our study systematically indicated the underlying mechanism of YTD against AR from the perspective of bioinformatics. By studying the active ingredients of YTD, we obtained molecular mechanisms and established a reliable method and molecular theoretical basis for the sensible development of Chinese medicine in the treatment of AR.
Collapse
Affiliation(s)
| | | | | | | | - Jun Shi
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, People’s Republic of China
| | - Li Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, People’s Republic of China
| |
Collapse
|
12
|
Xu M, Chang Y, Zhu G, Zhu X, Song X, Li J. Transforming Cold Tumors into Hot Ones with a Metal-Organic Framework-Based Biomimetic Nanosystem for Enhanced Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17470-17484. [PMID: 36995264 DOI: 10.1021/acsami.2c21005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Immunotherapy has revolutionized the landscape in clinical tumor therapy, although the response rates in "cold" tumors are relatively low owing to the complex tumor microenvironment (TME). Cyclic guanosine monophosphate-adenosine monophosphate synthase/stimulator of interferon genes (cGAS/STING) pathway-inducing agents can reprogram the TME; however, their applications remain underutilized. Herein, we engineered a facile manganese-based metal-organic framework (Mn-MOF) encapsulating polyphyllin I (PPI) and coated it with red blood cell (RBC) membranes (RBC@Mn-MOF/PPI) that enhanced the cGAS/STING-mediated antitumor immunity. RBC@Mn-MOF/PPI was engineered by camouflaging it with a biomimetic RBC membrane for prolonged blood circulation and immune escape, which was also extended with TME-sensitive properties for triggering the release of PPI and Mn2+ to remodel the suppressive TME and augment antitumor immune responses. Furthermore, RBC@Mn-MOF/PPI helped transform cold tumors into "hot" ones by activating immune cells, as evidenced via dendritic cell maturation, cytotoxic T lymphocyte infiltration, and natural killer cell recruitment, thereby targeting primary and abscopal tumors and lung metastatic nodules. Therefore, our engineered nanosystem represents a novel strategy to transform immunologically "cold" tumors into "hot" ones by activating the cGAS/STING pathway, thereby addressing the major challenges associated with immunotherapy.
Collapse
Affiliation(s)
- Manman Xu
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yincheng Chang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guanghui Zhu
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaoyu Zhu
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiaotong Song
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jie Li
- Department of Oncology, Guang' Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
13
|
Huang J, Hao J, Nie J, Qian R, Li H, Zhao J, Wang Y. Possible Mechanism of Dysphania ambrosioides (L.) Mosyakin & Clemants Seed Extract Suppresses the Migration and Invasion of Human Hepatocellular Carcinoma Cells SMMC-7721. Chem Biodivers 2023; 20:e202200768. [PMID: 36694378 DOI: 10.1002/cbdv.202200768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Mexican tea (Dysphania ambrosioides (L.) Mosyakin & Clemants) is rich in phenolic acids and flavonoids and could be a potential medicinal herb that can be used for prevention of human hepatocellular carcinoma. The objective of this study was to elaborate the possible mechanism for the prevention or treatment of hepatocellular carcinoma using Mexican tea, and to provide new avenues for the utilization of the invasive plant. In this study, the D. ambrosioides seed extracts (CSE) were analyzed by gas chromatography-mass spectrometry, and the effects of CSE on proliferation, migration, invasion, and gene expression of SMMC-7721 cells were investigated. Eight compounds were identified in CSE, and the compound with the highest content was ascaridole (25.82 %). The proliferation was significantly inhibited by CSE (p<0.05), and IC50 values were 0.587 g/L, 0.360 g/L, and 0.361 g/L at 24 h, 36 h, and 48 h, respectively. Migration and invasion were significantly inhibited (p<0.05). The network pharmacology and transcriptome analysis indicated that 2-hydroxy-2,6,6-trimethylbicyclo[3.1.1]heptan-3-one, cis-11-eicosenoic acid and 2-ethylcyclohexanone might be the active compounds. Transcriptome analysis indicated that the Wnt signaling pathway, which is related to migration and invasion, was significantly altered; this was verified by western blot assay. The expression of wnt11, lef1 and mmp7 genes in SMMC-7721 cells was significantly down-regulated (p<0.05), while gsk-3β was significantly up-regulated (p<0.05). These results indicate that CSE inhibits the invasion and migration of SMMC-7721 cells in hepatocellular carcinoma through the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jing Huang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Junmei Hao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jintao Nie
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Ruihua Qian
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Haiying Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jiayuan Zhao
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yanan Wang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
14
|
Wang WX, He XY, Yi DY, Tan XY, Wu LJ, Li N, Feng BB. Uncovering the molecular mechanism of Gynostemma pentaphyllum (Thunb.) Makino against breast cancer using network pharmacology and molecular docking. Medicine (Baltimore) 2022; 101:e32165. [PMID: 36626523 PMCID: PMC9750687 DOI: 10.1097/md.0000000000032165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Because of their strong anti-cancer efficacy with fewer side effects, traditional Chinese medicines (TCM) have attracted considerable attention for their potential application in treating breast cancer (BC). However, knowledge about the underlying systematic mechanisms is scarce. Gynostemma pentaphyllum (Thunb.) Makino (GP), a creeping herb, has been regularly used as a TCM to prevent and treat tumors including BC. Again, mechanisms underlying its anti-BC properties have remained elusive. We used network pharmacology and molecular docking to explore the mechanistic details of GP against BC. The TCM systems pharmacology database and analysis platform and PharmMapper Server database were used to retrieve the chemical constituents and potential targets in GP. In addition, targets related to BC were identified using DrugBank and Therapeutic Target Database. Protein-protein interaction network, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of crucial targets were performed using the Search Tool for the Retrieval of Interacting Genes/Proteins and database for annotation, visualization, and integrated discovery databases, whereas the network visualization analysis was performed using Cytoscape 3.8.2. In addition, the molecular docking technique was used to validate network pharmacology-based predictions. A comparison of the predicted targets of GP with those of BC-related drugs revealed 26 potential key targets related to the treatment of BC, among which ALB, EGFR, ESR1, AR, PGR, and HSP90AA1 were considered the major potential targets. Finally, network pharmacology-based prediction results were preliminarily verified by molecular docking experiments. In addition, chemical constituents and potential target proteins were scored, followed by a comparison with the ligands of the protein. We provide a network of pharmacology-based molecular mechanistic insights on the therapeutic action of GP against BC. We believe that our data will serve as a basis to conduct future studies and promote the clinical applications of GP.
Collapse
Affiliation(s)
- Wen-Xiang Wang
- School of Pharmacy of Chongqing Three Gorges Medical College, Chongqing, China
| | - Xiao-Yan He
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong-Yang Yi
- School of Pharmacy of Chongqing Three Gorges Medical College, Chongqing, China
| | - Xiao-Yan Tan
- School of Pharmacy of Chongqing Three Gorges Medical College, Chongqing, China
| | - Li-Juan Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ning Li
- School of Pharmacy of Chongqing Three Gorges Medical College, Chongqing, China
- * Correspondence: Ning Li, School of Pharmacy of Chongqing Three Gorges Medical College, Chongqing 404120, China ()
| | - Bin-Bin Feng
- School of Pharmacy of Chongqing Three Gorges Medical College, Chongqing, China
| |
Collapse
|
15
|
Zhang C, Wang S, Wang Z, Zhang Q, Chen R, Zhang H, Hua Z, Ma S. Repair mechanism of Wuwei Fuzheng Yijing formula in di-2-ethylhexyl phthalate-induced sperm DNA fragmentation in mice. PHARMACEUTICAL BIOLOGY 2022; 60:1286-1302. [PMID: 35797467 PMCID: PMC9272935 DOI: 10.1080/13880209.2022.2089694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Di-2-ethylhexyl phthalate (DEHP), a known persistent organic pollutant, can increase the sperm DNA fragmentation index (DFI). OBJECTIVE To investigate the mechanism underlying the repair of DEHP-induced sperm DNA damage in mice by Wuwei Fuzheng Yijing (WFY) formula. MATERIALS AND METHODS The potential targets of WFY and sperm DNA fragment (SDF) were obtained from the TCMSP, BATMAN-TCM, OMIM and GeneCards. The protein-protein interaction (PPI) network, GO and KEGG pathway analyses of WFY-SDF were constructed. An animal model of DEHP-induced sperm DNA damage was replicated by gavage of SPF ICR (CD1) mice DEHP at 1 g/kg/d and treated with WFY at 8.92, 17.84 and 35.67 g/kg, respectively, for 60 d. Sperm DFI of each group was detected and compared. The target genes of WFY identified by transcriptomic and proteomic analyses were validated by qRT-PCR and Western blotting. RESULTS Network pharmacology pathway analysis indicated that PI3K/Akt was the potential target of WFY on SDF. The DFI of the DEHP group (25.48%) was significantly higher than that of the control group (4.02%). The high-dose WFY group (19.05%) exhibited the most significant repairing effect. The related pathways were PI3K/Akt and metabolic. Aass, Aldh1a7, GSTA3, betaine homocysteine S-methyltransferase (Bhmt), Mug2 and Svs1 were screened and Bhmt was validated. DISCUSSION AND CONCLUSIONS WFY can repair sperm DNA damage caused by DEHP, and the mechanism may be related to PI3K/Akt and metabolic pathways, and Bhmt. This provides a new direction for using traditional Chinese medicine to prevent and repair reproductive system injury caused by pollutants.
