1
|
Laberiano-Fernandez C, Gan Q, Wang SM, Tamegnon A, Wistuba I, Yoon E, Roy-Chowdhuri S, Parra ER. Exploratory pilot study to characterize the immune landscapes of malignant pleural effusions and their corresponding primary tumors from patients with breast carcinoma and lung adenocarcinoma. J Am Soc Cytopathol 2024; 13:161-173. [PMID: 38519275 DOI: 10.1016/j.jasc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION Malignant pleural effusion (MPE) is a frequent complication of advanced malignancies. In this pilot study, we characterized the immune landscapes of MPEs, compared them to their primary tumor (PT) samples from breast carcinoma (BC) and lung adenocarcinoma (LADC), and tested the utility of multiplexed image technology in cytological samples. MATERIALS AND METHODS We evaluated the immune contexture of 6 BC and 5 LADC MPEs and their PTs using 3 multiplex immunofluorescence panels. We explored the associations between sample characteristics and pleural effusion-free survival. RESULTS No MPE samples had positive programmed death-ligand 1 expression in malignant cells, although 3 of 11 PTs has positive programmed death-ligand 1 expression (more than 1% expression in malignant cells). Overall, in LADC samples, cluster of differentiation 3 (CD3)+ T cells and CD3+CD8+ cytotoxic T cells predominated (median percentages for MPEs versus PTs: 45.6% versus 40.7% and 4.7% versus 6.6%, respectively) compared with BC. CD68+ macrophages predominated in the BC samples (medians for MPEs 61.2% versus PTs for 57.1%) but not in the LADC samples. Generally in PTs, CD3+CD8+ forkhead box P3+ T cells and the median distances from the malignant cells to CD3+CD8+Ki67+ and CD3+ programmed cell death protein 1 + T cells correlated to earlier MPE after PT diagnosis. CONCLUSIONS The immune cell phenotypes in the MPEs and PTs were similar within each cancer type but different between BC versus LADC. An MPE analysis can potentially be used as a substitute for a PT analysis, but an expanded study of this topic is essential.
Collapse
Affiliation(s)
- Caddie Laberiano-Fernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qiong Gan
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sophia Mei Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Auriole Tamegnon
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Esther Yoon
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sinchita Roy-Chowdhuri
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin Roger Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
2
|
Hamouzová P, Dobešová O, Řeháková K, Stehlíková Š, Čížek P, Drábková Z, Jahn P, Doubek J. Lymphocyte immunophenotyping and concentration of MMP-9 in transudates and exudates in horses. Vet Immunol Immunopathol 2023; 263:110645. [PMID: 37591111 DOI: 10.1016/j.vetimm.2023.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
This study is the first to provide information on the lymphocyte subpopulations in peritoneal effusions in horses. Peritoneal transudates (n = 12), peritoneal exudates (n = 6) and a pleural exudate (n = 1) were analyzed. The total nucleated cell count (TNCC), total protein (TP) and matrix metalloproteinase-9 (MMP-9) concentration determined by ELISA were measured and routine cytological evaluation was performed. CD3, CD4, CD8 and CD21 positive cells were detected by flow cytometry. A higher percentage of neutrophils (P < 0.05) and higher MMP-9 (P < 0.01) levels were found in exudates. A higher percentage of macrophages (P < 0.05) and lymphocytes (P < 0.01) were found in transudates. CD4 + lymphocytes were the most common lymphocyte subpopulation in all samples. CD21 + lymphocytes were the least common in all samples. A large variability in the percentage of CD21 + lymphocytes was found in exudates. The percentage of CD21 + lymphocytes positively correlated with the level of total protein (r = 0.5704, P < 0.05). The correlation was even stronger in the group of exudates. The percentages of lymphocyte subpopulations did not correlate with the level of MMP-9 or with cytological findings. The level of MMP-9 positively correlated with the percentage of neutrophils (r = 0.4980, P < 0.05), the level of TP (r = 0.7855, P < 0.01) and TNCC (r = 0.6129, P < 0.01). A significantly higher level of MMP-9 was detected in euthanized horses than in horses that survived (P < 0.05). However, it was shown that the level of MMP-9 in the peritoneal fluid can change significantly in a short time. More studies on repeated abdominocentesis could contribute to elucidating the role of MMP-9 as a prognostic indicator.
