1
|
Ehrenberg PK, Geretz A, Volcic M, Izumi T, Yum L, Waickman A, Shangguan S, Paquin-Proulx D, Creegan M, Bose M, Machmach K, McGraw A, Narahari A, Currier JR, Sacdalan C, Phanuphak N, Apps R, Corley M, Ndhlovu LC, Slike B, Krebs SJ, Anonworanich J, Tovanabutra S, Robb ML, Eller MA, Laird GM, Cyktor J, Daar ES, Crowell TA, Mellors JW, Vasan S, Michael NL, Kirchhoff F, Thomas R. Single-cell analyses reveal that monocyte gene expression profiles influence HIV-1 reservoir size in acutely treated cohorts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623270. [PMID: 39605411 PMCID: PMC11601329 DOI: 10.1101/2024.11.12.623270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Elimination of latent HIV-1 is a major goal of AIDS research but the host factors determining the size of these reservoirs are poorly understood. Here, we investigated whether differences in host gene expression modulate the size of the HIV-1 reservoir during suppressive ART. Peripheral blood mononuclear cells (PBMC) from fourteen individuals initiating ART during acute infection who demonstrated effective viral suppression but varying magnitude of total HIV-1 DNA were characterized by single-cell RNA sequencing (scRNA-seq). Differentially expressed genes and enriched pathways demonstrated increased monocyte activity in participants with undetectable HIV-1 reservoirs. IL1B expression in CD14+ monocytes showed the greatest fold difference. The inverse association of IL1B with reservoir size was validated in an independent cohort comprised of 38 participants with different genetic backgrounds and HIV-1 subtype infections, and further confirmed with intact proviral DNA assay (IPDA®) measurements of intact HIV-1 proviruses in a subset of the samples. Modeling interactions with cell population frequencies showed that monocyte IL1B expression associated inversely with reservoir size in the context of higher frequencies of central memory CD4+ T cells, implicating an indirect effect of IL1B via the cell type well established to be a reservoir for persistent HIV-1. Signatures consisting of co-expressed genes including IL1B were highly enriched in the "TNFα signaling via NF-κB" geneset. Functional analyses in cell culture revealed that IL1B activates NF-κB, thereby promoting productive HIV-1 infection while simultaneously suppressing viral spread, suggesting a natural latency reversing activity to deplete the reservoir in ART treated individuals. Altogether, unbiased high throughput scRNA-seq analyses revealed that monocyte IL1B variation could decrease HIV-1 proviral reservoirs in individuals initiating ART during acute infection.
Collapse
Affiliation(s)
- Philip K. Ehrenberg
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Aviva Geretz
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Meta Volcic
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Taisuke Izumi
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Biology, College of Arts and Sciences, American University, Washington D.C., USA
- District of Columbia Center for AIDS Research, Washington D.C., USA
- Department of Biology, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Lauren Yum
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Adam Waickman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Shida Shangguan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Matthew Creegan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kawthar Machmach
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aidan McGraw
- Department of Biology, College of Arts and Sciences, American University, Washington D.C., USA
| | - Akshara Narahari
- Department of Biology, College of Arts and Sciences, Saint Joseph’s University, Philadelphia, Pennsylvania, USA
| | - Jeffrey R. Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carlo Sacdalan
- SEARCH Research Foundation, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Richard Apps
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, New York, USA
| | - Bonnie Slike
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Shelly J. Krebs
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jintanat Anonworanich
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Michael A. Eller
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Joshua Cyktor
- Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Trevor A. Crowell
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Nelson L. Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| |
Collapse
|
2
|
Ambikan A, Akusjärvi SS, Sperk M, Neogi U. System-level integrative omics analysis to identify the virus-host immunometabolic footprint during infection. Adv Immunol 2024; 164:73-100. [PMID: 39523029 DOI: 10.1016/bs.ai.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The emergence and re-emergence of infectious diseases present significant global health threats. Understanding their pathogenesis is crucial for developing diagnostics, therapeutics, and preventive strategies. System-level integrative omics analysis offers a comprehensive approach to deciphering virus-host immunometabolic interactions during infections. Multi-omics approaches, integrating genomics, transcriptomics, proteomics, and metabolomics, provide holistic insights into disease mechanisms, host-pathogen interactions, and immune responses. The interplay between the immune system and metabolic processes, termed immunometabolism, has gained attention, particularly in infectious diseases. Immunometabolic studies reveal how metabolic processes regulate immune cell function, shaping immune responses and influencing infection outcomes. Metabolic reprogramming is crucial for immune cell activation, differentiation, and function. Using systems biological algorithms to understand the immunometabolic alterations can provide a holistic view of immune and metabolic pathway interactions, identifying regulatory nodes and predicting responses to perturbations. Understanding these pathways enhances the knowledge of immune regulation and offers avenues for therapeutic interventions. This review highlights the contributions of multi-omics systems biology studies in understanding infectious disease pathogenesis, focusing on RNA viruses. The integrative approach enables personalized medicine strategies, considering individual metabolic and immune variations. Leveraging these interdisciplinary approaches promises advancements in combating RNA virus infections and improving health outcomes, highlighting the transformative impact of multi-omics technologies in infectious disease research.