Collapse
Affiliation(s)
- Chenming Zhang
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shiqi Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zulong Wang
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Qi Zhang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rubing Chen
- The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hao Zhang
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhong Hua
- The Third Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| | - Sicheng Ma
- The Second Clinical Medical School, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
16
|
Shentu CY, Yan G, Xu DC, Chen Y, Peng LH. Emerging pharmaceutical therapeutics and delivery technologies for osteoarthritis therapy. Front Pharmacol 2022; 13:945876. [PMID: 36467045 PMCID: PMC9712996 DOI: 10.3389/fphar.2022.945876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common joint degenerative diseases in the world. At present, the management of OA depends on the lifestyle modification and joint replacement surgery, with the lifespan of prosthesis quite limited yet. Effective drug treatment of OA is essential. However, the current drugs, such as the non-steroidal anti-inflammatory drugs and acetaminophen, as well as glucosamine, chondroitin sulfate, hyaluronic acid, are accompanied by obvious side effects, with the therapeutic efficacy to be enhanced. Recently, novel reagents such as IL-1 antagonists and nerve growth factor inhibitors have entered clinical trials. Moreover, increasing evidence demonstrated that active ingredients of natural plants have great potential for treating OA. Meanwhile, the use of novel drug delivery strategies may overcome the shortcomings of conventional preparations and enhance the bioavailability of drugs, as well as decrease the side effects significantly. This review therefore summarizes the pathological mechanisms, management strategies, and research progress in the drug molecules including the newly identified active ingredient derived from medicinal plants for OA therapy, with the drug delivery technologies also summarized, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for OA therapy.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
17
|
Wang YX, Yang Z, Wang WX, Huang YX, Zhang Q, Li JJ, Tang YP, Yue SJ. Methodology of network pharmacology for research on Chinese herbal medicine against COVID-19: A review. JOURNAL OF INTEGRATIVE MEDICINE 2022; 20:477-487. [PMID: 36182651 PMCID: PMC9508683 DOI: 10.1016/j.joim.2022.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/15/2022] [Indexed: 12/09/2022]
Abstract
Traditional Chinese medicine, as a complementary and alternative medicine, has been practiced for thousands of years in China and possesses remarkable clinical efficacy. Thus, systematic analysis and examination of the mechanistic links between Chinese herbal medicine (CHM) and the complex human body can benefit contemporary understandings by carrying out qualitative and quantitative analysis. With increasing attention, the approach of network pharmacology has begun to unveil the mystery of CHM by constructing the heterogeneous network relationship of "herb-compound-target-pathway," which corresponds to the holistic mechanisms of CHM. By integrating computational techniques into network pharmacology, the efficiency and accuracy of active compound screening and target fishing have been improved at an unprecedented pace. This review dissects the core innovations to the network pharmacology approach that were developed in the years since 2015 and highlights how this tool has been applied to understanding the coronavirus disease 2019 and refining the clinical use of CHM to combat it.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China; Department of Scientific Research, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi Province, China
| | - Zhen Yang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Wen-Xiao Wang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Xi Huang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Qiao Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Jia-Jia Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| |
Collapse
|
18
|
Xiao QX, Xue LL, Su ZY, Huang J, Chen JL, Xiong LL, Wang TH. The neuroprotective effects of Lutongkeli in traumatic brain injury rats by anti-apoptosis mechanism. Acta Cir Bras 2022; 37:e370603. [PMID: 36134852 PMCID: PMC9488509 DOI: 10.1590/acb370603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To explore the neuroprotective effects of Lutongkeli (LTKL) in traumatic brain injury (TBI) and detect the related mechanism. METHODS TBI model was established with LTKL administration (2 and 4 g/kg/d, p.o.). Motor function of rats was examined by Rotarod test. Nissl staining was used to show neuron morphology. Furthermore, the disease-medicine common targets were obtained with the network pharmacology and analyzed with Kyoto Encyclopedia of Genes and Genomes. Lastly, the predicted targets were validated by real-time polymerase chain reaction. RESULTS After LTKL administration, neural behavior was significantly improved, and the number of spared neurons in brain was largely increased. Moreover, 68 bioactive compounds were identified, corresponding to 148 LTKL targets; 2,855 genes were closely associated with TBI, of which 87 overlapped with the LTKL targets and were considered to be therapeutically relevant. Functional enrichment analysis suggested LTKL exerted its pharmacological effects in TBI by modulating multiple pathways including apoptosis, inflammation, etc. Lastly, we found LTKL administration could increase the mRNA level of Bcl-2 and decrease the expression of Bax and caspase-3. CONCLUSIONS This study reported the neuroprotective effect of LTKL against TBI is accompanied with anti-apoptosis mechanism, which provides a scientific explanation for the clinical application of LTKL in the treatment of TBI.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- MD. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Lu-Lu Xue
- PhD. Sichuan University – State Key Laboratory of Biotherapy – Chengdu, China
| | - Zhang-Yu Su
- BS. Southwest Medical University – Department of Anesthesiology – Luzhou, China
| | - Jin Huang
- PhD. Kunming Medical University – Affiliated Hospital – Department of Neurosurgery – Kunming, China
| | - Ji-Lin Chen
- BS. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Liu-Lin Xiong
- PhD, Professor. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| | - Ting-Hua Wang
- PhD, Professor. Kunming Medical University – Institute of Neuroscience – Animal Zoology Department – Kunming, China
| |
Collapse
|
19
|
Chang WC, Livneh H, Chen WJ, Hsieh CC, Wang YH, Lu MC, Guo HR, Tsai TY. Adding Chinese Herbal Medicine to Routine Care is Associated With a Lower Risk of Rheumatoid Arthritis Among Patients With Asthma: A Population-Based Retrospective Cohort Study. Front Pharmacol 2022; 13:895717. [PMID: 36059972 PMCID: PMC9431954 DOI: 10.3389/fphar.2022.895717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Due to the shared pathogenesis of asthma and rheumatoid arthritis (RA), patients with asthma were found to have a higher risk of RA. While the benefits and safety of Chinese herbal medicine (CHM) for asthma have been reported, the scientific evidence regarding its effect on RA is limited. This longitudinal cohort study aimed to determine the relation between CHM use and RA risk in patients with asthma.Methods: Using the nationwide claims data, we enrolled 33,963 patients 20–80 years of age who were newly diagnosed with asthma and simultaneously free of RA between 2000 and 2007. From this sample, we utilized propensity score matching to create sets of participants as treatment and control groups, which comprised 13,440 CHM users and 13,440 non-CHM users. The incidence rate and hazard ratio (HR) for RA between the two groups were estimated at the end of 2013. A Cox proportional hazards model was constructed to examine the impact of the CHM use on the risk of RA.Results: The cumulative incidence of RA was substantially lower in the CHM user group. In the follow-up period, 214 patients in the CHM user group (1.92 per 1,000 person-years) and 359 patients in the non-CHM user group (2.92 per 1,000 person-years) developed RA (adjusted HR = 0.63, 95% confidence interval: 0.54–0.75). Of the commonly-prescribed formulae, nine CHM products were associated with a lower RA risk: Xiao-Qing-Long-Tang, Ma-Xing-Gan-Shi-Tang, Ding-Chuan-Tang, Xin-Yi-Qing-Fei-Tang, Bei Mu, Jie Geng, Xing Ren, Da Huang, and San Chi.Conclusion: This study found that patients with asthma who received CHM treatment, in addition to the conventional therapy, had a lower risk of RA. Use of CHM treatment may be integrated into conventional therapy to reduce subsequent RA risk among asthma patients.
Collapse
Affiliation(s)
- Wei-Chiao Chang
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, United States
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
- Center of Sports Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Chang-Cheng Hsieh
- Department of Family Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Yu-Han Wang
- Center of Sports Medicine, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Ming-Chi Lu, ; How-Ran Guo, ; Tzung-Yi Tsai,
| | - How-Ran Guo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Occupational Safety, Health and Medicine Research Center, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Ming-Chi Lu, ; How-Ran Guo, ; Tzung-Yi Tsai,
| | - Tzung-Yi Tsai
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
- Department of Medical Research, Dalin Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Chiayi, Taiwan
- *Correspondence: Ming-Chi Lu, ; How-Ran Guo, ; Tzung-Yi Tsai,
| |
Collapse
|
20
|
Bibliometric Analysis of Network Pharmacology in Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1583773. [PMID: 35754692 PMCID: PMC9217600 DOI: 10.1155/2022/1583773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022]
Abstract
Aim We evaluated the developmental process, research status, and existing challenges of network pharmacology. Moreover, we elucidated the corresponding solutions to improve and develop network pharmacology. Methods Research data for the current study were retrieved from the Web of Science. The developmental process of network pharmacology was analyzed using HisCite, whereas cooccurrence analysis of countries, institutions, keywords, and references in literature was conducted using CiteSpace. Results In literature, there was a trend of annual increase of studies on network pharmacology and China was found to be the country with the most published literature on network pharmacology. The main publishing research institutions were universities of traditional Chinese medicine (TCM). The keywords with more research frequency were TCM, mechanisms, molecular docking, and quercetin, among others. Conclusion Currently, studies on network pharmacology are mainly associated with the exploration of action mechanisms of TCM. The main active ingredient in many Chinese medicines is quercetin. This ingredient may lead to deviation of research results, inability to truly analyze active ingredients, and even mislead the research direction of TCM. Such deviation may be because the database fails to reflect the content and composition changes of Chinese medicinal components. The database does not account for interactions among components, targets, and diseases, and it ignores the different pathological states of the disease. Therefore, network pharmacology should be improved from the databases and research methods.
Collapse
|
21
|
Li M, Fan X, Zhou L, Jiang M, Shang E. The effect of Ma-Xin-Gan-Shi decoction on asthma exacerbated by respiratory syncytial virus through regulating TRPV1 channel. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115157. [PMID: 35247474 DOI: 10.1016/j.jep.2022.115157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence and mortality of bronchial asthma are increasing, and respiratory syncytial virus (RSV) is widely regarded as the common cause of clinical exacerbation of asthma. Ma-Xing-Gan-Shi decoction (MXGSD), a classic traditional Chinese medicine prescription, is well-known for treating respiratory diseases, while the mechanism of effecting on RSV-exacerbated asthma remains to be explored. AIM OF THE STUDY In this study, we investigated the mechanism by which MXGSD exerts a protective effect on asthma exacerbated by RSV in vivo and in vitro. MATERIALS AND METHODS MXGSD is composed of four Chinese medicine, including Ephedra intermedia Schrenk & C.A.Mey. (herbaceous stem, 27g), Prunus armeniaca L. (dry seed, 27g), Glycyrrhiza uralensis Fisch. (radix and rhizome, 18g), and Gypsum fibrosum (main component: CaSO4·2H2O, 54g). In the present study, the exacerbated asthmatic mice model with the treatment of OVA plus RSV was replicated, and accompanied by the TMT proteomic analysis and further experimental investigations. Then, the protective effect of MXGSD (13.2, 6.6, 3.3 g/kg/d, 7d) on the mice treated by OVA plus RSV, and the mechanism of regulating TRPV1 was explored. In addition, the intracellular Ca2+ concentration of 16HBE cells pretreated with MXGSD medicated serum was also tested after stimulation with the TRPV1 agonist capsaicin. RESULTS The results suggested that MXGSD could reduce the levels of inflammation cells, airway hyperresponsiveness, and pathological damage of lung tissue. TMT quantitative proteomics analysis and further experimental exploration revealed that MXGSD could reduce the levels of IL-4, IL-13, PGE2, and SP in BAL and down-regulate the expression of TRPV1 mRNA and protein in lung tissue. Furthermore, 16HBE cells stimulated by capsaicin showed an increased intracellular Ca2+ concentration, while the pretreatment of MXGSD medicated serum could reduce it. CONCLUSION MSGSD showed a protective effect on RSV-exacerbated asthma, which may be related to its regulation of TRPV1 expression and reduction of Th2 cytokines and neurogenic inflammatory mediators. It may provide an objective basis and reference for the clinical application of MXGSD.