Collapse
Affiliation(s)
- Pavla Hamouzová
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic.
| | - Olga Dobešová
- Equine Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
| | - Kristína Řeháková
- Small Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
| | - Šárka Stehlíková
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
| | - Petr Čížek
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
| | - Zuzana Drábková
- Equine Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
| | - Petr Jahn
- Equine Clinic, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic; Small Animal Clinical Laboratory, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
| |
Collapse
|
3
|
Donnenberg VS, Luketich JD, Sultan I, Lister J, Bartlett DL, Ghosh S, Donnenberg AD. A maladaptive pleural environment suppresses preexisting anti-tumor activity of pleural infiltrating T cells. Front Immunol 2023; 14:1157697. [PMID: 37063842 PMCID: PMC10097923 DOI: 10.3389/fimmu.2023.1157697] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Introduction Treatment options for patients with malignant pleural effusions (MPE) are limited due, at least in part, to the unique environment of the pleural space, which drives an aggressive tumor state and governs the behavior of infiltrating immune cells. Modulation of the pleural environment may be a necessary step toward the development of effective treatments. We examine immune checkpoint molecule (ICM) expression on pleural T cells, the secretomes of pleural fluid, pleural infiltrating T cells (PIT), and ability to activate PIT ex vivo. Methods ICM expression was determined on freshly drained and in vitro activated PIT from breast, lung and renal cell cancer. Secretomics (63 analytes) of activated PIT, primary tumor cultures and MPE fluid was determined using Luminex technology. Complementary digital spatial proteomic profiling (42 analytes) of CD45+ MPE cells was done using the Nanostring GeoMx platform. Cytolytic activity was measured against autologous tumor targets. Results ICM expression was low on freshy isolated PIT; regulatory T cells (T-reg) were not detectable by GeoMx. In vitro activated PIT coexpressed PD-1, LAG-3 and TIGIT but were highly cytotoxic against autologous tumor and uniquely secreted cytokines and chemokines in the > 100 pM range. These included CCL4, CCL3, granzyme B, IL-13, TNFα, IL-2 IFNγ, GM-CSF, and perforin. Activated PIT also secreted high levels of IL-6, IL-8 and sIL-6Rα, which contribute to polarization of the pleural environment toward wound healing and the epithelial to mesenchymal transition. Addition of IL-6Rα antagonist to cultures reversed tumor EMT but did not alter PIT activation, cytokine secretion or cytotoxicity. Discussion Despite the negative environment, immune effector cells are plentiful, persist in MPE in a quiescent state, and are easily activated and expanded in culture. Low expression of ICM on native PIT may explain reported lack of responsiveness to immune checkpoint blockade. The potent cytotoxic activity of activated PIT and a proof-of-concept clinical scale GMP-expansion experiment support their promise as a cellular therapeutic. We expect that a successful approach will require combining cellular therapy with pleural conditioning using immune checkpoint blockers together with inhibitors of upstream master cytokines such as the IL-6/IL-6R axis.