Collapse
Affiliation(s)
- Anoop Ambikan
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden
| | - Sara Svensson Akusjärvi
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden; Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, United States
| | - Maike Sperk
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden; Public Health Agency of Sweden, Solna, Sweden
| | - Ujjwal Neogi
- The Systems Virology Laboratory, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, ANA Futura, Campus Flemingsberg, Stockholm, Sweden.
| |
Collapse
|
3
|
Lê-Bury G, Chen Y, Rhen JM, Grenier JK, Singhal A, Russell DG, Boliar S. HIV-1 active and latent infections induce disparate chromatin reorganization and transcriptional regulation of mRNAs and lncRNAs in SupT1 cells. mBio 2023; 14:e0261923. [PMID: 38038477 PMCID: PMC10746154 DOI: 10.1128/mbio.02619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE HIV-1 infection of T-lymphocytes depends on co-opting cellular transcriptional and translational machineries for viral replication. This requires significant changes in the cellular microenvironment. We have characterized and compared the changes in cellular chromatin structures as well as gene expression landscapes in T cells that are either actively or latently infected with HIV-1. Our results reveal that chromatin accessibility and expression of both protein-coding mRNAs and non-coding lncRNAs are uniquely regulated in HIV-1-infected T cells, depending on whether the virus is actively transcribing or remains in a transcriptionally silent, latent state. HIV-1 latent infection elicits more robust changes in the cellular chromatin organization than active viral infection. Our analysis also identifies the effects of such epigenomic changes on the cellular gene expression and subsequent biological pathways. This study comprehensively characterizes the cellular epigenomic and transcriptomic states that support active and latent HIV-1 infection in an in vitro model of SupT1 cells.
Collapse
Affiliation(s)
- Gabrielle Lê-Bury
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yao Chen
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jordan M. Rhen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Jennifer K. Grenier
- Transcription Regulation and Expression Facility, Cornell University, Ithaca, New York, USA
| | - Amit Singhal
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research, Singapore, Singapore
| | - David G. Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Saikat Boliar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Sarala O, Pyhäjärvi T, Sillanpää MJ. BELMM: Bayesian model selection and random walk smoothing in time-series clustering. Bioinformatics 2023; 39:btad686. [PMID: 37963057 PMCID: PMC10686958 DOI: 10.1093/bioinformatics/btad686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/22/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023] Open
Abstract
MOTIVATION Due to advances in measuring technology, many new phenotype, gene expression, and other omics time-course datasets are now commonly available. Cluster analysis may provide useful information about the structure of such data. RESULTS In this work, we propose BELMM (Bayesian Estimation of Latent Mixture Models): a flexible framework for analysing, clustering, and modelling time-series data in a Bayesian setting. The framework is built on mixture modelling: first, the mean curves of the mixture components are assumed to follow random walk smoothing priors. Second, we choose the most plausible model and the number of mixture components using the Reversible-jump Markov chain Monte Carlo. Last, we assign the individual time series into clusters based on the similarity to the cluster-specific trend curves determined by the latent random walk processes. We demonstrate the use of fast and slow implementations of our approach on both simulated and real time-series data using widely available software R, Stan, and CU-MSDSp. AVAILABILITY AND IMPLEMENTATION The French mortality dataset is available at http://www.mortality.org, the Drosophila melanogaster embryogenesis gene expression data at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121160. Details on our simulated datasets are available in the Supplementary Material, and R scripts and a detailed tutorial on GitHub at https://github.com/ollisa/BELMM. The software CU-MSDSp is available on GitHub at https://github.com/jtchavisIII/CU-MSDSp.