Collapse
Affiliation(s)
- Mengwen Li
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xinsheng Fan
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Liping Zhou
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Minyue Jiang
- School of Traditional Chinese Medicine & Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
22
|
Wang Y, Yuan Y, Wang W, He Y, Zhong H, Zhou X, Chen Y, Cai XJ, Liu LQ. Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based on GEO datasets, network pharmacology and molecular docking. Comput Biol Med 2022; 145:105454. [DOI: 10.1016/j.compbiomed.2022.105454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022]
|
23
|
Explore the Mechanism of Astragalus mongholicus Bunge against Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Experimental Verification. Gastroenterol Res Pract 2022; 2022:4745042. [PMID: 35422858 PMCID: PMC9005278 DOI: 10.1155/2022/4745042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023] Open
Abstract
Objective Astragalus mongholicus Bunge [Fabaceae] (AMB), a traditional Chinese medicine (TCM), has been widely used to treat liver diseases in the clinic. However, the efficacy and mechanism of AMB in the treatment of nonalcoholic fatty liver disease (NAFLD) remain unclear. The purpose of this study was to systematically investigate the active components and mechanisms of AMB against NAFLD based on network pharmacology, molecular docking, and experimental verification. Methods First, the bioactive components and relevant targets of AMB were screened from the Traditional Chinese Medicine Systematic Pharmacology (TCMSP) database, and NAFLD-related targets were obtained from the GeneCards database. Then, the AMB-NAFLD protein target interaction network was built by the STRING database. GO and KEGG pathway enrichment analyses were performed using the DAVID database. The component targets were visualized using Cytoscape software. Finally, molecular docking and experiments were used to verify the results of network pharmacological prediction. Results Network pharmacology predicted that quercetin may be the main active component in AMB, and the TNF and MAPK signaling pathways may be the key targets of AMB against NAFLD. Molecular docking validation results demonstrated that quercetin, as the main active component of AMB, had the highest binding affinity with TNF. Furthermore, quercetin played a distinct role in alleviating NAFLD through in vitro experiments. Quercetin upregulated the phosphorylation levels of AMPK and inhibited the expression of p-MAPK and TNF-α. In addition, we further discovered that quercetin could increase ACC phosphorylation and CPT1α expression in PA-induced HepG2 cells. Conclusions Our results indicated that quercetin, as the main active component in AMB, exerts an anti-NAFLD effect by regulating the AMPK/MAPK/TNF-α and AMPK/ACC/CPT1α signaling pathways to inhibit inflammation and alleviate lipid accumulation.
Collapse
|
24
|
Mechanism of Herb Pairs Astragalus mongholicus and Curcuma phaeocaulis Valeton in Treating Gastric Carcinoma: A Network Pharmacology Combines with Differential Analysis and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8361431. [PMID: 35321506 PMCID: PMC8938068 DOI: 10.1155/2022/8361431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/08/2023]
Abstract
Background Gastric carcinoma (GC) is a kind of digestive tract tumor that is highly malignant and has a very poor prognosis. Although both Astragalus mongholicus (AM, huáng qí) and Curcuma phaeocaulis Valeton (CPV, é zhú) can slow the onset and progression of GC, the mechanism by which AM-CPV works in the treatment of GC is uncertain. Materials and Methods The traditional Chinese medicine network databases TCMSP, TCMID, and ETCM were used to identify the key functional components and associated targets of AM and CPV. To establish a theoretical foundation, the development of gastric cancer (GC) was predicted utilizing a GEO gene chip and TCGA difference analysis mixed with network pharmacology. A herbal-ingredient-target network and a core target-signal pathway network were created using GO and KEGG enrichment analyses. The molecular docking method was used to evaluate seventeen main targets and their compounds. Results Cell activity, reactive oxygen species modification, metabolic regulation, and systemic immune activation may all be involved in the action mechanism of the AM-CPV drug-pair in the treatment of GC. It inhibits the calcium signaling route, the AGE-RAGE signaling system, the cAMP signaling pathway, the PI3K-Akt signaling network, and the MAPK signaling pathway, slowing the progression of GC. The number of inflammatory substances in the tumor microenvironment is reduced, GC cell proliferation is deprived, apoptosis is promoted, and GC progression is retarded through controlling the IL-17 signaling route, TNF signaling pathway, and other inflammation-related pathways. Conclusions The AM-CPV pharmaceutical combination regulates GC treatment via a multitarget, component, and signal pathway with a cooperative and bidirectional regulatory mechanism. Its active constituents may treat GC by regulating the expression of STAT1, MMP9, IL6, HSP90AA1, JUN, CCL2, IFNG, CXCL8, and other targets, as well as activating or inhibiting immune-inflammatory and cancer signaling pathways.
Collapse
|
25
|
Chen J, Li T, Chen T, Niu R, Chen J, Chen Y, Huang J. Lu Tong Ke Li protects neurons from injury by regulating inflammation in rats with brain trauma. IBRAIN 2022; 8:100-108. [PMID: 37786414 PMCID: PMC10528765 DOI: 10.1002/ibra.12029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
Currently, there is no effective therapy for traumatic brain injury (TBI). Therefore, this study was conducted to determine the protective effect of Lu Tong Ke Li (LTKL), a Chinese medicine, for TBI in experimental animals. The TBI rat model was induced using the modified Feeney's protocol. The rats were divided into four groups: Sham group, Control group, LTKL lower-dose group (LTL, 2 g/kg/day, p.o.), and LTKL higher-dose group (LTH, 4 g/kg/day, p.o.). The Neurological Severity Score (NSS) was used to examine neurological function. Magnetic resonance imaging was performed to check the brain tissue lesions in rats. Cell apoptosis in the damaged area was evaluated using the Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling assay. Reverse-transcription polymerase chain reaction was used to investigate the expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 10 (IL-10). The TBI rat model was successfully constructed. Neurological function was enhanced at 14, 21, and 28 days post TBI in the LTH groups, indicated by gradually decreased NSS scores. Administration of LTH led to fewer brain defects in the damaged area, and the number of apoptosis cells in the brain injury area markedly decreased. LTKL treatment led to upregulation of IL-10 expression and downregulation of TNF-α and IL-1β expressions at the molecular level. LTKL can improve the neurobehavior of TBI. The neuroprotective effect was probably related to regulation of inflammation cytokines. Our results provide crucial evidence of the potentially useful application of LTKL in the therapy of TBI in clinic practice in the future.
Collapse
Affiliation(s)
- Jie Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
- Department of AnesthesiologySouthwest Medical UniversityLuzhouSichuanChina
| | - Ting‐Ting Li
- Department of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
| | - Ting‐Bao Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Rui‐Ze Niu
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Ji‐Lin Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Yong Chen
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| | - Jin Huang
- Animal Zoology Department, Institute of NeuroscienceKunming Medical UniversityKunmingChina
| |
Collapse
|
26
|
Zhao X, Liu J, Yang L, Niu Y, Ren R, Su C, Wang Y, Chen J, Ma X. Beneficial effects of mijianchangpu decoction on ischemic stroke through components accessing to the brain based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114882. [PMID: 34848358 DOI: 10.1016/j.jep.2021.114882] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To explore the effective components, potential targets and neuroprotective related mechanisms of Mijianchangpu decoction (MJCPD), a well-known TCM used by the Chinese Hui minorities to treat stroke, on the prevention and treatment of ischemic stroke (IS) by using experimental models combined with network pharmacology. MATERIALS AND METHODS The neuroprotective efficacy of MJCPD was estimated by applying the middle cerebral artery occlusion (MCAO) induced cerebral ischemia rats, and the neurological deficits score, TTC and HE staining as well as behavioral evaluation tests were employed to evaluate the beneficial effects. Meanwhile, the bioactive components of MJCPD responsible for the neuroprotective effects were identified by detecting the constituents in the brain of the MCAO rats with UHPLC-QTOF-MS/MS techniques, and these compounds were then underwent for network pharmacology analysis. Firstly, the targets of the bioactive compounds of MJCPD were predicted using Pharmmapper database, and simultaneously, the targets of IS disease were obtained from disease databases including DisGenet, OMIM, and GeneCards. Secondly, the protein-protein interaction (PPI) network between the targets and diseases were established to give the possible therapeutic targets for IS. Thirdly, the go function and KEGG pathway enrichment analysis were carried out and the compound-target-pathway network was constructed by Cytoscape software. Finally, the effective compounds, core targets and possible pathways were obtained by analyzing the connectivity of the network. More importantly, the core targets were verified by western blot experiments to validate the reliability of this study. RESULTS MJCPD exhibited significant neuroprotective effect on IS, and 16 bioactive components of MJCPD were identified in the brain of the MCAO rats. 59 and 1982 targets related with IS disease were explored from Pharmapper and disease databases, respectively, and 32 intersecting targets were obtained as hypothetical therapeutic targets. Based on the results of the compound-target-pathway and PPI network with the degree was greater than the median, 8 effective compounds (suberic acid, epishyobunone, crocetin monomethyl ester, sfaranal, (Z)-6-octadccenoic acid, nerolidol and gurjunene) and 5 hub targets (SRC, MAPK8, MAPK14, EGFR and MAPK1) as well as 12 pathways were predicted. Western blot results showed that EGFR, p38, ERK and SRC proteins were expressed significantly different after MJCPD treatment as compared with the model group. CONCLUSION The present study employed network pharmacology, pharmacodynamics and molecular biology techniques to predict and validate the core potential targets and signaling pathways as well as the bioactive components of MJCPD responsible for the treatment of IS. All of which are very helpful to clarify the neuroprotective mechanism of MJCPD, and obviously, the active compounds and targets in this study can also provide clues for the treatment of IS.
Collapse
Affiliation(s)
- Xiaojun Zhao
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Jingjing Liu
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China; School of Pharmacy, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.
| | - Lingling Yang
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yang Niu
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Ruru Ren
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Chao Su
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Yingli Wang
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Huatuo Road, Minhoushangjie, Fuzhou, 350122, China.
| | - Xueqin Ma
- Department of Pharmaceutical analysis, School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan, 750004, China.
| |
Collapse
|
27
|
Zhao X, Yuan F, Wan H, Qin H, Jiang N, Yu B. Mechanisms of magnoliae cortex on treating sarcopenia explored by GEO gene sequencing data combined with network pharmacology and molecular docking. BMC Genom Data 2022; 23:15. [PMID: 35176999 PMCID: PMC8851866 DOI: 10.1186/s12863-022-01029-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Background Administration of Magnoliae Cortex (MC) could induce remission of cisplatin-induced sarcopenia in mice, however, whether it is effective on sarcopenia patients and the underlying mechanisms remain unclear. Methods Sarcopenia related differentially expressed genes were analysed based on three Gene Expression Omnibus (GEO) transcriptome profiling datasets, which was merged and de duplicated with disease databases to obtain sarcopenia related pathogenic genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were than performed to analyse the role of proteins encoded by sarcopenia related pathogenic genes and the signal regulatory pathways involved in. The main active components and target proteins of MC were obtained by searching traditional Chinese medicine network databases (TCMSP and BATMAN-TCM). MC and sarcopenia related pathogenic genes shared target proteins were identified by matching the two. A protein–protein interaction network was constructed subsequently, and the core proteins were filtered according to the topological structure. GO and KEGG analysis were performed again to analyse the key target proteins and pathways of MC in the treatment of sarcopenia, and build the herbs-components-targets network, as well as core targets-signal pathways network. Molecular docking technology was used to verify the main compounds-targets. Results Sarcopenia related gene products primarily involve in aging and inflammation related signal pathways. Seven main active components (Anonaine, Eucalyptol, Neohesperidin, Obovatol, Honokiol, Magnolol, and beta-Eudesmol) and 26 target proteins of MC-sarcopenia, of which 4 were core proteins (AKT1, EGFR, INS, and PIK3CA), were identified. The therapeutic effect of MC on sarcopenia may associate with PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, longevity regulating pathway, and other cellular and innate immune signaling pathways. Conclusion MC contains potential anti-sarcopenia active compounds. These compounds play a role by regulating the proteins implicated in regulating aging and inflammation related signaling pathways, which are crucial in pathogenesis of sarcopenia. Our study provides new insights into the development of a natural therapy for the prevention and treatment of sarcopenia. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01029-x.
