1
|
Nakagawa S, Carnevali D, Tan X, Alvarez MJ, Parfitt DE, Di Vicino U, Arumugam K, Shin W, Aranda S, Normanno D, Sebastian-Perez R, Cannatá C, Cortes P, Neguembor MV, Shen MM, Califano A, Cosma MP. The Wnt-dependent master regulator NKX1-2 controls mouse pre-implantation development. Stem Cell Reports 2024; 19:689-709. [PMID: 38701778 PMCID: PMC11103935 DOI: 10.1016/j.stemcr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.
Collapse
Affiliation(s)
- Shoma Nakagawa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Carnevali
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Xiangtian Tan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth Inc, New York, NY, USA
| | - David-Emlyn Parfitt
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Karthik Arumugam
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - William Shin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Normanno
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Institute of Human Genetics, CNRS, Montpellier, France
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Chiara Cannatá
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Paola Cortes
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael M Shen
- Department of Systems Biology, Columbia University, New York, NY, USA; Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Chan Zuckerberg Biohub New York, New York, NY, USA.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg.Lluis Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, China.
| |
Collapse
|
2
|
Foucault L, Capeliez T, Angonin D, Lentini C, Bezin L, Heinrich C, Parras C, Donega V, Marcy G, Raineteau O. Neonatal brain injury unravels transcriptional and signaling changes underlying the reactivation of cortical progenitors. Cell Rep 2024; 43:113734. [PMID: 38349790 DOI: 10.1016/j.celrep.2024.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/03/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Germinal activity persists throughout life within the ventricular-subventricular zone (V-SVZ) of the postnatal forebrain due to the presence of neural stem cells (NSCs). Accumulating evidence points to a recruitment for these cells following early brain injuries and suggests their amenability to manipulations. We used chronic hypoxia as a rodent model of early brain injury to investigate the reactivation of cortical progenitors at postnatal times. Our results reveal an increased proliferation and production of glutamatergic progenitors within the dorsal V-SVZ. Fate mapping of V-SVZ NSCs demonstrates their contribution to de novo cortical neurogenesis. Transcriptional analysis of glutamatergic progenitors shows parallel changes in methyltransferase 14 (Mettl14) and Wnt/β-catenin signaling. In agreement, manipulations through genetic and pharmacological activation of Mettl14 and the Wnt/β-catenin pathway, respectively, induce neurogenesis and promote newly-formed cell maturation. Finally, labeling of young adult NSCs demonstrates that pharmacological NSC activation has no adverse effects on the reservoir of V-SVZ NSCs and on their germinal activity.
Collapse
Affiliation(s)
- Louis Foucault
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| | - Timothy Capeliez
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Diane Angonin
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Celia Lentini
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Laurent Bezin
- University Lyon, Université Claude Bernard Lyon 1, INSERM, Centre de Recherche en Neuroscience de Lyon U1028 - CNRS UMR5292, 69500 Bron, France
| | - Christophe Heinrich
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Carlos Parras
- Paris Brain Institute, Sorbonne Université, INSERM U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Vanessa Donega
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands
| | - Guillaume Marcy
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France
| | - Olivier Raineteau
- University Lyon, Université Claude Bernard Lyon1, INSERM, Stem Cell and Brain Research Institute U1208, 69500 Bron, France.