Collapse
Affiliation(s)
- Olli Sarala
- Research Unit of Mathematical Sciences, University of Oulu, FI-90014 Oulu, Finland
| | - Tanja Pyhäjärvi
- Department of Forest Sciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko J Sillanpää
- Research Unit of Mathematical Sciences, University of Oulu, FI-90014 Oulu, Finland
| |
Collapse
|
5
|
Cobos Jiménez V, Geretz A, Tokarev A, Ehrenberg PK, Deletsu S, Machmach K, Mudvari P, Howard JN, Zelkoski A, Paquin-Proulx D, Del Prete GQ, Subra C, Boritz EA, Bosque A, Thomas R, Bolton DL. AP-1/c-Fos supports SIV and HIV-1 latency in CD4 T cells infected in vivo. iScience 2023; 26:108015. [PMID: 37860759 PMCID: PMC10582365 DOI: 10.1016/j.isci.2023.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Persistent HIV-1 reservoirs of infected CD4 T cells are a major barrier to HIV-1 cure, although the mechanisms by which they are established and maintained in vivo remain poorly characterized. To elucidate host cell gene expression patterns that govern virus gene expression, we analyzed viral RNA+ (vRNA) CD4 T cells of untreated simian immunodeficiency virus (SIV)-infected macaques by single-cell RNA sequencing. A subset of vRNA+ cells distinguished by spliced and high total vRNA (7-10% of reads) expressed diminished FOS, a component of the Activator protein 1 (AP-1) transcription factor, relative to vRNA-low and -negative cells. Conversely, FOS and JUN, another AP-1 component, were upregulated in HIV DNA+ infected cells compared to uninfected cells from people with HIV-1 on suppressive therapy. Inhibiting c-Fos in latently infected primary cells augmented reactivatable HIV-1 infection. These findings implicate AP-1 in latency establishment and maintenance and as a potential therapeutic target to limit HIV-1 reservoirs.
Collapse
Affiliation(s)
- Viviana Cobos Jiménez
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Aviva Geretz
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Andrey Tokarev
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Philip K. Ehrenberg
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Kawthar Machmach
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Amanda Zelkoski
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Caroline Subra
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Diane L. Bolton
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| |
Collapse
|
6
|
Ambikan AT, Elaldi N, Svensson-Akusjärvi S, Bagci B, Pektas AN, Hewson R, Bagci G, Arasli M, Appelberg S, Mardinoglu A, Sood V, Végvári Á, Benfeitas R, Gupta S, Cetin I, Mirazimi A, Neogi U. Systems-level temporal immune-metabolic profile in Crimean-Congo hemorrhagic fever virus infection. Proc Natl Acad Sci U S A 2023; 120:e2304722120. [PMID: 37669378 PMCID: PMC10500270 DOI: 10.1073/pnas.2304722120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/21/2023] [Indexed: 09/07/2023] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) caused by CCHF virus (CCHFV) is one of the epidemic-prone diseases prioritized by the World Health Organisation as public health emergency with an urgent need for accelerated research. The trajectory of host response against CCHFV is multifarious and remains unknown. Here, we reported the temporal spectrum of pathogenesis following the CCHFV infection using genome-wide blood transcriptomics analysis followed by advanced systems biology analysis, temporal immune-pathogenic alterations, and context-specific progressive and postinfection genome-scale metabolic models (GSMM) on samples collected during the acute (T0), early convalescent (T1), and convalescent-phase (T2). The interplay between the retinoic acid-inducible gene-I-like/nucleotide-binding oligomerization domain-like receptor and tumor necrosis factor signaling governed the trajectory of antiviral immune responses. The rearrangement of intracellular metabolic fluxes toward the amino acid metabolism and metabolic shift toward oxidative phosphorylation and fatty acid oxidation during acute CCHFV infection determine the pathogenicity. The upregulation of the tricarboxylic acid cycle during CCHFV infection, compared to the noninfected healthy control and between the severity groups, indicated an increased energy demand and cellular stress. The upregulation of glycolysis and pyruvate metabolism potentiated energy generation through alternative pathways associated with the severity of the infection. The downregulation of metabolic processes at the convalescent phase identified by blood cell transcriptomics and single-cell type proteomics of five immune cells (CD4+ and CD8+ T cells, CD14+ monocytes, B cells, and NK cells) potentially leads to metabolic rewiring through the recovery due to hyperactivity during the acute phase leading to post-viral fatigue syndrome.