Collapse
Affiliation(s)
- Xingqi Zhao
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Feifei Yuan
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Haoyang Wan
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hanjun Qin
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Nan Jiang
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Bin Yu
- Division of Orthopaedics and Traumatology, Department of Orthopaedics & Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
28
|
Li C, Pan J, Xu C, Jin Z, Chen X. A Preliminary Inquiry Into the Potential Mechanism of Huang-Lian-Jie-Du Decoction in Treating Rheumatoid Arthritis via Network Pharmacology and Molecular Docking. Front Cell Dev Biol 2022; 9:740266. [PMID: 35127697 PMCID: PMC8807552 DOI: 10.3389/fcell.2021.740266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
Huang-Lian-Jie-Du decoction (HLJDD) has been widely applied to treat inflammation-associated diseases for thousands of years in China. However, the concrete molecular mechanism of HLJDD in the treatment of rheumatoid arthritis (RA) remains unclear. In this work, network pharmacology and molecular docking were applied to preliminarily analyze the potential active ingredients, drug targets, and related pathways of HLJDD on treating RA. A total of 102 active compounds with corresponding 189 targets were identified from HLJDD, and 41 common targets were further identified by intersecting with RA-related targets. Functional enrichment analysis was performed to screen the biological pathways associated with RA. Ten hub targets were further identified through constructing the protein–protein interaction (PPI) network of common targets, which were mainly enriched in the interleukin-17 (IL-17) signaling pathway, tumor necrosis factor (TNF) signaling pathway, and Toll-like receptor signaling pathway. Furthermore, a complex botanical drugs-ingredients-hub-targets-disease network was successfully constructed. The molecular docking results exhibited that these vital ingredients of HLJDD had a stable binding to the hub targets. Among these ingredients, quercetin (MOL000098) was the most common molecule with stable binding to all the targets, and PTGS2 was considered the most important target with multiple regulations by the most active ingredients. In vitro, we successfully validated the inhibitory role of quercetin in the cellular proliferation of human RA fibroblast-like synoviocyte cell line (MH7A cells). These findings indicated that the potential mechanisms of HLJDD for RA treatment might be attributed to inhibiting the immune-inflammatory response, reducing the release of chemokines, and alleviating the destruction of extracellular matrix (ECM) in the synovial compartment.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chang Xu
- Department of Intensive Care Unit, Hua Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Zhenlin Jin
- Department of Hematopathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xupeng Chen, ; Zhenlin Jin ,
| | - Xupeng Chen
- Department of Gastroenterology, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xupeng Chen, ; Zhenlin Jin ,
| |
Collapse
|
29
|
Zhang YL, Yin Q, Peng HM, Huang R, Zhou JW, Liu LH, Gao HQ, Zhao CP, Peng XH, Xiao L, Nie J, Yang QC, He CY, Hu GS, Chen JC, Jia JM, Fang JB. Network pharmacology analysis and experimental validation to explore the mechanism of Hanchuan Zupa Granule in asthma. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114534. [PMID: 34419609 DOI: 10.1016/j.jep.2021.114534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hanchuan Zupa Granule (HCZP) is a classic prescription of Uyghur medicine, that is used for cough and abnormal mucinous asthma caused by a cold and "Nai-Zi-Lai". AIM OF THE STUDY This study aimed to explore the possible molecular mechanism of HCZP in the treatment of asthma, using a network pharmacology method and in vivo experiments. MATERIALS AND METHODS First, we conducted qualitative analysis of the chemical composition of HCZP as a basis for network pharmacology analysis. Using network pharmacology tools, the possible signaling pathways of HCZP in the treatment of asthma were obtained. An OVA-sensitized asthma model was established, and HCZP was continuously administered for one week. BALF was collected for cell counting, and serum and lung tissues were collected to analyze the expression of IgE, IL-4, IL-5, IL-13 and IFN-γ. Hematoxylin & eosin (H&E) staining was performed to assess the pathological changes in the lung tissues. Related protein expression in the lung tissues was analyzed by Western blotting for molecular mechanism exploration. RESULTS Fifty-six chemical compounds were identified by UPLC Q-TOF MS. According to the network pharmacology results, 18 active compounds were identified among the 56 compounds, and 68 target genes of HCZP in the treatment of asthma were obtained. A total of 19 pathways were responsible for asthma (P < 0.05) according to KEGG pathway analysis. In vivo results showed that OVA sensitivity induced increased respiratory system resistance and inflammatory responses, which included inflammatory cell infiltration and high levels of IgE, IL-4, IL-5 and IL-13 in serum and lung tissues. Furthermore, OVA upregulated p-PI3K, p-JNK and p-p38 expression in lung tissues. Moreover, HCZP treatment significantly downregulated respiratory system resistance, and the expression of IL-4, IL-5, IL-13 and IgE, as well as significantly improved inflammatory cell infiltration in lung tissues. Moreover, the protein expression of p-PI3K, p-JNK and p-p38 in lung tissues decreased after HCZP treatment. CONCLUSION HCZP significantly inhibited the OVA-induced inflammatory response via the PI3K-Akt and Fc epsilon RI signaling pathways.
Collapse
Affiliation(s)
- Ya-Li Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China; School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Qiang Yin
- Xinjiang Uygur Pharmaceutical Co., Ltd, No. 2, Shenyang Street, Urumqi Economic and Technological Development Zone, Toutunhe District, Xinjiang Uygur Autonomous Region, Urumqi, 830026, Xinjiang, China.
| | - Hui-Ming Peng
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Huang
- Department of Ophthalmology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China.
| | - Jie-Wen Zhou
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lin-Hui Liu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Han-Qi Gao
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chuan-Peng Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Xin-Hang Peng
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Ling Xiao
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Jing Nie
- Hubei Institute for Drug Control, Wuhan, 430064, China.
| | - Quan-Cheng Yang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chun-Ye He
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Gao-Sheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jia-Chun Chen
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Han L, Kou J, Hu K, Wang Y, Tang Z, Wu Z, Song X. Protective effects of Re-yan-ning mixture on Streptococcus pneumonia in rats based on network pharmacology. PHARMACEUTICAL BIOLOGY 2021; 59:209-221. [PMID: 33678123 PMCID: PMC7939573 DOI: 10.1080/13880209.2021.1872653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/30/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
CONTEXT Re-yan-ning mixture (RYNM) is a new national drug approved by China's State Food and Drug Administration for the treatment of colds, simple pneumonia and acute bronchitis. OBJECTIVE To determine the mechanism of action of RYNM in the treatment of bacterial pneumonia. MATERIALS AND METHODS Using the network pharmacology approach, the multiple components, component candidate targets and multiple therapeutic targets of RYNM were screened and functionally enriched. Also, we established a rat Streptococcus pneumonia model to verify the results of network pharmacology enrichment analysis. Forty male SPF Sprague Dawley rats were divided into four groups of 10 rats: control (normal saline), model (normal saline), levofloxacin-intervened and RYNM-intervened groups. IL-10, NOS2, COX-1, IL-6, TNF-α and NF-κB in serum and BALF were detected by ELISA. Western blot detected IL-17, IL-6, TNF-α, COX-2 and Bcl-2. RESULTS The network pharmacology approach successfully identified 48 bioactive components in RYNM, and 65 potential targets and 138 signal pathways involved in the treatment of Streptococcus pneumonia with RYNM. The in vivo experiments indicated that model group has visible inflammation and lesions while RYNM and levofloxacin groups have not. The RYNM exhibited its therapeutic effects on Streptococcus pneumonia mainly via the regulation of cell proliferation and survival through the IL-6/IL-10/IL-17, Bax/Bcl-2, COX-1/COX-2, NF-κB and TNF-α signalling pathways. DISCUSSION AND CONCLUSIONS The present study demonstrated the protective effects of RYNM on Streptococcus pneumonia, providing a potential mechanism for the treatment of bacterial pneumonia with RYNM.
Collapse
Affiliation(s)
- Lizhu Han
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Kou
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Kunxia Hu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yunlan Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhishu Tang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhisheng Wu
- College of Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Song
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
31
|
Wu C, Huang ZH, Meng ZQ, Fan XT, Lu S, Tan YY, You LM, Huang JQ, Stalin A, Ye PZ, Wu ZS, Zhang JY, Liu XK, Zhou W, Zhang XM, Wu JR. A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med 2021; 16:121. [PMID: 34809653 PMCID: PMC8607619 DOI: 10.1186/s13020-021-00534-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Compound kushen injection (CKI), a Chinese patent drug, is widely used in the treatment of various cancers, especially neoplasms of the digestive system. However, the underlying mechanism of CKI in pancreatic cancer (PC) treatment has not been totally elucidated. METHODS Here, to overcome the limitation of conventional network pharmacology methods with a weak combination with clinical information, this study proposes a network pharmacology approach of integrated bioinformatics that applies a weighted gene co-expression network analysis (WGCNA) to conventional network pharmacology, and then integrates molecular docking technology and biological experiments to verify the results of this network pharmacology analysis. RESULTS The WGCNA analysis revealed 2 gene modules closely associated with classification, staging and survival status of PC. Further CytoHubba analysis revealed 10 hub genes (NCAPG, BUB1, CDK1, TPX2, DLGAP5, INAVA, MST1R, TMPRSS4, TMEM92 and SFN) associated with the development of PC, and survival analysis found 5 genes (TSPOAP1, ADGRG6, GPR87, FAM111B and MMP28) associated with the prognosis and survival of PC. By integrating these results into the conventional network pharmacology study of CKI treating PC, we found that the mechanism of CKI for PC treatment was related to cell cycle, JAK-STAT, ErbB, PI3K-Akt and mTOR signalling pathways. Finally, we found that CDK1, JAK1, EGFR, MAPK1 and MAPK3 served as core genes regulated by CKI in PC treatment, and were further verified by molecular docking, cell proliferation assay, RT-qPCR and western blot analysis. CONCLUSIONS Overall, this study suggests that the optimized network pharmacology approach is suitable to explore the molecular mechanism of CKI in the treatment of PC, which provides a reference for further investigating biomarkers for diagnosis and prognosis of PC and even the clinical rational application of CKI.