| |
Collapse
|
3
|
Swaidan NT, Soliman NH, Aboughalia AT, Darwish T, Almeshal RO, Al-Khulaifi AA, Taha RZ, Alanany R, Hussein AY, Salloum-Asfar S, Abdulla SA, Abdallah AM, Emara MM. CCN3, POSTN, and PTHLH as potential key regulators of genomic integrity and cellular survival in iPSCs. Front Mol Biosci 2024; 11:1342011. [PMID: 38375508 PMCID: PMC10875024 DOI: 10.3389/fmolb.2024.1342011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/21/2024] Open
Abstract
Reprogramming human somatic cells into a pluripotent state, achieved through the activation of well-defined transcriptional factors known as OSKM factors, offers significant potential for regenerative medicine. While OSKM factors are a robust reprogramming method, efficiency remains a challenge, with only a fraction of cells undergoing successful reprogramming. To address this, we explored genes related to genomic integrity and cellular survival, focusing on iPSCs (A53T-PD1) that displayed enhanced colony stability. Our investigation had revealed three candidate genes CCN3, POSTN, and PTHLH that exhibited differential expression levels and potential roles in iPSC stability. Subsequent analyses identified various protein interactions for these candidate genes. POSTN, significantly upregulated in A53T-PD1 iPSC line, showed interactions with extracellular matrix components and potential involvement in Wnt signaling. CCN3, also highly upregulated, demonstrated interactions with TP53, CDKN1A, and factors related to apoptosis and proliferation. PTHLH, while upregulated, exhibited interactions with CDK2 and genes involved in cell cycle regulation. RT-qPCR validation confirmed elevated CCN3 and PTHLH expression in A53T-PD1 iPSCs, aligning with RNA-seq findings. These genes' roles in preserving pluripotency and cellular stability require further exploration. In conclusion, we identified CCN3, POSTN, and PTHLH as potential contributors to genomic integrity and pluripotency maintenance in iPSCs. Their roles in DNA repair, apoptosis evasion, and signaling pathways could offer valuable insights for enhancing reprogramming efficiency and sustaining pluripotency. Further investigations are essential to unravel the mechanisms underlying their actions.
Collapse
Affiliation(s)
- Nuha T. Swaidan
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Nada H. Soliman
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ahmed T. Aboughalia
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ruba O. Almeshal
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Azhar A. Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Rowaida Z. Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Rania Alanany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Sara A. Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Abdallah M. Abdallah
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Zhang C, Meng Y, Han J. Emerging roles of mitochondrial functions and epigenetic changes in the modulation of stem cell fate. Cell Mol Life Sci 2024; 81:26. [PMID: 38212548 PMCID: PMC11072137 DOI: 10.1007/s00018-023-05070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Mitochondria serve as essential organelles that play a key role in regulating stem cell fate. Mitochondrial dysfunction and stem cell exhaustion are two of the nine distinct hallmarks of aging. Emerging research suggests that epigenetic modification of mitochondria-encoded genes and the regulation of epigenetics by mitochondrial metabolites have an impact on stem cell aging or differentiation. Here, we review how key mitochondrial metabolites and behaviors regulate stem cell fate through an epigenetic approach. Gaining insight into how mitochondria regulate stem cell fate will help us manufacture and preserve clinical-grade stem cells under strict quality control standards, contributing to the development of aging-associated organ dysfunction and disease.
Collapse
Affiliation(s)
- Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yang Meng
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Aich M, Ansari AH, Ding L, Iesmantavicius V, Paul D, Choudhary C, Maiti S, Buchholz F, Chakraborty D. TOBF1 modulates mouse embryonic stem cell fate through regulating alternative splicing of pluripotency genes. Cell Rep 2023; 42:113177. [PMID: 37751355 DOI: 10.1016/j.celrep.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Embryonic stem cells (ESCs) can undergo lineage-specific differentiation, giving rise to different cell types that constitute an organism. Although roles of transcription factors and chromatin modifiers in these cells have been described, how the alternative splicing (AS) machinery regulates their expression has not been sufficiently explored. Here, we show that the long non-coding RNA (lncRNA)-associated protein TOBF1 modulates the AS of transcripts necessary for maintaining stem cell identity in mouse ESCs. Among the genes affected is serine/arginine splicing factor 1 (SRSF1), whose AS leads to global changes in splicing and expression of a large number of downstream genes involved in the maintenance of ESC pluripotency. By overlaying information derived from TOBF1 chromatin occupancy, the distribution of its pluripotency-associated OCT-SOX binding motifs, and transcripts undergoing differential expression and AS upon its knockout, we describe local nuclear territories where these distinct events converge. Collectively, these contribute to the maintenance of mouse ESC identity.