Collapse
Affiliation(s)
- Anoop T. Ambikan
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm-14152, Sweden
| | - Nazif Elaldi
- Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Sara Svensson-Akusjärvi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm-14152, Sweden
| | - Binnur Bagci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ayse Nur Pektas
- Cumhuriyet University Advanced Technology Application and Research Center, Sivas Cumhuriyet University, Sivas58140, Turkey
| | - Roger Hewson
- United Kingdom Health Security Agency, Porton Down, Salisbury, WiltshireSP4 0JG, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Gokhan Bagci
- Department of Biochemistry, Faculty of Medicine, Altinbas University, Istanbul34147, Turkey
| | - Mehmet Arasli
- Department of Immunology, Medical Faculty, Bulent Ecevit University, Zonguldak67600, Turkey
| | - Sofia Appelberg
- Public Health Agency of Sweden, Solna, Stockholm-17165, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, Kungliga Tekniska Högskolan–Royal Institute of Technology, Stockholm-17121, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, LondonWC2R 2LS, United Kingdom
| | - Vikas Sood
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm-14152, Sweden
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard University, Delhi110062, India
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm-17177, Sweden
| | - Rui Benfeitas
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm-14152, Sweden
| | - Soham Gupta
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm-14152, Sweden
| | - Ilhan Cetin
- Department of Public Health, Medical Faculty, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Ali Mirazimi
- Public Health Agency of Sweden, Solna, Stockholm-17165, Sweden
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Stockholm-14152, Sweden
- National Veterinary Institute, Uppsala-75189, Sweden
| | - Ujjwal Neogi
- The Systems Virology Lab, Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, ANA Futura, Stockholm-14152, Sweden
| |
Collapse
|
7
|
Jin D, Zhu Y, Schubert HL, Goff SP, Musier-Forsyth K. HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses 2023; 15:474. [PMID: 36851687 PMCID: PMC9967848 DOI: 10.3390/v15020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yiping Zhu
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 841122, USA
| | - Stephen P. Goff
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Teulière J, Bernard C, Bonnefous H, Martens J, Lopez P, Bapteste E. Interactomics: Dozens of Viruses, Co-evolving With Humans, Including the Influenza A Virus, may Actively Distort Human Aging. Mol Biol Evol 2023; 40:msad012. [PMID: 36649176 PMCID: PMC9897028 DOI: 10.1093/molbev/msad012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/07/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Some viruses (e.g., human immunodeficiency virus 1 and severe acute respiratory syndrome coronavirus 2) have been experimentally proposed to accelerate features of human aging and of cellular senescence. These observations, along with evolutionary considerations on viral fitness, raised the more general puzzling hypothesis that, beyond documented sources in human genetics, aging in our species may also depend on virally encoded interactions distorting our aging to the benefits of diverse viruses. Accordingly, we designed systematic network-based analyses of the human and viral protein interactomes, which unraveled dozens of viruses encoding proteins experimentally demonstrated to interact with proteins from pathways associated with human aging, including cellular senescence. We further corroborated our predictions that specific viruses interfere with human aging using published experimental evidence and transcriptomic data; identifying influenza A virus (subtype H1N1) as a major candidate age distorter, notably through manipulation of cellular senescence. By providing original evidence that viruses may convergently contribute to the evolution of numerous age-associated pathways through co-evolution, our network-based and bipartite network-based methodologies support an ecosystemic study of aging, also searching for genetic causes of aging outside a focal aging species. Our findings, predicting age distorters and targets for anti-aging therapies among human viruses, could have fundamental and practical implications for evolutionary biology, aging study, virology, medicine, and demography.