Collapse
Affiliation(s)
- Chao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zhi-Hong Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Zi-Qi Meng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xiao-Tian Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shan Lu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ying-Ying Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Lei-Ming You
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia-Qi Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
| | - Pei-Zhi Ye
- National Cancer Center/National Clinical Research Center for Cancer/Chinese Medicine Department of the Caner Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Shan Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jing-Yuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xin-Kui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Wei Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiao-Meng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jia-Rui Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
32
|
Qin J, Lv M, Jiang Z, Meng X, Wang Y, Cui J, Wang J, Wang Q. Tuo-Min-Ding-Chuan Decoction Alleviate Ovalbumin-Induced Allergic Asthma by Inhibiting Mast Cell Degranulation and Down-Regulating the Differential Expression Proteins. Front Pharmacol 2021; 12:725953. [PMID: 34630102 PMCID: PMC8493414 DOI: 10.3389/fphar.2021.725953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Allergic asthma is a stubborn chronic inflammatory disease, and is considered a co-result of various immune cells, especially mast cells, eosinophils and T lymphocytes. At present, the treatment methods of allergic asthma are limited and the side effects are obvious. Traditional Chinese medicine has been used to treat diseases for thousands of years in China. One such example is the treatment of allergic asthma, which take the characteristics of less adverse reactions and obvious curative effect. Tuo-Min-Ding-Chuan Decoction (TMDCD) is a traditional Chinese medicine compound for the treatment of allergic asthma optimized from Ma-Xing-Gan-Shi Decoction (MXGSD), which was put forward in Treatise on Febrile Diseases by Zhang Zhongjing in the Eastern Han Dynasty. The compound shows a significant clinical effect, but the mechanism of its influence on the immune system is still unclear. The purpose of this study was to observe whether TMDCD could alleviate the symptoms of ovalbumin (OVA) challenged allergic asthma mice, and to explore its immune regulatory mechanism, especially on mast cell (MC) degranulation. The results showed TMDCD could not only reduce the airway hyperresponsiveness (AHR), inflammatory cell infiltration and mucus secretion in the lung tissue of OVA challenged mice, but also decrease the levels of total IgE, OVA-specific IgE, histamine and LTC4 in serum. We found that TMDCD can downregulate the expression of Fractalkine, Tryptase ε, IL-25, CCL19, MCP-1, OX40L, Axl, CCL22, CD30, G-CSF, E-selectin, OPN, CCL5, P-selectin, Gas6, TSLP in OVA challenged mice serum by using mouse cytokines antibody array. It has been reported in some literatures that these differentially expressed proteins are related to the occurrence of allergic asthma, such as tryptase ε, MCP-1, CCL5, etc. can be released by MC. And the results of in vitro experiments showed that TMDCD inhibited the degranulation of RBL-2H3 cells stimulated by DNP-IgE/BSA. Taken together, we made the conclusion that TMDCD could reduce the infiltration of inflammatory cells in lung tissue and alleviate airway remodeling in mice with allergic asthma, showed the effects of anti-inflammatory and antiasthmatic. TMDCD could also reduce the levels of IgE, histamine, LTC4, Tryptase ε, and other MC related proteins in the serum of allergic asthma mice, and the in vitro experiments showed that TMDCD could inhibit IgE mediated degranulation and histamine release of RBL-2H3 cells, proved its anti allergic effect.
Collapse
Affiliation(s)
- Jingbo Qin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Mingsheng Lv
- Respiratory Department, BUCM Third Affiliated Hospital, Beijing, China
| | - Zeqiang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Xianghe Meng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Yi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Jiarui Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China
| | - Ji Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, BUCM, Beijing, China
| | - Qi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine (BUCM), Beijing, China.,National Institute of TCM Constitution and Preventive Medicine, BUCM, Beijing, China
| |
Collapse
|
33
|
Exploring the mechanism of Jianpi Qushi Huayu Formula in the treatment of chronic glomerulonephritis based on network pharmacology. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2451-2470. [PMID: 34618179 DOI: 10.1007/s00210-021-02159-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/13/2021] [Indexed: 01/17/2023]
Abstract
This study was to explore the effective components, potential targets, and pathways of Jianpi Qushi Huayu Formula (JQHF) for the treatment of chronic glomerulonephritics (CGN). First, the Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), GeneCards, and OMIM databases were used to collect the major active components of JQHF and potential therapeutic targets of CGN. Then, functional enrichment analysis was performed to clarify the mechanisms of the JQHF on CGN. Subsequently, molecular docking was simulated to assess the binding ability of key targets and major active components. Finally, quantitative real-time PCR and western blot were performed for experimental verification of cells in vitro. A total of 55 active ingredients contained and 220 putative identified targets were screened from JQHF, of which 112 overlapped with the targets of CGN and were considered potential therapeutic targets. Then, we found quercetin and kaempferol are two key ingredients of JQHF, which may act on the top 10 screened targets of PPI, affecting CGN through related signal transduction pathways. Subsequently, molecular docking predicted that quercetin and kaempferol bind firm with the top 10 core targets of PPI. Further experiment verified some results and showed that JQHF has protected glomerular mesangial cells from lipopolysaccharide-induced inflammation by inhibiting expressions of IL6, TNF-α, and AKT1, and activating expressions of VEGFA. Based on network pharmacology, we explored the multi-component, multi-target, and multi-pathway characteristics of JQHF in treating CGN, and found that JQHF could act on IL6, TNF-α, VEGFA, and AKT1 to exert the effect of anti-CGN, which provided new ideas and methods for further research on the mechanism of JQHF in treating CGN.
Collapse
|
34
|
Integrating systematic pharmacology-based strategy and experimental validation to explore the synergistic pharmacological mechanisms of Guanxin V in treating ventricular remodeling. Bioorg Chem 2021; 115:105187. [PMID: 34303037 DOI: 10.1016/j.bioorg.2021.105187] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Guanxin V (GXV) has been widely used to treat ventricular remodeling (VR) in clinical practice in China. However, the underlying mechanisms are currently still lack. METHODS A systematic pharmacology-based strategy was utilized for predicting the synergistic pharmacological mechanisms of GXV in VR. The active compounds of GXV were selected and then the potential targets of these compounds contained in GXV and VR were successively identified. Then, after networks were constructed, DAVID was applied to functional enrichment. Moreover, the key findings were validated though molecular docking and molecular biology experiments. RESULTS A total of 119 active components in GXV and 169 potential targets shared between GXV and VR were obtained. The results of functional enrichment indicated that several biological processes and signaling pathways, mainly cell apoptosis and fibrosis. Finally, we discovered GXV produced marked anti-apoptosis and anti-fibrosis effects in VR though Caspase-3 and TGF-β1. CONCLUSION GXV could relieve and reverse VR through anti-apoptosis and anti-fibrosis effects predicted by systematic pharmacology and validated by molecular docking and molecular experiments. Our study deepens the understanding of the molecular mechanisms of GXV in treating VR.
Collapse
|
35
|
Determining the Traditional Chinese Medicine (TCM) Syndrome with the Best Prognosis of HBV-Related HCC and Exploring the Related Mechanism Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9991533. [PMID: 34306165 PMCID: PMC8263254 DOI: 10.1155/2021/9991533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/04/2021] [Accepted: 06/21/2021] [Indexed: 02/08/2023]
Abstract
Background In traditional Chinese medicine (TCM), TCM syndrome is a key guideline, and Chinese materia medicas are widely used to treat hepatitis B virus- (HBV-) related hepatocellular carcinoma (HCC) according to different TCM syndromes. However, the prognostic value of TCM syndromes in HBV-related HCC patients has never been studied. Methods A retrospective cohort of HBV-related HCC patients at Shenzhen Traditional Chinese Medicine Hospital from December 2005 to October 2017 was analyzed. The prognostic value of TCM syndromes in HBV-related HCC patients was assessed by Kaplan–Meier survival curves and Cox analysis, and the TCM syndrome with the best prognosis of HBV-related HCC patients was determined. To further study the relevant mechanisms, key Chinese materia medicas (KCMMs) for the TCM syndrome with the best prognosis were summarized, and network pharmacology was also performed. Results A total of 207 HBV-related HCC patients were included in this research, and we found that HBV-related HCC patients with TCM excess syndrome had better OS. Then, a total of eight KCMMs for TCM excess syndrome were identified, whose crucial ingredients included quercetin, beta-sitosterol, kaempferol, luteolin, and XH-14, and KCMMs could play a therapeutic role through MAPK, JAK-STAT, Wnt, Hippo, and other pathways. Moreover, TP53, SRC, STAT3, MAPK3, PIK3R1, HRAS, VEGFA, HSP90AA1, EGFR, and JAK2 were determined as the key targets. Conclusion We propose a new research method of “prognosis of TCM syndromes-KCMMs-network pharmacology” to reveal the prognostic value of TCM syndromes and the potential mechanism by which TCM syndromes affect prognosis.
Collapse
|
36
|
Li S, Wang Y, Li C, Yang N, Yu H, Zhou W, Chen S, Yang S, Li Y. Study on Hepatotoxicity of Rhubarb Based on Metabolomics and Network Pharmacology. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1883-1902. [PMID: 33976539 PMCID: PMC8106470 DOI: 10.2147/dddt.s301417] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Background Rhubarb, as a traditional Chinese medicine, is the preferred drug for the treatment of stagnation and constipation in clinical practice. It has been reported that rhubarb possesses hepatotoxicity, but its mechanism in vivo is still unclear. Methods In this study, the chemical components in rhubarb were identified based on UPLC-Q-TOF/MS combined with data postprocessing technology. The metabolic biomarkers obtained through metabolomics technology were related to rhubarb-induced hepatotoxicity. Furthermore, the potential targets of rhubarb-induced hepatotoxicity were obtained by network pharmacology involving the above components and metabolites. Meanwhile, GO gene enrichment analysis and KEGG pathway analysis were performed on the common targets. Results Twenty-eight components in rhubarb were identified based on UPLC-Q-TOF/MS, and 242 targets related to rhubarb ingredients were predicted. Nine metabolic biomarkers obtained through metabolomics technology were closely related to rhubarb-induced hepatotoxicity, and 282 targets of metabolites were predicted. Among them, the levels of 4 metabolites, namely dynorphin B (10–13), cervonoyl ethanolamide, lysoPE (18:2), and 3-hydroxyphenyl 2-hydroxybenzoate, significantly increased, while the levels of 5 metabolites, namely dopamine, biopterin, choline, coenzyme Q9 and P1, P4-bis (5ʹ-uridyl) tetraphosphate significantly decreased. In addition, 166 potential targets of rhubarb-induced hepatotoxicity were obtained by network pharmacology. The KEGG pathway analysis was performed on the common targets to obtain 46 associated signaling pathways. Conclusion These data suggested that rhubarb may cause liver toxicity due to its action on dopamine D1 receptor (DRD1), dopamine D2 receptor (DRD2), phosphodiesterase 4B (PDE4B), vanilloid receptor (TRPV1); transient receptor potential cation channel subfamily M member 8 (TRPM8), prostanoid EP2 receptor (PTGER2), acetylcholinesterase (ACHE), muscarinic acetylcholine receptor M3 (CHRM3) through the cAMP signaling pathway, cholinergic synapses, and inflammatory mediators to regulate TRP channels. Metabolomics technology and network pharmacology were integrated to explore rhubarb hepatotoxicity to promote the reasonable clinical application of rhubarb.