Collapse
Affiliation(s)
- Meghali Aich
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asgar Hussain Ansari
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Li Ding
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Vytautas Iesmantavicius
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Deepanjan Paul
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Chunaram Choudhary
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Souvik Maiti
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Debojyoti Chakraborty
- CSIR- Institute of Genomics and Integrative Biology, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Silva-García CG. Devo-Aging: Intersections Between Development and Aging. GeroScience 2023; 45:2145-2159. [PMID: 37160658 PMCID: PMC10651630 DOI: 10.1007/s11357-023-00809-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
There are two fundamental questions in developmental biology. How does a single fertilized cell give rise to a whole body? and how does this body later produce progeny? Synchronization of these embryonic and postembryonic developments ensures continuity of life from one generation to the next. An enormous amount of work has been done to unravel the molecular mechanisms behind these processes, but more recently, modern developmental biology has been expanded to study development in wider contexts, including regeneration, environment, disease, and even aging. However, we have just started to understand how the mechanisms that govern development also regulate aging. This review discusses examples of signaling pathways involved in development to elucidate how their regulation influences healthspan and lifespan. Therefore, a better knowledge of developmental signaling pathways stresses the possibility of using them as innovative biomarkers and targets for aging and age-related diseases.
Collapse
Affiliation(s)
- Carlos Giovanni Silva-García
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA.
- Center on the Biology of Aging, Brown University, Providence, RI, USA.
| |
Collapse
|
7
|
Gomez-Salazar MA, Wang Y, Thottappillil N, Hardy RW, Alexandre M, Höller F, Martin N, Gonzalez-Galofre ZN, Stefancova D, Medici D, James AW, Péault B. Aldehyde Dehydrogenase, a Marker of Normal and Malignant Stem Cells, Typifies Mesenchymal Progenitors in Perivascular Niches. Stem Cells Transl Med 2023; 12:474-484. [PMID: 37261440 PMCID: PMC10651226 DOI: 10.1093/stcltm/szad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 04/07/2023] [Indexed: 06/02/2023] Open
Abstract
Innate mesenchymal stem cells exhibiting multilineage differentiation and tissue (re)generative-or pathogenic-properties reside in perivascular niches. Subsets of these progenitors are committed to either osteo-, adipo-, or fibrogenesis, suggesting the existence of a developmental organization in blood vessel walls. We evaluated herein the activity of aldehyde dehydrogenase, a family of enzymes catalyzing the oxidation of aldehydes into carboxylic acids and a reported biomarker of normal and malignant stem cells, within human adipose tissue perivascular areas. A progression of ALDHLow to ALDHHigh CD34+ cells was identified in the tunica adventitia. Mesenchymal stem cell potential was confined to ALDHHigh cells, as assessed by proliferation and multilineage differentiation in vitro of cells sorted by flow cytometry with a fluorescent ALDH substrate. RNA sequencing confirmed and validated that ALDHHigh cells have a progenitor cell phenotype and provided evidence that the main isoform in this fraction is ALDH1A1, which was confirmed by immunohistochemistry. This demonstrates that ALDH activity, which marks hematopoietic progenitors and stem cells in diverse malignant tumors, also typifies native, blood vessel resident mesenchymal stem cells.
