1
|
Kunitomi A, Hirohata R, Arreola V, Osawa M, Kato TM, Nomura M, Kawaguchi J, Hara H, Kusano K, Takashima Y, Takahashi K, Fukuda K, Takasu N, Yamanaka S. Improved Sendai viral system for reprogramming to naive pluripotency. CELL REPORTS METHODS 2022; 2:100317. [PMID: 36447645 PMCID: PMC9701587 DOI: 10.1016/j.crmeth.2022.100317] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/07/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Naive human induced pluripotent stem cells (iPSCs) can be generated by reprogramming somatic cells with Sendai virus (SeV) vectors. However, only dermal fibroblasts have been successfully reprogrammed this way, and the process requires culture on feeder cells. Moreover, SeV vectors are highly persistent and inhibit subsequent differentiation of iPSCs. Here, we report a modified SeV vector system to generate transgene-free naive human iPSCs with superior differentiation potential. The modified method can be applied not only to fibroblasts but also to other somatic cell types. SeV vectors disappear quickly at early passages, and this approach enables the generation of naive iPSCs in a feeder-free culture. The naive iPSCs generated by this method show better differentiation to trilineage and extra-embryonic trophectoderm than those derived by conventional methods. This method can expand the application of iPSCs to research on early human development and regenerative medicine.
Collapse
Affiliation(s)
- Akira Kunitomi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Ryoko Hirohata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | - Vanessa Arreola
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Mitsujiro Osawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Tomoaki M. Kato
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | - Masaki Nomura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | | | - Hiroto Hara
- ID Pharma Co., Ltd., Ibaraki 300-2611, Japan
| | | | - Yasuhiro Takashima
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Naoko Takasu
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- CiRA Foundation, Kyoto 606-8397, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
- CiRA Foundation, Kyoto 606-8397, Japan
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Yasui R, Matsui A, Sekine K, Okamoto S, Taniguchi H. Highly Sensitive Detection of Human Pluripotent Stem Cells by Loop-Mediated Isothermal Amplification. Stem Cell Rev Rep 2022; 18:2995-3007. [PMID: 35661077 PMCID: PMC9622575 DOI: 10.1007/s12015-022-10402-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/24/2022]
Abstract
For safe regenerative medicines, contaminated or remaining tumorigenic undifferentiated cells in cell-derived products must be rigorously assessed through sensitive assays. Although in vitro nucleic acid tests offer particularly sensitive tumorigenicity-associated assays, the human pluripotent stem cell (hPSC) detectability is partly constrained by the small input amount of RNA per test. To overcome this limitation, we developed reverse transcription loop-mediated isothermal amplification (RT-LAMP) assays that are highly gene specific and robust against interfering materials. LAMP could readily assay microgram order of input sample per test and detected an equivalent model of 0.00002% hiPSC contamination in a simple one-pot reaction. For the evaluation of cell-derived total RNA, RT-LAMP detected spiked-in hPSCs among hPSC-derived trilineage cells utilizing multiple pluripotency RNAs. We also developed multiplex RT-LAMP assays and further applied for in situ cell imaging, achieving specific co-staining of pluripotency proteins and RNAs. Our attempts uncovered the utility of RT-LAMP approaches for tumorigenicity-associated assays, supporting practical applications of regenerative medicine.
Collapse
Affiliation(s)
- Ryota Yasui
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Fundamental Research Laboratory, Eiken Chemical Co., Ltd., Nogi, Tochigi, 329-0114, Japan
| | - Atsuka Matsui
- Biochemical Research Laboratory, Eiken Chemical Co., Ltd., Ohtawara, Tochigi, 324-0036, Japan
| | - Keisuke Sekine
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Laboratory of Cancer Cell Systems, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Satoshi Okamoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hideki Taniguchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
3
|
A selective cytotoxic adenovirus vector for concentration of pluripotent stem cells in human pluripotent stem cell-derived neural progenitor cells. Sci Rep 2021; 11:11407. [PMID: 34075124 PMCID: PMC8169681 DOI: 10.1038/s41598-021-90928-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
Highly sensitive detection of residual undifferentiated pluripotent stem cells is essential for the quality and safety of cell-processed therapeutic products derived from human induced pluripotent stem cells (hiPSCs). We previously reported the generation of an adenovirus (Ad) vector and adeno-associated virus vectors that possess a suicide gene, inducible Caspase 9 (iCasp9), which makes it possible to sensitively detect undifferentiated hiPSCs in cultures of hiPSC-derived cardiomyocytes. In this study, we investigated whether these vectors also allow for detection of undifferentiated hiPSCs in preparations of hiPSC-derived neural progenitor cells (hiPSC-NPCs), which have been expected to treat neurological disorders. To detect undifferentiated hiPSCs, the expression of pluripotent stem cell markers was determined by immunostaining and flow cytometry. Using immortalized NPCs as a model, the Ad vector was identified to be the most efficient among the vectors tested in detecting undifferentiated hiPSCs. Moreover, we found that the Ad vector killed most hiPSC-NPCs in an iCasp9-dependent manner, enabling flow cytometry to detect undifferentiated hiPSCs intermingled at a lower concentration (0.002%) than reported previously (0.1%). These data indicate that the Ad vector selectively eliminates hiPSC-NPCs, thus allowing for sensitive detection of hiPSCs. This cytotoxic viral vector could contribute to ensuring the quality and safety of hiPSCs-NPCs for therapeutic use.