Collapse
Affiliation(s)
- Vera S. Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Centers, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - James D. Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Centers, Pittsburgh, PA, United States
| | - Ibrahim Sultan
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| | - John Lister
- Department of Medicine, Division of Hematology and Cellular Therapy, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
- Drexel University College of Medicine, Philadelphia, PA, United States
| | - David L. Bartlett
- Drexel University College of Medicine, Philadelphia, PA, United States
- Department of Surgery, Division of Surgical Oncology, Allegheny Health Network Cancer Institute, Pittsburgh, PA, United States
| | - Sohini Ghosh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Allegheny Health Network, Pittsburgh, PA, United States
| | - Albert D. Donnenberg
- University of Pittsburgh Medical Center (UPMC) Hillman Cancer Centers, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Wu Y, Yuan M, Wang C, Chen Y, Zhang Y, Zhang J. T lymphocyte cell: A pivotal player in lung cancer. Front Immunol 2023; 14:1102778. [PMID: 36776832 PMCID: PMC9911803 DOI: 10.3389/fimmu.2023.1102778] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is responsible for the leading cause of cancer-related death worldwide, which lacks effective therapies. In recent years, accumulating evidence on the understanding of the antitumor activity of the immune system has demonstrated that immunotherapy is one of the powerful alternatives in lung cancer therapy. T cells are the core of cellular immunotherapy, which are critical for tumorigenesis and the treatment of lung cancer. Based on the different expressions of surface molecules and functional points, T cells can be subdivided into regulatory T cells, T helper cells, cytotoxic T lymphocytes, and other unconventional T cells, including γδ T cells, nature killer T cells and mucosal-associated invariant T cells. Advances in our understanding of T cells' functional mechanism will lead to a number of clinical trials on the discovery and development of new treatment strategies. Thus, we summarize the biological functions and regulations of T cells on tumorigenesis, progression, metastasis, and prognosis in lung cancer. Furthermore, we discuss the current advancements of technologies and potentials of T-cell-oriented therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanfei Chen
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Zhao J, Liu B, Liu N, Zhang B, He X, Ma Q, Wang Y. The role of angiogenesis in malignant pleural effusion: from basic research to clinical application. Am J Cancer Res 2022; 12:4879-4891. [PMID: 36504886 PMCID: PMC9729901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/26/2022] [Indexed: 12/15/2022] Open
Abstract
Malignant pleural effusion (MPE) is associated with advanced stages of various malignant diseases, especially lung cancer, and is a poor prognostic indicator in these patients. However, the management of MPE remains palliative. A better understanding of the pathogenesis of MPE may lead to the development of new and more effective therapeutic options. Here, we shed light on recent advances in the mechanisms of MPE formation and provide an overview of current targeted therapies for the vascular endothelial growth factor pathway. We also retrospectively enrolled 19 patients with lung adenocarcinoma from the West China Hospital to analyze the efficacy of bevacizumab for MPE using different routes of administration.
Collapse
Affiliation(s)
- Jian Zhao
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Bin Liu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of ChinaPeople’s South Road, Section 4, Number 55, Chengdu 610041, Sichuan, China
| | - Ning Liu
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Benxia Zhang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Xia He
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Qizhi Ma
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| | - Yongsheng Wang
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan UniversityChengdu, Sichuan, China,Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan UniversityChengdu, Sichuan, China
| |
Collapse
|
6
|
Mulet M, Osuna-Gómez R, Zamora C, Porcel JM, Nieto JC, Perea L, Pajares V, Muñoz-Fernandez AM, Calvo N, Sorolla MA, Vidal S. Influence of Malignant Pleural Fluid from Lung Adenocarcinoma Patients on Neutrophil Response. Cancers (Basel) 2022; 14:cancers14102529. [PMID: 35626131 PMCID: PMC9139419 DOI: 10.3390/cancers14102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary This study provides novel information about the role of neutrophils in malignant pleural effusion (MPE) and hallmarks their clinical relevance. Since these cells have emerged as important regulators of cancer, we characterized their phenotype and functions in MPE microenvironment. We found that neutrophil-derived products (degranulation molecules and neutrophil extracellular traps (NETs)) were increased in MPE. In addition, NETs were associated with a worse outcome in lung adenocarcinoma patients with MPE. Abstract Malignant pleural effusion (MPE) is a common severe complication of advanced lung adenocarcinoma (LAC). Neutrophils, an essential component of tumor infiltrates, contribute to tumor progression and their counts in MPE have been associated with worse outcome in LAC. This study aimed to evaluate phenotypical and functional changes of neutrophils induced by MPE to determine the influence of MPE immunomodulatory factors in neutrophil response and to find a possible association between neutrophil functions and clinical outcomes. Pleural fluid samples were collected from 47 LAC and 25 heart failure (HF) patients. We measured neutrophil degranulation products by ELISA, oxidative burst capacity and apoptosis by flow cytometry, and NETosis by fluorescence. The concentration of degranulation products was higher in MPE-LAC than in PE-HF. Functionally, neutrophils cultured with MPE-LAC had enhanced survival and neutrophil extracellular trap (NET) formation but had reduced oxidative burst capacity. In MPE, NETosis was positively associated with MMP-9, P-selectin, and sPD-L1 and clinically related to a worse outcome. This is the first study associating NETs with a worse outcome in MPE. Neutrophils likely contribute to tumor progression through the release of NETs, suggesting that they are a potential therapeutic target in LAC.