Collapse
Affiliation(s)
- Mario A Gomez-Salazar
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
- Department of Pathology, Johns Hopkins University, Baltimore, MB, USA
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MB, USA
| | | | - Reef W Hardy
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Manon Alexandre
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
- Polytech Marseille, Aix Marseille University, Marseille, France
| | - Fabian Höller
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Niall Martin
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Zaniah N Gonzalez-Galofre
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Dorota Stefancova
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Daniele Medici
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MB, USA
| | - Bruno Péault
- Center for Regenerative Medicine and Center for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
- Orthopaedic Hospital Research Center and Broad Stem Cell Research Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Wiltshire A, Schaal R, Wang F, Tsou T, McKerrow W, Keefe D. Vitrification with Dimethyl Sulfoxide Induces Transcriptomic Alteration of Gene and Transposable Element Expression in Immature Human Oocytes. Genes (Basel) 2023; 14:1232. [PMID: 37372413 DOI: 10.3390/genes14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Despite substantial advancements in the field of cryobiology, oocyte and embryo cryopreservation still compromise developmental competence. Furthermore, dimethyl sulfoxide (DMSO), one of the most commonly used cryoprotectants, has been found to exert potent effects on the epigenetic landscape of cultured human cells, as well as mouse oocytes and embryos. Little is known about its impact on human oocytes. Additionally, few studies investigate the effects of DMSO on transposable elements (TE), the control of which is essential for the maintenance of genomic instability. The objective of this study was to investigate the impact of vitrification with DMSO-containing cryoprotectant on the transcriptome, including on TEs, of human oocytes. Twenty-four oocytes at the GV stage were donated by four healthy women undergoing elective oocyte cryopreservation. Oocytes were paired such that half from each patient were vitrified with DMSO-containing cryoprotectant (Vitrified Cohort), while the other half were snap frozen in phosphate buffer, unexposed to DMSO (Non-Vitrified Cohort). All oocytes underwent RNA sequencing via a method with high fidelity for single cell analysis, and which allows for the analysis of TE expression through Switching Mechanism at the 5'-end of the RNA Transcript sequencing 2 (SMARTseq2), followed by functional enrichment analysis. Of the 27,837 genes identified by SMARTseq2, 7331 (26.3%) were differentially expressed (p < 0.05). There was a significant dysregulation of genes involved in chromatin and histone modification. Mitochondrial function, as well as the Wnt, insulin, mTOR, HIPPO, and MAPK signaling pathways were also altered. The expression of TEs was positively correlated with the expression of PIWIL2, DNMT3A, and DNMT3B, and negatively correlated with age. These findings suggest that the current standard process of oocyte vitrification, involving DMSO-containing cryoprotectant, induces significant transcriptome changes, including those involving TEs.
Collapse
Affiliation(s)
- Ashley Wiltshire
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Renata Schaal
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Fang Wang
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| | - Tiffany Tsou
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - Wilson McKerrow
- Institute for Systems Genetics, New York University Langone Medical Center, 550 1st Avenue, New York, NY 10016, USA
| | - David Keefe
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, New York University Langone Fertility Center, 660 1st Avenue, New York, NY 10016, USA
| |
Collapse
|
9
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|
10
|
Chen Z, Zhong Y, Chen J, Sun S, Liu W, Han Y, Liu X, Guo C, Li D, Hu W, Zhang P, Chen Z, Chen Z, Mou Y, Yan G, Zhu W, Yin W, Sai K. Disruption of β-catenin-mediated negative feedback reinforces cAMP-induced neuronal differentiation in glioma stem cells. Cell Death Dis 2022; 13:493. [PMID: 35610201 PMCID: PMC9130142 DOI: 10.1038/s41419-022-04957-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
Accumulating evidence supports the existence of glioma stem cells (GSCs) and their critical role in the resistance to conventional treatments for glioblastoma multiforme (GBM). Differentiation therapy represents a promising alternative strategy against GBM by forcing GSCs to exit the cell cycle and reach terminal differentiation. In this study, we demonstrated that cAMP triggered neuronal differentiation and compromised the self-renewal capacity in GSCs. In addition, cAMP induced negative feedback to antagonize the differentiation process by activating β-catenin pathway. Suppression of β-catenin signaling synergized with cAMP activators to eliminate GSCs in vitro and extended the survival of animals in vivo. The cAMP/PKA pathway stabilized β-catenin through direct phosphorylation of the molecule and inhibition of GSK-3β. The activated β-catenin translocated into the nucleus and promoted the transcription of APELA and CARD16, which were found to be responsible for the repression of cAMP-induced differentiation in GSCs. Overall, our findings identified a negative feedback mechanism for cAMP-induced differentiation in GSCs and provided potential targets for the reinforcement of differentiation therapy for GBM.