Collapse
Affiliation(s)
- Shanze Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Chunyan Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Na Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Hongxin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Wenjie Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Siyu Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shenshen Yang
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
37
|
Chen J, Li LF, Hu XR, Wei F, Ma S. Network Pharmacology-Based Strategy for Elucidating the Molecular Basis Forthe Pharmacologic Effects of Licorice ( Glycyrrhiza spp.). Front Pharmacol 2021; 12:590477. [PMID: 33995004 PMCID: PMC8114075 DOI: 10.3389/fphar.2021.590477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Licorice (Glycyrrhiza spp.) is used widely in traditional Chinese medicine (TCM) due to its numerous pharmacologic effects. However, the mechanisms of action of the chemical constituents of licorice and their structure–function relationships are not fully understood. To address these points, we analyzed the chemical compounds in licorice listed in the TCM Systems Pharmacology database and TCM Integrated database. Target proteins of the compounds were predicted using Integrative Pharmacology-based Research Platform of TCM v2.0. Information on the pharmacologic effects of licorice was obtained from the 2020 Chinese Pharmacopoeia, and disease-related genes that have been linked to these effects were identified from the Encyclopedia of TCM database. Pathway analyses using the Kyoto Encyclopedia of Genes and Genomes database were carried out for target proteins, and pharmacologic networks were constructed based on drug target–disease-related gene and protein–protein interactions. A total of 451 compounds were analyzed, of which 211 were from the medicinal parts of the licorice plant. The 241 putative targets of 106 bioactive compounds in licorice comprised 52 flavonoids, 47 triterpenoids, and seven coumarins. Four distinct pharmacologic effects of licorice were defined: 61 major hubs were the putative targets of 23 compounds in heat-clearing and detoxifying effects; 68 were targets of six compounds in spleen-invigorating and qi-replenishing effects; 28 were targets of six compounds in phlegm-expulsion and cough-suppressant effects; 25 compounds were targets of six compounds in spasm-relieving and analgesic effects. The major bioactive compounds of licorice were identified by ultra-high-performance liquid chromatography–quadrupole time-of-flight–tandem mass spectrometry. The anti-inflammatory properties of liquiritin apioside, liquiritigenin, glycyrrhizic acid and isoliquiritin apioside were demonstrated by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. Liquiritin apioside, liquiritigenin, isoliquiritin, isoliquiritin apioside, kaempferol, and kumatakenin were the main active flavonoids, and 18α- and 18β-glycyrrhetinic acid were the main active triterpenoids of licorice. The former were associated with heat-clearing and detoxifying effects, whereas the latter were implicated in the other three pharmacologic effects. Thus, the compounds in licorice have distinct pharmacologic effects according to their chemical structure. These results provide a reference for investigating the potential of licorice in treatment of various diseases.
Collapse
Affiliation(s)
- Jia Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Lin-Fu Li
- College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Xiao-Ru Hu
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Feng Wei
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| | - Shuangcheng Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Institute for Control of Chinese Traditional Medicine and Ethnic Medicine (ICCTMEM), National Institutes for Food and Drug Control (NIFDC), Beijing, China
| |
Collapse
|
38
|
Wu J, Sun B, Hou L, Guan F, Wang L, Cheng P, Scobell S, Cheng YC, Lam W. Prospective: Evolution of Chinese Medicine to Treat COVID-19 Patients in China. Front Pharmacol 2021; 11:615287. [PMID: 33716728 PMCID: PMC7947616 DOI: 10.3389/fphar.2020.615287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
During the outbreak of the novel coronavirus disease (COVID-19), the Chinese government took a series of public health measures to tackle the outbreak and recommended six traditional Chinese medicine (TCM) evolved formulas, collectively referred to as "3-drugs-3-formulas", for the treatment. In this prospective article, we will discuss how these six formulas evolved from TCM and what their underlying mechanisms of actions may be by evaluating the historical usage of the component formulas, the potential targeted pathways for the individual herbs used by STAR (signal transduction activity response) database from our laboratory, and the pathogenesis of COVID-19. Five of the six recommended formulas are administered orally, while the sixth is taken as an injection. Five classic categories of herbs in the six formulas including "Qing-Re", "Qu-Shi", "Huo-Xue", "Bu-Yi" and "Xing-Qi" herbs are used based on different stages of disease. All five oral formulas build upon the core formula Maxingshigan Decoction (MD) which has anti-inflammatory and perhaps antiviral actions. While MD can have some desired effects, it may not be sufficient to treat COVID-19 on its own; consequently, complementary classic formulas and/or herbs have been added to potentiate each recommended formula's anti-inflammatory, and perhaps anti-renin-angiotensin system (RAS)-mediated bradykinin storm (RBS) and antiviral effects to address the unique medical needs for different stages of COVID-19. The key actions of these formulas are likely to control systemic inflammation and/or RBS. The usage of Chinese medicine in the six formulas is consistent with the pathogenesis of COVID-19. Thus, an integrative systems biology approach-combining botanical treatments of conventional antiviral, anti-inflammatory or anti-RBS drugs to treat COVID-19 and its complications - should be explored.
Collapse
Affiliation(s)
- Jieya Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Baoguo Sun
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Li Hou
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fulan Guan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Liyuan Wang
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Institute of TCM and Health Development, Jiangxi University of Traditional Chinese Medicine, Jiangxi, China
| | - Peikwen Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
- Yiviva, Inc., New York, NY, United States
| | - Sophia Scobell
- Department of Biology, Wesleyan University, Middletown, CT, United States
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
39
|
Network Pharmacology Interpretation of Fuzheng-Jiedu Decoction against Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:4652492. [PMID: 33688358 PMCID: PMC7914091 DOI: 10.1155/2021/4652492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/03/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022]
Abstract
Introduction Traditional Chinese medicine (TCM) believes that the pathogenic factors of colorectal cancer (CRC) are “deficiency, dampness, stasis, and toxin,” and Fuzheng–Jiedu Decoction (FJD) can resist these factors. In this study, we want to find out the potential targets and pathways of FJD in the treatment of CRC and also explain from a scientific point of view that FJD multidrug combination can resist “deficiency, dampness, stasis, and toxin.” Methods We get the composition of FJD from the TCMSP database and get its potential target. We also get the potential target of colorectal cancer according to the OMIM Database, TTD Database, GeneCards Database, CTD Database, DrugBank Database, and DisGeNET Database. Subsequently, PPI analysis, KEGG pathways analysis, and GO biological processes analysis were carried out for the target of FJD in the therapy of colorectal cancer. In addition, we have also built a relevant network diagram. Results In this study, we identified four core compounds of FJD in the therapy of colorectal cancer, including quercetin, kaempferol, beta-sitosterol, and stigmasterol. At the same time, we also obtained 30 core targets, including STAT3, INS, TP53, VEGFA, AKT1, TNF, IL6, JUN, EGF, CASP3, MAPK3, MAPK1, MAPK8, SRC, IGF1, CCND1, ESR1, EGFR, PTEN, MTOR, FOS, PTGS2, CXCL8, HRAS, CDH1, BCL2L1, FN1, MMP9, ERBB2, and JAK2. FJD treatment of colorectal cancer mainly involves 112 KEGG pathways, including FoxO (hsa04068) signaling pathway, PI3K-Akt (hsa04151) signaling pathway, HIF-1 (hsa04066) signaling pathway, T cell receptor (hsa04660) signaling pathway, and ErbB (hsa04012) signaling pathway. At the same time, 330 GO biological processes were summarized, including cell proliferation, cell apoptosis, angiogenesis, inflammation, and immune. Conclusions In this study, we found that FJD can regulate cell proliferation, apoptosis, inflammation and immunity, and angiogenesis through PI3K-Akt signaling pathway to play an anti-CRC effect.
Collapse
|
40
|
Bai X, Tang Y, Li Q, Chen Y, Liu D, Liu G, Fan X, Ma R, Wang S, Li L, Zhou K, Zheng Y, Liu Z. Network pharmacology integrated molecular docking reveals the bioactive components and potential targets of Morinda officinalis-Lycium barbarum coupled-herbs against oligoasthenozoospermia. Sci Rep 2021; 11:2220. [PMID: 33500463 PMCID: PMC7838196 DOI: 10.1038/s41598-020-80780-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Oligoasthenozoospermia (OA) is one of the most common types of male infertility affecting sperm count and sperm motility. Unfortunately, it is difficult for existing drugs to fundamentally improve the sperm quality of OA patients, because the pathological mechanism of OA has not been fully elucidated yet. Morinda officinalis-Lycium barbarum coupled-herbs (MOLBCH), as traditional Chinese Medicines, has been widely used for treating OA over thousands of years, but its molecular mechanism is still unclear. For this purpose, we adopted a comprehensive approach integrated network pharmacology and molecular docking to reveal the bioactive components and potential targets of MOLBCH against OA. The results showed that MOLBCH alleviated apoptosis, promoted male reproductive function, and reduced oxidant stress in the treatment of OA. Ohioensin-A, quercetin, beta-sitosterol and sitosterol were the key bioactive components. Androgen receptor (AR), Estrogen receptor (ESR1), Mitogen-activated protein kinase 3 (MAPK3), RAC-alpha serine/threonine-protein kinase (AKT1), Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were the core potential targets. PI3K/Akt signaling pathway, prostate cancer, AGE-RAGE signaling pathway in diabetic complications were the most representative pathways. Moreover, molecular docking was performed to validate the strong binding interactions between the obtained core components and targets. These observations provide deeper insight into the pathogenesis of OA and can be used to design new drugs and develop new therapeutic instructions to treat OA.