Collapse
Affiliation(s)
- Maria Mulet
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Rubén Osuna-Gómez
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Carlos Zamora
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - José M. Porcel
- Pleural Medicine Unit, Department of Internal Medicine, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida, 25003 Lleida, Spain;
| | - Juan C. Nieto
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Lídia Perea
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Virginia Pajares
- Department of Pneumology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (V.P.); (A.M.M.-F.)
| | - Ana M. Muñoz-Fernandez
- Department of Pneumology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (V.P.); (A.M.M.-F.)
| | - Nuria Calvo
- Department of Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | | | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
- Correspondence:
| |
Collapse
|
7
|
Niu Y, Zhou Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion. Cell Mol Life Sci 2022; 79:194. [PMID: 35298721 PMCID: PMC11072909 DOI: 10.1007/s00018-022-04227-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
Malignant pleural effusion (MPE) is an exudative effusion caused by primary or metastatic pleural carcinosis. Th17 cells and their cytokines are critical components in various disease including MPE. In this review, we summarize current published articles regarding the multifunctional roles of Th17 cells and their related cytokines in MPE. Th17 cells are accumulated in MPE compared with paired serum via certain manners. The upregulation of Th17 cells and the interactions between Th17 cells and other immune cells, such as Th1 cells, Th9 cells, regulatory T cells and B cells, are reported to be involved in the formation and development of MPE. In addition, cytokines, which are elaborated by Th17 cells, including IL-17A, IL-17F, IL-21, IL-22, IL-26, GM-CSF, or associated with Th17 cells differentiation, including IL-1β, IL-6, IL-23, TGF-β, are linked to the pathogenesis of MPE through exerting pro- or anti-tumorigenic functions on their own as well as regulating the generation and differentiation of Th17 cells in MPE. Based on these findings, we proposed that Th17 cells and their cytokines might be diagnostic or prognostic tools and potential therapeutic targets for MPE.
Collapse
Affiliation(s)
- Yiran Niu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China
| | - Qiong Zhou
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1277, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Higher CD4/CD8 ratio of pleural effusion predicts better survival for lung cancer patients receiving immune checkpoint inhibitors. Sci Rep 2021; 11:9381. [PMID: 33931705 PMCID: PMC8087817 DOI: 10.1038/s41598-021-89043-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/19/2021] [Indexed: 11/08/2022] Open
Abstract
Pleural effusion is a rare immune-related adverse event for lung cancer patients receiving immune checkpoint inhibitors (ICIs). We enrolled 281 lung cancer patients treated with ICIs and 17 were analyzed. We categorized the formation of pleural effusion into 3 patterns: type 1, rapid and massive; type 2, slow and indolent; and type 3, with disease progression. CD4/CD8 ratio of 1.93 was selected as the cutoff threshold to predict survival. Most patients of types 1 and 2 effusions possessed pleural effusion with CD4/CD8 ratios ≥ 1.93. The median OS time in type 1, 2, and 3 patients were not reached, 24.8, and 2.6 months, respectively. The median PFS time in type 1, 2, and 3 patients were 35.5, 30.2, and 1.4 months, respectively. The median OS for the group with pleural effusion CD4/CD8 ≥ 1.93 and < 1.93 were not reached and 2.6 months. The median PFS of those with pleural effusion CD4/CD8 ≥ 1.93 and < 1.93 were 18.4 and 1.2 months. In conclusion, patients with type 1 and 2 effusion patterns had better survival than those with type 3. Type 1 might be interpreted as pseudoprogression of malignant pleural effusion. CD4/CD8 ratio ≥ 1.93 in pleural effusion is a good predicting factor for PFS.