Collapse
Affiliation(s)
- Zhijie Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.412558.f0000 0004 1762 1794Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-sen University Lingnan Hospital, Guangzhou, 510530 China
| | - Yingqian Zhong
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Jiehong Chen
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Shuxin Sun
- grid.410643.4Department of Pancreas Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080 China
| | - Wenfeng Liu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Yu Han
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Xincheng Liu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Cui Guo
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Depei Li
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Wanming Hu
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Peiyu Zhang
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Zhuopeng Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Zhongping Chen
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Yonggao Mou
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| | - Guangmei Yan
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wenbo Zhu
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Wei Yin
- grid.12981.330000 0001 2360 039XDepartment of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080 China
| | - Ke Sai
- grid.488530.20000 0004 1803 6191Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China ,grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060 China
| |
Collapse
|
11
|
Mazloumi Z, Farahzadi R, Rafat A, Asl KD, Karimipour M, Montazer M, Movassaghpour AA, Dehnad A, Charoudeh HN. Effect of aberrant DNA methylation on cancer stem cell properties. Exp Mol Pathol 2022; 125:104757. [PMID: 35339454 DOI: 10.1016/j.yexmp.2022.104757] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
DNA methylation, as an epigenetic mechanism, occurs by adding a methyl group of cytosines in position 5 by DNA methyltransferases and has essential roles in cellular function, especially in the transcriptional regulation of embryonic and adult stem cells. Hypomethylation and hypermethylation cause either the expression or inhibition of genes, and there is a tight balance between regulating the activation or repression of genes in normal cellular activity. Abnormal methylation is well-known hallmark of cancer development and progression and can switch normal stem cells into cancer stem cells. Cancer Stem Cells (CSCs) are minor populations of tumor cells that exhibit unique properties such as self-regeneration, resistance to chemotherapy, and high ability of metastasis. The purpose of this paper is to show how aberrant DNA methylation accumulation affects self-renewal, differentiation, multidrug-resistant, and metastasis processes in cancer stem cells.
Collapse
Affiliation(s)
- Zeinab Mazloumi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Farahzadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rafat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Dizaji Asl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Montazer
- Department of Cardiovascular Surgery, Imam Reza Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Alireza Dehnad
- Department of Bacterial Disease Research, Razi Vaccine and Serum Research Institute, AREEO, Tabriz, Iran
| | | |
Collapse
|
12
|
Pedone E, Failli M, Gambardella G, De Cegli R, La Regina A, di Bernardo D, Marucci L. β-catenin perturbations control differentiation programs in mouse embryonic stem cells. iScience 2022; 25:103756. [PMID: 35128356 PMCID: PMC8804270 DOI: 10.1016/j.isci.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous β-catenin in β-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/β-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate β-catenin levels in β-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the “ground state” of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of β-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs. Moderate β-catenin levels promote EpiLCs derivation in vitro Chemical pre-activation of the Wnt pathway enhances ESC-EpiLC transition β-catenin overexpression tips the balance between mesoderm and endoderm Cell fate is influenced by the extent of β-catenin induction
Collapse
|
13
|
β-catenin links cell seeding density to global gene expression during mouse embryonic stem cell differentiation. iScience 2022; 25:103541. [PMID: 34977504 PMCID: PMC8689156 DOI: 10.1016/j.isci.2021.103541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Although cell density is known to affect numerous biological processes including gene expression and cell fate specification, mechanistic understanding of what factors link cell density to global gene regulation is lacking. Here, we reveal that the expression of thousands of genes in mouse embryonic stem cells (mESCs) is affected by cell seeding density and that low cell density enhances the efficiency of differentiation. Mechanistically, β-catenin is localized primarily to adherens junctions during both self-renewal and differentiation at high density. However, when mESCs differentiate at low density, β-catenin translocates to the nucleus and associates with Tcf7l1, inducing co-occupied lineage markers. Meanwhile, Esrrb sustains the expression of pluripotency-associated genes while repressing lineage markers at high density, and its association with DNA decreases at low density. Our results provide new insights into the previously neglected but pervasive phenomenon of density-dependent gene regulation.