Collapse
|
4
|
Watanabe T, Yasuda S, Kusakawa S, Kuroda T, Futamura M, Ogawa M, Mochizuki H, Kikkawa E, Furukawa H, Nagaoka M, Sato Y. Multisite studies for validation and improvement of a highly efficient culture assay for detection of undifferentiated human pluripotent stem cells intermingled in cell therapy products. Cytotherapy 2020; 23:176-183. [PMID: 32978066 DOI: 10.1016/j.jcyt.2020.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS The Multisite Evaluation Study on Analytical Methods for Non-Clinical Safety Assessment of Human-Derived Regenerative Medical Products (MEASURE) is a Japanese experimental public-private partnership initiative, which aims to standardize methodology for tumorigenicity evaluation of human pluripotent stem cell (hPSC)-derived cell therapy products (CTPs). Undifferentiated hPSCs possess tumorigenic potential, and thus residual undifferentiated hPSCs are one of the major hazards for the risk of tumor formation from hPSC-derived CTPs. Among currently available assays, a highly efficient culture (HEC) assay is reported to be one of the most sensitive for the detection of residual undifferentiated hPSCs. METHODS MEASURE first validated the detection sensitivity of HEC assay and then investigated the feasibility of magnetic-activated cell sorting (MACS) to improve sensitivity. RESULTS The multisite experiments confirmed that the lower limit of detection under various conditions to which the human induced pluripotent stem cell lines and culture medium/substrate were subjected was 0.001%. In addition, MACS concentrated cells expressing undifferentiated cell markers and consequently achieved a detection sensitivity of 0.00002%. CONCLUSIONS These results indicate that HEC assay is highly sensitive and robust and that the application of MACS on this assay is a promising tool for further mitigation of the potential tumorigenicity risk of hPSC-derived CTPs.
Collapse
Affiliation(s)
- Takeshi Watanabe
- Drug Safety Research and Evaluation, Takeda Pharmaceutical Company Limited, Fujisawa, Japan; The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan.
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Shinji Kusakawa
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| | - Mayumi Futamura
- The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan; Drug Discovery Support Division, Tsukuba Research Institute, BoZo Research Center Inc, Tsukuba, Japan
| | - Mitsuhide Ogawa
- The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan; CMIC Bioresearch Center, CMIC Pharma Science Co, Ltd, Hokuto, Japan
| | - Hidemi Mochizuki
- The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan; Research Planning Section, Ina Research Inc, Ina-shi, Japan
| | - Eri Kikkawa
- The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan; Research Division, HEALIOS K.K., Kobe, Japan
| | - Hatsue Furukawa
- The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan; Integrated & Translational Science, Axcelead Drug Discovery Partners, Inc, Fujisawa, Japan
| | - Masato Nagaoka
- The Committee for Non-Clinical Safety Evaluation of Pluripotent Stem Cell-Derived Product, Forum for Innovative Regenerative Medicine, Tokyo, Japan; Life Science Research Laboratory, Tosoh Corporation, Ayase-shi, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Kawasaki, Japan
| |
Collapse
|
5
|
Robust detection of undifferentiated iPSC among differentiated cells. Sci Rep 2020; 10:10293. [PMID: 32581272 PMCID: PMC7314783 DOI: 10.1038/s41598-020-66845-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Recent progress in human induced pluripotent stem cells (iPSC) technologies suggest that iPSC application in regenerative medicine is a closer reality. Numerous challenges prevent iPSC application in the development of numerous tissues and for the treatment of various diseases. A key concern in therapeutic applications is the safety of the cell products to be transplanted into patients. Here, we present novel method for detecting residual undifferentiated iPSCs amongst directed differentiated cells of all three germ lineages. Marker genes, which are expressed specifically and highly in undifferentiated iPSC, were selected from single cell RNA sequence data to perform robust and sensitive detection of residual undifferentiated cells in differentiated cell products. ESRG (Embryonic Stem Cell Related), CNMD (Chondromodulin), and SFRP2 (Secreted Frizzled Related Protein 2) were well-correlated with the actual amounts of residual undifferentiated cells and could be used to detect residual cells in a highly sensitive manner using qPCR. In addition, such markers could be used to detect residual undifferentiated cells from various differentiated cells, including hepatic cells and pancreatic cells for the endodermal lineage, endothelial cells and mesenchymal cells for the mesodermal lineage, and neural cells for the ectodermal lineage. Our method facilitates robust validation and could enhance the safety of the cell products through the exclusion of undifferentiated iPSC.
Collapse
|