Collapse
|
9
|
Principe N, Kidman J, Lake RA, Lesterhuis WJ, Nowak AK, McDonnell AM, Chee J. Malignant Pleural Effusions-A Window Into Local Anti-Tumor T Cell Immunity? Front Oncol 2021; 11:672747. [PMID: 33987104 PMCID: PMC8111299 DOI: 10.3389/fonc.2021.672747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 01/01/2023] Open
Abstract
The success of immunotherapy that targets inhibitory T cell receptors for the treatment of multiple cancers has seen the anti-tumor immune response re-emerge as a promising biomarker of response to therapy. Longitudinal characterization of T cells in the tumor microenvironment (TME) helps us understand how to promote effective anti-tumor immunity. However, serial analyses at the tumor site are rarely feasible in clinical practice. Malignant pleural effusions (MPE) associated with thoracic cancers are an abnormal accumulation of fluid in the pleural space that is routinely drained for patient symptom control. This fluid contains tumor cells and immune cells, including lymphocytes, macrophages and dendritic cells, providing a window into the local tumor microenvironment. Recurrent MPE is common, and provides an opportunity for longitudinal analysis of the tumor site in a clinical setting. Here, we review the phenotype of MPE-derived T cells, comparing them to tumor and blood T cells. We discuss the benefits and limitations of their use as potential dynamic biomarkers of response to therapy.
Collapse
Affiliation(s)
- Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Joel Kidman
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Willem Joost Lesterhuis
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | | | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, University of Western Australia, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
10
|
Yi FS, Zhai K, Shi HZ. Helper T cells in malignant pleural effusion. Cancer Lett 2020; 500:21-28. [PMID: 33309856 DOI: 10.1016/j.canlet.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Malignant pleural effusion (MPE) is a frequent complication of malignancies and poses a clinical problem. CD4+ T lymphocytes are the most frequent cell population in MPE. Traditionally, CD4+ T cells are classified into two subsets based on cytokine production profiles, type 1 (Th1) and type 2 (Th2) helper T cells, which exhibit distinct functions. Recently, other T-cell subsets have been added to the Th-cell "portfolio", including regulatory T, Th17, Th9, and Th22 cells. The current review focuses on summarizing the Th-cell phenotypic characteristics, mechanism of Th-cell differentiation, and their pleural space recruitment, based on recent research. We also describe the interplay in MPE among different Th cells, as well as Th cells and lung cancer cells or mesothelial cells. Future research should expand the landscape map of human MPE immune cells, explore the immuno-regulation of B cells, and investigate the communication between macrophages and Th cells in MPE, which may facilitate meaningful advancements in the diagnoses and therapeutics of MPE.