Collapse
|
14
|
Vardapour R, Kehl T, Kneitz S, Ludwig N, Meese E, Lenhof HP, Gessler M. The DGCR8 E518K mutation found in Wilms tumors leads to a partial miRNA processing defect that alters gene expression patterns and biological processes. Carcinogenesis 2021; 43:82-93. [PMID: 34919667 DOI: 10.1093/carcin/bgab110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 11/01/2021] [Accepted: 11/25/2021] [Indexed: 11/14/2022] Open
Abstract
Wilms tumor (WT) is the most common renal tumor in childhood. We and others have previously identified oncogenic driver mutations affecting the microprocessor genes DROSHA and DGCR8 that lead to altered miRNA expression patterns. In the case of DGCR8, a single recurrent hotspot mutation (E518K) was found in the RNA binding domain. To functionally assess this mutation in vitro, we generated mouse Dgcr8-KO embryonic stem cell (mESC) lines with an inducible expression of wild-type or mutant DGCR8, mirroring the hemizygous mutant expression seen in WT. RNA-seq analysis revealed significant differences of miRNA expression profiles in DGCR8-E518K compared to DGCR8-wild-type mESCs. The E518K mutation only led to a partial rescue of the reported miRNA processing defect in Dgcr8-KO, with selectively reduced expression of numerous canonical miRNAs. Nevertheless, DGCR8-E518K retained significant activity given its ability to still process many miRNAs. Subsequent to altered miRNA levels, the expression of mRNA targets was likewise changed. Functional assays showed that DGCR8-E518K cells still have a partial proliferation and differentiation defect but were able to rescue critical biological processes in embryoid body development. The stem cell program could be shut down and all three germ layers were formed. These findings suggest that the E518K mutation leads to a partial reduction of microprocessor activity and altered specificity with selective impairment only in certain developmental contexts, apparently including nephrogenesis.
Collapse
Affiliation(s)
- Romina Vardapour
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, 97074 Wuerzburg, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Susanne Kneitz
- Theodor-Boveri-Institute/Biocenter, Physiological Chemistry, Wuerzburg University, 97074 Wuerzburg, Germany
| | - Nicole Ludwig
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Eckart Meese
- Department of Human Genetics, Saarland University, 66421 Homburg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, 66123 Saarbrücken, Germany
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, 97074 Wuerzburg, Germany.,Comprehensive Cancer Center Mainfranken, 97078 Wuerzburg, Germany
| |
Collapse
|
15
|
Yang J, Wang Y, Yang D, Ma J, Wu S, Cai Q, Xue J, Yuan C, Wang J, Liu X. Wnt/β-catenin signaling regulates lipopolysaccharide-altered polarizations of RAW264.7 cells and alveolar macrophages in mouse lungs. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211059362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Macrophages are capable of exerting both proinflammatory and anti-inflammatory functions in response to distinct environmental stimuli, by polarizing into classically inflammatory state (M1) and anti-inflammatory phenotype (M2), respectively. The Wnt/β-catenin signaling plays an important role in the tissue homeostasis and immune regulations, including the macrophage polarizations. However, the molecular mechanism of Wnt/β-catenin signaling in regulating alveolar macrophage polarization in an inflammatory state remains unclear. Methods The Wnt/β-catenin signaling-altered phenotypes of murine macrophage-like RAW264.7 cells in vitro and alveolar macrophage in vivo in both of naïve and lipopolysaccharide-induced inflammation states were accessed by immunoblotting and immunostaining assays. Results The activation of Wnt/β-catenin signaling inhibited macrophage M1 polarization, but promoted alternative M2 polarization in murine RAW264.7 cells under a naïve state. Interestingly, in an LPS-induced inflammation condition, the enhanced Wnt/β-catenin activity suppressed both M1 and M2 polarizations in RAW264.7 cells in vitro, and primary alveolar macrophages of LPS-challenged mice in vivo. Molecular analysis further demonstrated an involvement of Stat signing in regulating Wnt/β-catenin signaling-altered polarizations in mouse alveolar macrophages. Conclusion These results suggest a mechanism by which Wnt/β-catenin signaling modulates macrophage polarization in an inflammation state by regulating the Stat signaling pathway.