Collapse
Affiliation(s)
- Xue Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yafei Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guimin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaolei Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ru Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shuyan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Lingru Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kailin Zhou
- School of Humanities, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yanfei Zheng
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
41
|
Wang LL, Liao C, Li XQ, Dai R, Ren QW, Shi HL, Wang XP, Feng XS, Chao X. Systems Pharmacology-Based Identification of Mechanisms of Action of Bolbostemma paniculatum for the Treatment of Hepatocellular Carcinoma. Med Sci Monit 2021; 27:e927624. [PMID: 33436534 PMCID: PMC7812697 DOI: 10.12659/msm.927624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Traditional Chinese medicine has widely used Bolbostemma paniculatum to treat diseases, including cancer, but its underlying mechanisms remain unclear. The present study aimed to elucidate the potential pharmacological mechanisms of “Tu Bei Mu” (TBM), the Chinese name for Bolbostemmatis Rhizoma, the dry tuber of B. paniculatum, for the treatment of hepatocellular carcinoma (HCC). Material/Methods The active components and putative therapeutic targets of TBM were explored using SwissTargetPrediction, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and Search Tool for Interactions of Chemicals (STITCH). The HCC-related target database was built using DrugBank, DisGeNet, Online Mendelian Inheritance in Man (OMIM), and Therapeutic Target Database (TTD). A protein–protein interaction network of the common targets was constructed, based on the matches between TBM potential targets and HCC-related targets, using Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the cluster networks were used to elucidate the biological functions of TBM. Results Pharmacological network diagrams of the TBM compound-target network and HCC-related target network were successfully constructed. A total of 22 active components, 191 predicted biological targets of TBM, and 3775 HCC-related targets were identified. Through construction of an HCC-related target database and a protein–protein interaction network of the common targets, TBM was predicted to be effective in treating HCC mainly through the PI3K-Akt, HIF-1, p53, and PPAR signaling pathways. Conclusions The PI3K/Akt, HIF1, p53, and PPAR pathways may play vital roles in TBM treatment of HCC. Also, the potential anti-cancer effect of TBM on HCC appears to stem from the synergetic effect of multiple targets and mechanisms.
Collapse
Affiliation(s)
- Lan-Lan Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Chen Liao
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Xiao-Qiang Li
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Rong Dai
- Department of Pharmacology, Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Qing-Wei Ren
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Hai-Long Shi
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xiao-Ping Wang
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xue-Song Feng
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| | - Xu Chao
- College of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland).,The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
42
|
Deng X, Liang Y, Hu J, Yang Y. Studies on the Mechanism of Gegen Qinlian Decoction in Treating Diabetes Mellitus Based on Network Pharmacology. Nat Prod Commun 2021. [DOI: 10.1177/1934578x20982138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease that is very common and seriously threatens patient health. Gegen Qinlian decoction (GQD) has long been applied clinically, but its mechanism in pharmacology has not been extensively and systematically studied. A GQD protein interaction network and diabetes protein interaction network were constructed based on the methods of system biology. Functional module analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Gene Ontology (GO) enrichment analysis were carried out on the 2 networks. The hub nodes were filtered by comparative analysis. The topological parameters, interactions, and biological functions of the 2 networks were analyzed in multiple ways. By applying GEO-based external datasets to verify the results of our analysis that the Gene Set Enrichment Analysis (GSEA) displayed metabolic pathways in which hub genes played roles in regulating different expression states. Molecular docking is used to verify the effective components that can be combined with hub nodes. By comparing the 2 networks, 24 hub targets were filtered. There were 7 complex relationships between the networks. The results showed 4 topological parameters of the 24 selected hub targets that were much higher than the median values, suggesting that these hub targets show specific involvement in the network. The hub genes were verified in the GEO database, and these genes were closely related to the biological processes involved in glucose metabolism. Molecular docking results showed that 5,7,2', 6'-tetrahydroxyflavone, magnograndiolide, gancaonin I, isoglycyrol, gancaonin A, worenine, and glyzaglabrin produced the strongest binding effect with 10 hub nodes. This compound–target mode of interaction may be the main mechanism of action of GQD. This study reflected the synergistic characteristics of multiple targets and multiple pathways of traditional Chinese medicine and discussed the mechanism of GQD in the treatment of DM at the molecular pharmacological level.
Collapse
Affiliation(s)
- Xiaodong Deng
- Department of Pharmacy, Panyu Central Hospital, Guangzhou, China
| | - Yuhua Liang
- Department of Pharmacy, Panyu Central Hospital, Guangzhou, China
| | - Jianmei Hu
- Department of Pharmacy, Panyu Central Hospital, Guangzhou, China
| | - Yuhui Yang
- Department of Pharmacy, Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
43
|
Tan X, Pei W, Xie C, Wang Z, Mao T, Zhao X, Kou F, Lu Q, Sun Z, Xue X, Li J. Network Pharmacology Identifies the Mechanisms of Action of Tongxie Anchang Decoction in the Treatment of Irritable Bowel Syndrome with Diarrhea Predominant. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2723705. [PMID: 33281910 PMCID: PMC7685835 DOI: 10.1155/2020/2723705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
AIM This study aims to uncover the pharmacological mechanism of Tongxie Anchang Decoction (TXACD), a new and effective traditional Chinese medicine (TCM) prescription, for treating irritable bowel syndrome with diarrhea predominant (IBS-D) using network pharmacology. METHODS The active compounds and putative targets of TXACD were retrieved from TCMSP database and published literature; related target genes of IBS-D were retrieved from GeneCards; PPI network of the common target hub gene was constructed by STRING. Furthermore, these hub genes were analyzed using gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS A total of 54 active compounds and 639 targets were identified through a database search. The compound-target network was constructed, and the key compounds were screened out according to the degree. By using the PPI and GO and KEGG enrichment analyses, the pharmacological mechanism network of TXACD in the treatment of IBS-D was constructed. CONCLUSIONS This study revealed the possible mechanisms by which TXACD treatment alleviated IBS-D involvement in the modulation of multiple targets and multiple pathways, including the immune regulation, inflammatory response, and oxidative stress. These findings provide novel insights into the regulatory role of TXACD in the prevention and treatment of IBS-D and hold promise for herb-based complementary and alternative therapy.
Collapse
Affiliation(s)
- Xiang Tan
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Wenjing Pei
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Chune Xie
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Zhibin Wang
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Tangyou Mao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Xingjie Zhao
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Fushun Kou
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Qiongqiong Lu
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Zhongmei Sun
- Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Xiaoxuan Xue
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Junxiang Li
- Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
44
|
Liang B, Zhang XX, Gu N. Virtual screening and network pharmacology-based synergistic mechanism identification of multiple components contained in Guanxin V against coronary artery disease. BMC Complement Med Ther 2020; 20:345. [PMID: 33187508 PMCID: PMC7664106 DOI: 10.1186/s12906-020-03133-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Guanxin V (GXV), a traditional Chinese medicine (TCM), has been widely used to treat coronary artery disease (CAD) in clinical practice in China. However, research on the active components and underlying mechanisms of GXV in CAD is still scarce. METHODS A virtual screening and network pharmacological approach was utilized for predicting the pharmacological mechanisms of GXV in CAD. The active compounds of GXV based on various TCM-related databases were selected and then the potential targets of these compounds were identified. Then, after the CAD targets were built through nine databases, a PPI network was constructed based on the matching GXV and CAD potential targets, and the hub targets were screened by MCODE. Moreover, Metascape was applied to GO and KEGG functional enrichment. Finally, HPLC fingerprints of GXV were established. RESULTS A total of 119 active components and 121 potential targets shared between CAD and GXV were obtained. The results of functional enrichment indicated that several GO biological processes and KEGG pathways of GXV mostly participated in the therapeutic mechanisms. Furthermore, 7 hub MCODEs of GXV were collected as potential targets, implying the complex effects of GXV-mediated protection against CAD. Six specific chemicals were identified. CONCLUSION GXV could be employed for CAD through molecular mechanisms, involving complex interactions between multiple compounds and targets, as predicted by virtual screening and network pharmacology. Our study provides a new TCM for the treatment of CAD and deepens the understanding of the molecular mechanisms of GXV against CAD.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | | | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
45
|
Wang B, Wu Z, Wang J, Li W, Liu G, Zhang B, Tang Y. Insights into the mechanism of Arnebia euchroma on leukemia via network pharmacology approach. BMC Complement Med Ther 2020; 20:322. [PMID: 33109189 PMCID: PMC7590697 DOI: 10.1186/s12906-020-03106-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Arnebia euchroma (A. euchroma) is a traditional Chinese medicine (TCM) used for the treatment of blood diseases including leukemia. In recent years, many studies have been conducted on the anti-tumor effect of shikonin and its derivatives, the major active components of A. euchroma. However, the underlying mechanism of action (MoA) for all the components of A. euchroma on leukemia has not been explored systematically. METHODS In this study, we analyzed the MoA of A. euchroma on leukemia via network pharmacology approach. Firstly, the chemical components and their concentrations in A. euchroma as well as leukemia-related targets were collected. Next, we predicted compound-target interactions (CTIs) with our balanced substructure-drug-target network-based inference (bSDTNBI) method. The known and predicted targets of A. euchroma and leukemia-related targets were merged together to construct A. euchroma-leukemia protein-protein interactions (PPIs) network. Then, weighted compound-target bipartite network was constructed according to combination of eight central attributes with concentration information through Cytoscape. Additionally, molecular docking simulation was performed to calculate whether the components and predicted targets have interactions or not. RESULTS A total of 65 components of A. euchroma were obtained and 27 of them with concentration information, which were involved in 157 targets and 779 compound-target interactions (CTIs). Following the calculation of eight central attributes of targets in A. euchroma-leukemia PPI network, 37 targets with all central attributes greater than the median values were selected to construct the weighted compound-target bipartite network and do the KEGG pathway analysis. We found that A. euchroma candidate targets were significantly associated with several apoptosis and inflammation-related biological pathways, such as MAPK signaling, PI3K-Akt signaling, IL-17 signaling, and T cell receptor signaling pathways. Moreover, molecular docking simulation demonstrated that there were eight pairs of predicted CTIs had the strong binding free energy. CONCLUSIONS This study deciphered that the efficacy of A. euchroma in the treatment of leukemia might be attributed to 10 targets and 14 components, which were associated with inhibiting leukemia cell survival and inducing apoptosis, relieving inflammatory environment and inhibiting angiogenesis.
Collapse
Affiliation(s)
- Biting Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zengrui Wu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiye Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
46
|
Xiong X, Wang P, Su K, Cho WC, Xing Y. Chinese herbal medicine for coronavirus disease 2019: A systematic review and meta-analysis. Pharmacol Res 2020; 160:105056. [PMID: 32622723 PMCID: PMC7331568 DOI: 10.1016/j.phrs.2020.105056] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Currently, coronavirus disease 2019 (COVID-19), which can lead to severe respiratory failure and death, is now a global pandemic with no specific anti-viral drugs or vaccines. However, It is worth noting that traditional Chinese medicine (TCM), especially Chinese herbal medicine (CHM), has been widely applied in mainland China since outbreak, bringing new hope for the prevention and control of COVID-19. A comprehensive literature searching was conducted in 7 electronic databases from their inception up to June 21, 2020 to evaluate the efficacy and safety of CHM for COVID-19. Eighteen randomized controlled trials (RCTs) involving 2275 patients were enrolled. Most of CHMs were originated from classical Chinese herbal formulas. Liquoric Root (Gancao, Radix Glycyrrhizae), Baical Skullcap Root (Huangqin, Radix Scutellariae Baicalensis), Pinellia Rhizome (Banxia, Rhizoma Pinelliae Tematae), Forsythia Fruit (Lianqiao, Fructus Forsythiae Suspensae), and Bitter Apricot Seed (Kuxingren, Semen Armeniacae Amarum) were most frequently used Chinese herbs. The most commonly used dosage formulation was decoction. Our meta-analyses found that comparing CHM group and conventional western medicine group, CHM group has improvements in several clinical parameters including lung CT, clinical cure rate, ranging from mild to critical cases, length of hospital stay, total score of clinical symptoms, fever reduction time, symptom score of fever, number of cough reduction cases, symptom score of cough, number of fatigue reduction cases, symptom score of fatigue, disappearing time of fatigue, TCM syndrome, viral nucleic acid testing, and inflammatory biomarkers (C-reactive protein). Besides, no severe adverse effects was identified by CHM. CHM, especially classical Chinese herbal formulas, could be used as potential candidates for COVID-19 in this battle.