Collapse
Affiliation(s)
- Jérôme Teulière
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Charles Bernard
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Hugo Bonnefous
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Johannes Martens
- Sciences, Normes, Démocratie (SND), Sorbonne Université, CNRS, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d’Histoire Naturelle, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
9
|
Biological Aging in People Living with HIV on Successful Antiretroviral Therapy: Do They Age Faster? Curr HIV/AIDS Rep 2023; 20:42-50. [PMID: 36695947 PMCID: PMC10102129 DOI: 10.1007/s11904-023-00646-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
PURPOSE OF REVIEW In the absence of a prophylactic/therapeutic vaccine or cure, the most amazing achievement in the battle against HIV was the discovery of effective, well-tolerated combination antiretroviral therapy (cART). The primary research question remains whether PLWH on prolonged successful therapy has accelerated, premature, or accentuated biological aging. In this review, we discuss the current understanding of the immunometabolic profile in PLWH, potentially associated with biological aging, and a better understanding of the mechanisms and temporal dynamics of biological aging in PLWH. RECENT FINDINGS Biological aging, defined by the epigenetic alterations analyzed by the DNA methylation pattern, has been reported in PLWH with cART that points towards epigenetic age acceleration. The hastened development of specific clinical geriatric syndromes like cardiovascular diseases, metabolic syndrome, cancers, liver diseases, neurocognitive diseases, persistent low-grade inflammation, and a shift toward glutamate metabolism in PLWH may potentiate a metabolic profile at-risk for accelerated aging.
Collapse
|
10
|
The endoplasmic reticulum proteostasis network profoundly shapes the protein sequence space accessible to HIV envelope. PLoS Biol 2022; 20:e3001569. [PMID: 35180219 PMCID: PMC8906867 DOI: 10.1371/journal.pbio.3001569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 03/09/2022] [Accepted: 02/07/2022] [Indexed: 12/27/2022] Open
Abstract
The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation. The host cell’s endoplasmic reticulum proteostasis network has a profound, constraining impact on the protein sequence space accessible to HIV’s envelope protein, which is a major target of the host’s adaptive immune system; in particular, upregulation of stringent quality control pathways appears to restrict the viability of destabilizing envelope variants.
Collapse
|
11
|
Justino JR, Reis CFD, Fonseca AL, Souza SJD, Stransky B. An integrated approach to identify bimodal genes associated with prognosis in câncer. Genet Mol Biol 2021; 44:e20210109. [PMID: 34617951 PMCID: PMC8495773 DOI: 10.1590/1678-4685-gmb-2021-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023] Open
Abstract
Bimodal gene expression (where a gene expression distribution has two maxima) is
associated with phenotypic diversity in different biological systems. A critical
issue, thus, is the integration of expression and phenotype data to identify
genuine associations. Here, we developed tools that allow both: i) the
identification of genes with bimodal gene expression and ii) their association
with prognosis in cancer patients from The Cancer Genome Atlas (TCGA).
Bimodality was observed for 554 genes in expression data from 25 tumor types.
Furthermore, 96 of these genes presented different prognosis when patients
belonging to the two expression peaks were compared. The software to execute the
method and the corresponding documentation are available at the Data access
section.
Collapse
Affiliation(s)
- Josivan Ribeiro Justino
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil.,Universidade Federal de Rondônia, Departamento de Matemática e Estatística, Ji-Parana, RO, Brazil
| | - Clovis Ferreira Dos Reis
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil
| | - Andre Luis Fonseca
- Universidade de São Paulo, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
| | - Sandro Jose de Souza
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil.,Universidade Federal do Rio Grande do Norte (UFRN), Instituto do Cérebro, Natal, RN, Brazil.,Sichuan University, West China Hospital, Institutes for Systems Genetics, Chengdu, China
| | - Beatriz Stransky
- Universidade Federal do Rio Grande do Norte (UFRN), Metrópole Digital, Centro Multiusuário de Bioinformática, Natal, RN, Brazil.,Universidade Federal do Rio Grande do Norte (UFRN), Centro de Tecnologia, Departamento de Engenharia Biomédica, Natal, RN, Brazil
| |
Collapse
|
12
|
da Costa JP, Garcia A. New confinement index and new perspective for comparing countries - COVID-19. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106346. [PMID: 34464767 PMCID: PMC8418097 DOI: 10.1016/j.cmpb.2021.106346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE In the difficult problem of comparing countries regarding their lockdown measures or deaths caused by the COVID-19, there is still no agreement on what is the best strategy to follow. Thus, we propose a new way of comparison countries that avoids the main difficulties in the comparison by using three-dimensional trajectories for this type of data. METHODS We introduce a new index to analyze the level of confinement that each country was subject to overtime, based on the Community Mobility Reports published by Google resorting to Principal Component Analysis. Subsequently, by using longitudinal clustering, we divide the European countries into similar groups according to the COVID-19 obits and also to the confinement index. However, to make the most out of the clustering methods we resort to artificial longitudinal data to evaluate both the methods and the indices. RESULTS By using artificial data, we discover that Calinski-Harabasz outperformed other internal indices in indicating the real number of clusters. The tests also suggested that K-means with Euclidean distance was the best method among the ones studied. With the application to both the mobility and fatalities datasets, we found two groups in each one. CONCLUSIONS Our analysis enables us to discover that European northern countries had more mobility during the first confinement and that the deaths caused by COVID-19 started to drop around the 40th day since the first death.