Collapse
Affiliation(s)
- Jiali Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Ying Wang
- Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Dandan Yang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Jia Ma
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Shuang Wu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Qian Cai
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Xue
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Chao Yuan
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
| | - Jing Wang
- Center of Clinical and Diagnostic Laboratory, People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Xiaoming Liu
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, College of Life Science, Ningxia University, Yinchuan, , China
- College of Life Science, Ningxia University, Yinchuan, China
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
16
|
Rotondo JC, Mazziotta C, Lanzillotti C, Tognon M, Martini F. Epigenetic Dysregulations in Merkel Cell Polyomavirus-Driven Merkel Cell Carcinoma. Int J Mol Sci 2021; 22:11464. [PMID: 34768895 PMCID: PMC8584046 DOI: 10.3390/ijms222111464] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA virus with oncogenic potential. MCPyV is the causative agent of Merkel Cell Carcinoma (MCC), a rare but aggressive tumor of the skin. The role of epigenetic mechanisms, such as histone posttranslational modifications (HPTMs), DNA methylation, and microRNA (miRNA) regulation on MCPyV-driven MCC has recently been highlighted. In this review, we aim to describe and discuss the latest insights into HPTMs, DNA methylation, and miRNA regulation, as well as their regulative factors in the context of MCPyV-driven MCC, to provide an overview of current findings on how MCPyV is involved in the dysregulation of these epigenetic processes. The current state of the art is also described as far as potentially using epigenetic dysregulations and related factors as diagnostic and prognostic tools is concerned, in addition to targets for MCPyV-driven MCC therapy. Growing evidence suggests that the dysregulation of HPTMs, DNA methylation, and miRNA pathways plays a role in MCPyV-driven MCC etiopathogenesis, which, therefore, may potentially be clinically significant for this deadly tumor. A deeper understanding of these mechanisms and related factors may improve diagnosis, prognosis, and therapy for MCPyV-driven MCC.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Fang Y, Tang Y, Zhang Y, Pan Y, Jia J, Sun Z, Zeng W, Chen J, Yuan Y, Fang D. The H3K36me2 methyltransferase NSD1 modulates H3K27ac at active enhancers to safeguard gene expression. Nucleic Acids Res 2021; 49:6281-6295. [PMID: 34107030 PMCID: PMC8216457 DOI: 10.1093/nar/gkab473] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/28/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Epigenetics, especially histone marks, functions beyond the DNA sequences to regulate gene expression. Depletion of NSD1, which catalyzes H3K36me2, leads to both up- and down-regulation of gene expression, indicating NSD1 is associated with both active and repressed gene expression. It's known that NSD1 regulates the deposition and expansion of H3K27me3, a repressive mark for gene expression, to keep active gene transcription. However, how NSD1 functions to repress gene expression is largely unknown. Here, we find that, when NSD1 is knocked out in mouse embryonic stem cells (mESCs), H3K27ac increases correlatively with the decrease of H3K36me2 at active enhancers, which is associated with mesoderm differentiation genes, leading to elevated gene expression. Mechanistically, NSD1 recruits HDAC1, the deacetylase of H3K27ac, to chromatin. Moreover, HDAC1 knockout (KO) recapitulates the increase of H3K27ac at active enhancers as the NSD1 depletion. Together, we propose that NSD1 deposits H3K36me2 and recruits HDAC1 at active enhancers to serve as a ‘safeguard’, preventing further activation of active enhancer-associated genes.