Collapse
Affiliation(s)
- Xingjiang Xiong
- Department of Cardiovascular Care Unit, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, South Small Street 16#, Dongzhimen Inside, Dongcheng District, Beijing, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, South Small Street 16#, Dongzhimen Inside, Dongcheng District, Beijing, China.
| | - Kelei Su
- Department of Respiration, Jiangsu Province Hospital on Integration of Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, China; Department of Respiration, Jiangsu Branch of China Academy of Chinese Medical Sciences, Jiangsu, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| | - Yanwei Xing
- Department of Cardiovascular Care Unit, Guang'Anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
47
|
Huang XJ, He CJ, Liang S, Wang J, Li J, Yang GZ, Zhao Z. Veratrilla baillonii Franch Could Alleviate Lipid Accumulation in LO2 Cells by Regulating Oxidative, Inflammatory, and Lipid Metabolic Signaling Pathways. Front Pharmacol 2020; 11:575772. [PMID: 33071788 PMCID: PMC7538785 DOI: 10.3389/fphar.2020.575772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Based on the pathological theory of lipid metabolism and using network pharmacology, this study was designed to investigate the protective effect of water extract of Veratrilla baillonii (WVBF) on non-alcoholic fatty liver disease (NAFLD) model using LO2 cells and to identify the potential mechanism underlying the effect. The components of V. baillonii were identified from the public database of traditional Chinese medicine systems pharmacology database (TCMSP). Cytoscape software was used to construct the related composite target network. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out for critical nodes. The BioGPS database was used to determine the distribution of the target in tissues and organs. Moreover, the inhibitory effect of V. baillonii was further investigated using an in vitro hepatocyte NAFLD model. Fourteen active components were then selected from the 27 known compounds of V. baillonii. The targets of gene enrichment analysis were mainly distributed in the lipid catabolism-related signaling pathway. Network analysis revealed that five target genes of TNF, MAPK8, mTOR, NF-ĸB, and SREBP-1c were key nodes and played important roles in this process. Organ localization analysis indicated that one of the core target site of V. baillonii was liver tissue. The results of the in vitro study revealed that WVBF can alleviate the inflammatory response and lipid accumulation in LO2 hepatocytes by inhibiting oxidative stress and the adipocytokine signaling pathway. Genes and proteins related to the lipid synthesis, such as SREBP-1C, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FASN), were significantly decreased, and PPARα expression is significantly increased with WVBF administration. In conclusion, V. baillonii may regulate local lipid metabolism and attenuate oxidative stress and inflammatory factors through the PPARα/SREBP-1c signaling pathway. The present study also indicates that multiple components of V. baillonii regulate multiple targets and pathways in NAFLD. The findings highlight the potential of V. baillonii as a promising treatment strategy for nonalcoholic fatty liver injury.
Collapse
Affiliation(s)
- Xian-ju Huang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Cai-jing He
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Shuai Liang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Jing Wang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Jun Li
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Guang-zhong Yang
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Zhang Zhao
- Department of Anesthesiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Gu S, Xue Y, Gao Y, Shen S, Zhang Y, Chen K, Xue S, Pan J, Tang Y, Zhu H, Wu H, Dou D. Mechanisms of indigo naturalis on treating ulcerative colitis explored by GEO gene chips combined with network pharmacology and molecular docking. Sci Rep 2020; 10:15204. [PMID: 32938944 PMCID: PMC7495487 DOI: 10.1038/s41598-020-71030-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Oral administration of indigo naturalis (IN) can induce remission in ulcerative colitis (UC); however, the underlying mechanism remains unknown. The main active components and targets of IN were obtained by searching three traditional Chinese medicine network databases such as TCMSP and five Targets fishing databases such as PharmMapper. UC disease targets were obtained from three disease databases such as DrugBank,combined with four GEO gene chips. IN-UC targets were identified by matching the two. A protein–protein interaction network was constructed, and the core targets were screened according to the topological structure. GO and KEGG enrichment analysis and bioGPS localization were performed,and an Herbs-Components-Targets network, a Compound Targets-Organs location network, and a Core Targets-Signal Pathways network were established. Molecular docking technology was used to verify the main compounds-targets. Ten core active components and 184 compound targets of IN-UC, of which 43 were core targets, were enriched and analyzed by bioGPS, GO, and KEGG. The therapeutic effect of IN on UC may involve activation of systemic immunity, which is involved in the regulation of nuclear transcription, protein phosphorylation, cytokine activity, reactive oxygen metabolism, epithelial cell proliferation, and cell apoptosis through Th17 cell differentiation, the Jak-STAT and IL-17 signaling pathways, toll-like and NOD-like receptors, and other cellular and innate immune signaling pathways. The molecular mechanism underlying the effect of IN on inducing UC remission was predicted using a network pharmacology method, thereby providing a theoretical basis for further study of the effective components and mechanism of IN in the treatment of UC.
Collapse
Affiliation(s)
- Sizhen Gu
- Traditional Chinese Medicine Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New area, Shanghai, 201203, China
| | - Yan Xue
- Shi's Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yang Gao
- Traditional Chinese Medicine Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New area, Shanghai, 201203, China
| | - Shuyang Shen
- Traditional Chinese Medicine Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New area, Shanghai, 201203, China
| | - Yuli Zhang
- Traditional Chinese Medicine Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New area, Shanghai, 201203, China
| | - Kanjun Chen
- Traditional Chinese Medicine Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New area, Shanghai, 201203, China
| | - Shigui Xue
- Digestive Endoscopy Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ji Pan
- Digestive Endoscopy Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yini Tang
- Digestive Endoscopy Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Zhu
- Emergency Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Huan Wu
- Traditional Chinese Medicine Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New area, Shanghai, 201203, China
| | - Danbo Dou
- Traditional Chinese Medicine Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, 528 Zhang Heng Road, Pudong New area, Shanghai, 201203, China.
| |
Collapse
|
49
|
Systematically Exploring the Antitumor Mechanisms of Core Chinese Herbs on Hepatocellular Carcinoma: A Computational Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2396569. [PMID: 33014099 PMCID: PMC7512071 DOI: 10.1155/2020/2396569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/08/2020] [Indexed: 12/29/2022]
Abstract
Objective Chinese herbs play a positive role in the management of hepatocellular carcinoma (HCC) in China. However, it is not clear which of Chinese herbs are critical for the treatment of HCC. Besides, mechanisms of CCHs in the treatment of HCC remain unclear. Hence, our goal is to identify the core Chinese herbs (CCHs) for treating HCC and explore their antitumor mechanism. Methods Firstly, clinical traditional Chinese medicine (TCM) prescriptions for HCC were collected from Chinese National Knowledge Infrastructure (CNKI) database, and then, data mining software was used to identify CCHs. After that, bioactive compounds and corresponding target genes of CCHs were obtained using three TCM databases, and target genes of HCC were acquired from MalaCards and OMIM. Subsequently, common target genes of CCHs and HCC were screened. Moreover, biological functions and pathways were analyzed, and Cytoscape plugin cytoHubba was used to identify hub genes. Finally, prognostic values of hub genes were verified by survival analysis, and the molecular docking approach was utilized to validate the interactions between targets and bioactive compounds of CCHs. Results Eight CCHs were determined from 630 prescriptions, and 100 bioactive compounds (e.g., quercetin and luteolin) and 126 common target genes were screened. Furthermore, common target genes of CCHs and HCC were mainly enriched in cancer-associated pathways, and six hub genes with statistical significance in survival analysis were selected as key target genes for molecular docking. Additionally, molecular docking showed that the bioactive compounds docked well with the protein receptors of key target genes. Conclusion By combining data mining, network pharmacology, molecular docking, and survival analysis methods, we found that CCHs may play a therapeutic role in HCC through regulating the target genes and pathways related to cancer occurrence and development, angiogenesis, metastasis, and prognosis.
Collapse
|
50
|
Xuan X, Sun Z, Yu C, Chen J, Chen M, Wang Q, Li L. Network pharmacology-based study of the protective mechanism of conciliatory anti-allergic decoction on asthma. Allergol Immunopathol (Madr) 2020; 48:441-449. [PMID: 32359824 DOI: 10.1016/j.aller.2019.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/09/2019] [Accepted: 12/23/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study aimed to explore the underlying anti-asthma pharmacological mechanisms of conciliatory anti-allergic decoction (CAD) with a network pharmacology approach. METHODS Traditional Chinese medicine related databases were utilized to screen the active ingredients of CAD. Targets of CAD for asthma treatment were also identified based on related databases. The protein-protein interaction network, biological function and KEGG pathway enrichment analysis, and molecular docking of the targets were performed. Furthermore, an asthma mouse model experiment involving HE staining, AB-PAS staining, and ELISA was also performed to assess the anti-asthma effect of CAD. RESULTS There were 77 active ingredients in CAD, including quercetin, kaempferol, stigmasterol, luteolin, cryptotanshinone, beta-sitosterol, acacetin, naringenin, baicalin, and 48 related targets for asthma treatment, mainly including TNF, IL4, IL5, IL10, IL13 and IFN-γ, were identified with ideal molecular docking binding scores by network pharmacology analysis. KEGG pathway analysis revealed that these targets were directly involved in the asthma pathway, Th1 and Th2 cell differentiation, and signaling pathways correlated with asthma (NF-κB, IL17, T cell receptor, TNF, JAK-STAT signaling pathways, etc.). Animal experiments also confirmed that CAD could attenuate inflammatory cell invasion, goblet cell hyperplasia and mucus secretion. The levels of the major targets TNF-α, IL4, IL5, and IL13 can also be regulated by CAD in an asthma mouse model. CONCLUSION The anti-asthma mechanism of CAD possibly stemmed from the active ingredients targeting asthma-related targets, which are involved in the asthma pathway and signaling pathways to exhibit therapeutic effects.
Collapse
Affiliation(s)
- Xiaobo Xuan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Ziyan Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Chenhuan Yu
- Experimental Animal centre, Zhejiang Academy of Medical Sciences, Hangzhou, Zhejiang, 310013, China
| | - Jian Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Mei Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Qili Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China
| | - Lan Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|