Collapse
Affiliation(s)
| | - André Garcia
- University of Porto, Rua do Campo Alegre, 687, Porto 4169-007, Portugal
| |
Collapse
|
13
|
Abstract
The abundance, localization, modifications, and protein-protein interactions of many host cell and virus proteins can change dynamically throughout the course of any viral infection. Studying these changes is critical for a comprehensive understanding of how viruses replicate and cause disease, as well as for the development of antiviral therapeutics and vaccines. Previously, we developed a mass spectrometry-based technique called quantitative temporal viromics (QTV), which employs isobaric tandem mass tags (TMTs) to allow precise comparative quantification of host and virus proteomes through a whole time course of infection. In this review, we discuss the utility and applications of QTV, exemplified by numerous studies that have since used proteomics with a variety of quantitative techniques to study virus infection through time. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom;
| |
Collapse
|
14
|
Hernandez-Alias X, Benisty H, Schaefer MH, Serrano L. Translational adaptation of human viruses to the tissues they infect. Cell Rep 2021; 34:108872. [PMID: 33730572 PMCID: PMC7962955 DOI: 10.1016/j.celrep.2021.108872] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/15/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Viruses need to hijack the translational machinery of the host cell for a productive infection to happen. However, given the dynamic landscape of tRNA pools among tissues, it is unclear whether different viruses infecting different tissues have adapted their codon usage toward their tropism. Here, we collect the coding sequences of 502 human-infecting viruses and determine that tropism explains changes in codon usage. Using the tRNA abundances across 23 human tissues from The Cancer Genome Atlas (TCGA), we build an in silico model of translational efficiency that validates the correspondence of the viral codon usage with the translational machinery of their tropism. For instance, we detect that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is specifically adapted to the upper respiratory tract and alveoli. Furthermore, this correspondence is specifically defined in early viral proteins. The observed tissue-specific translational efficiency could be useful for the development of antiviral therapies and vaccines.
Collapse
Affiliation(s)
- Xavier Hernandez-Alias
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain.