Collapse
Affiliation(s)
- Feng-Shuang Yi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Kan Zhai
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huan-Zhong Shi
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
11
|
Lee J, Lee YH, Seo H, Do YW, Lee DH, Lee SY, Lim JK, Yoo SS, Lee SY, Cha SI, Park JY, Kim CH. Characteristics and survival impact of polymorphonuclear leucocyte-predominant malignant pleural effusions secondary to lung cancer. THE CLINICAL RESPIRATORY JOURNAL 2020; 14:772-779. [PMID: 32294312 DOI: 10.1111/crj.13195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/13/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION In comparison with mononuclear leucocyte (MNL)-predominant malignant pleural effusions (MPEs), polymorphonuclear leucocyte (PMNL)-predominant MPEs have rarely been investigated and may be associated with a poorer prognosis. OBJECTIVES To investigate the characteristics and survival impact of PMNL-predominant MPEs secondary to lung cancer. METHODS This retrospective study included patients with MPE secondary to lung cancer, which were classified into the PMNL- and MNL-predominant groups according to cellular predominance in the pleural fluid. Clinical, hematological, radiological, and pleural fluid data were compared between the groups, and the survival impact of PMNL predominance in MPE was evaluated. RESULTS Of the 193 MPEs included, 37 (19%) were characterised by PMNL predominance. Compared to the MNL-predominant group, the PMNL-predominant group showed significantly poorer patient performances (P = .001), higher white blood cell counts (P = .009), higher neutrophil counts, higher blood neutrophil-to-lymphocyte ratio (P = .046), higher serum C-reactive protein (P = .003), lower serum albumin (P < .001), lower pleural fluid pH (P = .002) and higher pleural fluid lactate dehydrogenase (P = .029) levels. In contrast, most clinical and radiological findings, including the duration of symptoms, showed no significant intergroup differences. A shift towards MNL predominance was observed in only 38% of the PMNL-predominant patients who underwent repeat thoracentesis. Overall survival of the PMNL-predominant group was significantly shorter than the MNL-predominant group (P = .003). CONCLUSIONS PMNL predominance in MPEs secondary to lung cancer may be observed in variable phases with respect to the duration of symptoms and the time of thoracentesis. Overall, PMNL-predominant MPEs were associated with more advanced stages and poorer survival outcomes, compared to MNL-predominant MPEs.
Collapse
Affiliation(s)
- Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Yong Hoon Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyewon Seo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Woo Do
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Deok Heon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sang Yub Lee
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Kwang Lim
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jae Yong Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Mulet M, Zamora C, Porcel JM, Nieto JC, Pajares V, Muñoz-Fernandez AM, Calvo N, Esquerda A, Vidal S. Platelet factor 4 regulates T cell effector functions in malignant pleural effusions. Cancer Lett 2020; 491:78-86. [PMID: 32726613 DOI: 10.1016/j.canlet.2020.06.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/12/2023]
Abstract
Malignant pleural effusion (MPE) is defined as the presence of tumor cells in pleural fluid and it is a fatal complication of advanced lung adenocarcinoma (LAC). To understand the immune response to the tumor in MPE, we compared the concentration of immunomodulatory factors in MPE of LAC and pleural effusion of heart failure (HF) patients by ELISA, and the proliferation and cytotoxic phenotype of T cells stimulated in the presence of LAC and HF pleural fluids by cytometry. Platelet factor 4 (PF4), vascular endothelial growth factor (VEGF), transforming growth factor beta (TGF-β) and P-selectin levels were higher in LAC than in HF pleural fluids. However, plasmatic PF4 and P-selectin levels were similar in LAC and HF. VEGF positively correlated with TGF-β and sPD-L1 in LAC but not in HF pleural fluids. LAC pleural fluids also inhibited T lymphocyte proliferation and cytotoxicity and reduced IL-17 production. PF4 levels inversely correlated with T cell function. The high content of PF4 in MPE was associated with poor prognosis. Our findings suggest that an impaired response of T lymphocytes induced by PF4 provides a significant advantage for tumor progression.
Collapse
Affiliation(s)
- Maria Mulet
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Carlos Zamora
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - José M Porcel
- Pleural Medicine Unit, Department of Internal Medicine, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida, Lleida, Spain
| | - Juan C Nieto
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain
| | - Virginia Pajares
- Department Pneumology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | - Nuria Calvo
- Department Oncology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Aureli Esquerda
- Department of Laboratory Medicine, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida, Lleida, Spain
| | - Silvia Vidal
- Department Immunology, Institut Recerca Hospital de La Santa Creu i Sant Pau, Barcelona, Spain.