| | - Hannah Benisty
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Martin H Schaefer
- IEO European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, Milan 20139, Italy.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
15
|
Zolfaghari Emameh R, Nosrati H, Eftekhari M, Falak R, Khoshmirsafa M. Expansion of Single Cell Transcriptomics Data of SARS-CoV Infection in Human Bronchial Epithelial Cells to COVID-19. Biol Proced Online 2020; 22:16. [PMID: 32754004 PMCID: PMC7377208 DOI: 10.1186/s12575-020-00127-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 19 (COVID-19) that was emerged as a new member of coronaviruses since December 2019 in Wuhan, China and then after was spread in all continentals. Since SARS-CoV-2 has shown about 77.5% similarity to SARS-CoV, the transcriptome and immunological regulations of SARS-CoV-2 was expected to have high percentage of overlap with SARS-CoV. Results In this study, we applied the single cell transcriptomics data of human bronchial epithelial cells (2B4 cell line) infected with SARS-CoV, which was annotated in the Expression Atlas database to expand this data to COVID-19. In addition, we employed system biology methods including gene ontology (GO) and Reactome pathway analyses to define functional genes and pathways in the infected cells with SARS-CoV. The transcriptomics analysis on the Expression Atlas database revealed that most genes from infected 2B4 cell line with SARS-CoV were downregulated leading to immune system hyperactivation, induction of signaling pathways, and consequently a cytokine storm. In addition, GO:0016192 (vesicle-mediated transport), GO:0006886 (intracellular protein transport), and GO:0006888 (ER to Golgi vesicle-mediated transport) were shown as top three GOs in the ontology network of infected cells with SARS-CoV. Meanwhile, R-HAS-6807070 (phosphatase and tensin homolog or PTEN regulation) showed the highest association with other Reactome pathways in the network of infected cells with SARS-CoV. PTEN plays a critical role in the activation of dendritic cells, B- and T-cells, and secretion of proinflammatory cytokines, which cooperates with downregulated genes in the promotion of cytokine storm in the COVID-19 patients. Conclusions Based on the high similarity percentage of the transcriptome of SARS-CoV with SARS-CoV-2, the data of immunological regulations, signaling pathways, and proinflammatory cytokines in SARS-CoV infection can be expanded to COVID-19 to have a valid platform for future pharmaceutical and vaccine studies.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Hassan Nosrati
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mahyar Eftekhari
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Khoshmirsafa
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Ivanov S, Lagunin A, Filimonov D, Tarasova O. Network-Based Analysis of OMICs Data to Understand the HIV-Host Interaction. Front Microbiol 2020; 11:1314. [PMID: 32625189 PMCID: PMC7311653 DOI: 10.3389/fmicb.2020.01314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/25/2020] [Indexed: 12/22/2022] Open
Abstract
The interaction of human immunodeficiency virus with human cells is responsible for all stages of the viral life cycle, from the infection of CD4+ cells to reverse transcription, integration, and the assembly of new viral particles. To date, a large amount of OMICs data as well as information from functional genomics screenings regarding the HIV–host interaction has been accumulated in the literature and in public databases. We processed databases containing HIV–host interactions and found 2910 HIV-1-human protein-protein interactions, mostly related to viral group M subtype B, 137 interactions between human and HIV-1 coding and non-coding RNAs, essential for viral lifecycle and cell defense mechanisms, 232 transcriptomics, 27 proteomics, and 34 epigenomics HIV-related experiments. Numerous studies regarding network-based analysis of corresponding OMICs data have been published in recent years. We overview various types of molecular networks, which can be created using OMICs data, including HIV–human protein–protein interaction networks, co-expression networks, gene regulatory and signaling networks, and approaches for the analysis of their topology and dynamics. The network-based analysis can be used to determine the critical pathways and key proteins involved in the HIV life cycle, cellular and immune responses to infection, viral escape from host defense mechanisms, and mechanisms mediating different susceptibility of humans to infection. The proteins and pathways identified in these studies represent a basis for developing new anti-HIV therapeutic strategies such as new drugs preventing infection of CD4+ cells and viral replication, effective vaccines, “shock and kill” and “block and lock” approaches to cure latent infection.
Collapse
Affiliation(s)
- Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia.,Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Dmitry Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Olga Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
17
|
Jitobaom K, Phakaratsakul S, Sirihongthong T, Chotewutmontri S, Suriyaphol P, Suptawiwat O, Auewarakul P. Codon usage similarity between viral and some host genes suggests a codon-specific translational regulation. Heliyon 2020; 6:e03915. [PMID: 32395662 PMCID: PMC7205639 DOI: 10.1016/j.heliyon.2020.e03915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 02/03/2023] Open
Abstract
The codon usage pattern is a specific characteristic of each species; however, the codon usage of all of the genes in a genome is not uniform. Intriguingly, most viruses have codon usage patterns that are vastly different from the optimal codon usage of their hosts. How viral genes with different codon usage patterns are efficiently expressed during a viral infection is unclear. An analysis of the similarity between viral codon usage and the codon usage of the individual genes of a host genome has never been performed. In this study, we demonstrated that the codon usage of human RNA viruses is similar to that of some human genes, especially those involved in the cell cycle. This finding was substantiated by its concordance with previous reports of an upregulation at the protein level of some of these biological processes. It therefore suggests that some suboptimal viral codon usage patterns may actually be compatible with cellular translational machineries in infected conditions.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Supinya Phakaratsakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | | | - Sasithorn Chotewutmontri
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center of Excellence in Bioinformatics and Clinical Data Management, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ornpreya Suptawiwat
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| |
Collapse
|
18
|
Yu L, Zhang J, Brock G, Fernandez S. Fully moderated t-statistic in linear modeling of mixed effects for differential expression analysis. BMC Bioinformatics 2019; 20:675. [PMID: 31861977 PMCID: PMC6923909 DOI: 10.1186/s12859-019-3248-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Gene expression profiling experiments with few replicates lead to great variability in the estimates of gene variances. Toward this end, several moderated t-test methods have been developed to reduce this variability and to increase power for testing differential expression. Most of these moderated methods are based on linear models with fixed effects where residual variances are smoothed under a hierarchical Bayes framework. However, they are inadequate for designs with complex correlation structures, therefore application of moderated methods to linear models with mixed effects are needed for differential expression analysis. RESULTS We demonstrated the implementation of the fully moderated t-statistic method for linear models with mixed effects, where both residual variances and variance estimates of random effects are smoothed under a hierarchical Bayes framework. We compared the proposed method with two current moderated methods and show that the proposed method can control the expected number of false positives at the nominal level, while the two current moderated methods fail. CONCLUSIONS We proposed an approach for testing differential expression under complex correlation structures while providing variance shrinkage. The proposed method is able to improve power by moderation and controls the expected number of false positives properly at the nominal level.
Collapse
Affiliation(s)
- Lianbo Yu
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210 OH USA
| | - Jianying Zhang
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210 OH USA
| | - Guy Brock
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210 OH USA
| | - Soledad Fernandez
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210 OH USA
| |
Collapse
|
19
|
A bioinformatic analysis identifies circadian expression of splicing factors and time-dependent alternative splicing events in the HD-MY-Z cell line. Sci Rep 2019; 9:11062. [PMID: 31363108 PMCID: PMC6667479 DOI: 10.1038/s41598-019-47343-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
The circadian clock regulates key cellular processes and its dysregulation is associated to several pathologies including cancer. Although the transcriptional regulation of gene expression by the clock machinery is well described, the role of the clock in the regulation of post-transcriptional processes, including splicing, remains poorly understood. In the present work, we investigated the putative interplay between the circadian clock and splicing in a cancer context. For this, we applied a computational pipeline to identify oscillating genes and alternatively spliced transcripts in time-course high-throughput data sets from normal cells and tissues, and cancer cell lines. We investigated the temporal phenotype of clock-controlled genes and splicing factors, and evaluated their impact in alternative splice patterns in the Hodgkin Lymphoma cell line HD-MY-Z. Our data points to a connection between clock-controlled genes and splicing factors, which correlates with temporal alternative splicing in several genes in the HD-MY-Z cell line. These include the genes DPYD, SS18, VIPR1 and IRF4, involved in metabolism, cell cycle, apoptosis and proliferation. Our results highlight a role for the clock as a temporal regulator of alternative splicing, which may impact malignancy in this cellular model.
Collapse
|
20
|
Computational Health Engineering Applied to Model Infectious Diseases and Antimicrobial Resistance Spread. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9122486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infectious diseases are the primary cause of mortality worldwide. The dangers of infectious disease are compounded with antimicrobial resistance, which remains the greatest concern for human health. Although novel approaches are under investigation, the World Health Organization predicts that by 2050, septicaemia caused by antimicrobial resistant bacteria could result in 10 million deaths per year. One of the main challenges in medical microbiology is to develop novel experimental approaches, which enable a better understanding of bacterial infections and antimicrobial resistance. After the introduction of whole genome sequencing, there was a great improvement in bacterial detection and identification, which also enabled the characterization of virulence factors and antimicrobial resistance genes. Today, the use of in silico experiments jointly with computational and machine learning offer an in depth understanding of systems biology, allowing us to use this knowledge for the prevention, prediction, and control of infectious disease. Herein, the aim of this review is to discuss the latest advances in human health engineering and their applicability in the control of infectious diseases. An in-depth knowledge of host–pathogen–protein interactions, combined with a better understanding of a host’s immune response and bacterial fitness, are key determinants for halting infectious diseases and antimicrobial resistance dissemination.
Collapse
|