| |
Collapse
|
13
|
Bauer D, Mazzio E, Hilliard A, Oriaku ET, Soliman KFA. Effect of apigenin on whole transcriptome profile of TNFα-activated MDA-MB-468 triple negative breast cancer cells. Oncol Lett 2020; 19:2123-2132. [PMID: 32194710 PMCID: PMC7038999 DOI: 10.3892/ol.2020.11327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of hormone receptors in triple negative breast cancer (TNBC) is associated with the inefficacy of anti-estrogen chemotherapies, leaving fewer options for patient treatment and higher mortality rates. Additionally, as with numerous types of inflammatory breast cancer, infiltration of tumor associated macrophages and other leukocyte sub-populations within the tumor inevitably lead to aggressive, chemo-resistant, metastatic and invasive types of cancer which escape immune surveillance. These processes are orchestrated by the release of potent cytokines, including TNFα, IL-6 and CCL2 from the stroma, tumor and immune cells within the tumor microenvironment. The present study evaluated apigenin modulating effects on the pro-inflammatory activating action of TNFα in TNBC MDA-MB-468 cells, derived from an African American woman. Initially, cell viability was determined to establish an optimal sub-lethal dose of TNFα and apigenin in MDA-MB-468 cells. Subsequently, various treatments effects were evaluated using whole transcriptomic analysis of mRNA and long intergenic non-coding RNA with Affymetrix HuGene-2.1-st human microarrays. Gene level differential expression analysis was conducted on 48,226 genes where TNFα caused significant upregulation of 53 transcripts and downregulation of 11 transcripts. The largest upward differential shift was for CCL2 [+61.86 fold change (FC); false discovery rate (FDR), P<0.0001]; which was down regulated by apigenin (to +10.71 FC vs. Control; FDR P-value <0.001), equivalent to an 83% reduction. Several TNFα deferentially upregulated transcripts were reduced by apigenin, including CXCL10, C3, PGLYRP4, IL22RA2, KMO, IL7R, ROS1, CFB, IKBKe, SLITRK6 (a checkpoint target) and MMP13. Confirmation of CCL2 experimentally induced transcript alterations was corroborated at the protein level by ELISA assays. The high level of CCL2 transcript in the cell line was comparable to that in our previous studies in MDA-MB-231 cells. The differential effects of TNFα were corroborated by ELISA, where the data revealed a >10-fold higher releasing rate of CCL2 in MDA-MB-468 cells compared with in MDA-MB-231 cells, both of which were attenuated by apigenin. The data obtained in the present study demonstrated a high level of CCL2 in MDA-MB-468 cells and a possible therapeutic role for apigenin in downregulating TNFα-mediated processes in these TNBC cells.
Collapse
Affiliation(s)
- David Bauer
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Elizabeth Mazzio
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Aaron Hilliard
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Ebenezer T Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Karam F A Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
14
|
Guisier F, Barros-Filho MC, Rock LD, Strachan-Whaley M, Marshall EA, Dellaire G, Lam WL. Janus or Hydra: The Many Faces of T Helper Cells in the Human Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1224:35-51. [PMID: 32036603 DOI: 10.1007/978-3-030-35723-8_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CD4+ T helper (TH) cells are key regulators in the tumour immune microenvironment (TIME), mediating the adaptive immunological response towards cancer, mainly through the activation of cytotoxic CD8+ T cells. After antigen recognition and proper co-stimulation, naïve TH cells are activated, undergo clonal expansion, and release cytokines that will define the differentiation of a specific effector TH cell subtype. These different subtypes have different functions, which can mediate both anti- and pro-tumour immunological responses. Here, we present the dual role of TH cells restraining or promoting the tumour, the factors controlling their homing and differentiation in the TIME, their influence on immunotherapy, and their use as prognostic indicators.
Collapse
Affiliation(s)
- Florian Guisier
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada. .,Department of Pneumology, Thoracic Oncology and Intensive Respiratory Care, Rouen University Hospital, Rouen, France.
| | - Mateus Camargo Barros-Filho
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,International Research Center, A.C.Camargo Cancer Center, Sao Paulo, SP, Brazil
| | - Leigha D Rock
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Department of Oral and Biological Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, Canada.,Department of Cancer Control Research, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | | | - Erin A Marshall
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.,Canadian Environmental Exposures in Cancer (CE2C) Network (CE2C.ca), Halifax, NS, Canada
| | - Wan L Lam
- Department of Integrative Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.,Canadian Environmental Exposures in Cancer (CE2C) Network (CE2C.ca), Halifax, NS, Canada
| |
Collapse
|