Collapse
Affiliation(s)
- Yuan Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yin Tang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yixin Pan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junqi Jia
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxing Sun
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weiwu Zeng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Chen
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dong Fang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Vodnala M, Choi EB, Fong YW. Low complexity domains, condensates, and stem cell pluripotency. World J Stem Cells 2021; 13:416-438. [PMID: 34136073 PMCID: PMC8176841 DOI: 10.4252/wjsc.v13.i5.416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Biological reactions require self-assembly of factors in the complex cellular milieu. Recent evidence indicates that intrinsically disordered, low-complexity sequence domains (LCDs) found in regulatory factors mediate diverse cellular processes from gene expression to DNA repair to signal transduction, by enriching specific biomolecules in membraneless compartments or hubs that may undergo liquid-liquid phase separation (LLPS). In this review, we discuss how embryonic stem cells take advantage of LCD-driven interactions to promote cell-specific transcription, DNA damage response, and DNA repair. We propose that LCD-mediated interactions play key roles in stem cell maintenance and safeguarding genome integrity.
Collapse
Affiliation(s)
- Munender Vodnala
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Eun-Bee Choi
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Yick W Fong
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
- Harvard Stem Cell Institute, Cambridge, MA 02138, United States.
| |
Collapse
|
19
|
Hossian AKMN, Zahra FT, Poudel S, Abshire CF, Polk P, Garai J, Zabaleta J, Mikelis CM, Mattheolabakis G. Advanced bioinformatic analysis and pathway prediction of NSCLC cells upon cisplatin resistance. Sci Rep 2021; 11:6520. [PMID: 33753779 PMCID: PMC7985311 DOI: 10.1038/s41598-021-85930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/05/2021] [Indexed: 11/08/2022] Open
Abstract
This study aims to identify pathway involvement in the development of cisplatin (cis-diamminedichloroplatinum (II); CDDP) resistance in A549 lung cancer (LC) cells by utilizing advanced bioinformatics software. We developed CDDP-resistant A549 (A549/DDP) cells through prolonged incubation with the drug and performed RNA-seq on RNA extracts to determine differential mRNA and miRNA expression between A549/DDP and A549 cells. We analyzed the gene dysregulation with Ingenuity Pathway Analysis (IPA; QIAGEN) software. In contrast to prior research, which relied on the clustering of dysregulated genes to pathways as an indication of pathway activity, we utilized the IPA software for the dynamic evaluation of pathway activity depending on the gene dysregulation levels. We predicted 15 pathways significantly contributing to the chemoresistance, with several of them to have not been previously reported or analyzed in detail. Among them, the PKR signaling, cholesterol biosynthesis, and TEC signaling pathways are included, as well as genes, such as PIK3R3, miR-34c-5p, and MDM2, among others. We also provide a preliminary analysis of SNPs and indels, present exclusively in A549/DDP cells. This study's results provide novel potential mechanisms and molecular targets that can be explored in future studies and assist in improving the understanding of the chemoresistance phenotype.
Collapse
Affiliation(s)
- A K M Nawshad Hossian
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Fatema Tuz Zahra
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA
| | - Camille F Abshire
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paula Polk
- Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jone Garai
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jovanny Zabaleta
- Department of Pediatrics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, USA.
| |
Collapse
|
20
|
McKee C, Brown C, Bakshi S, Walker K, Govind CK, Chaudhry GR. Transcriptomic Analysis of Naïve Human Embryonic Stem Cells Cultured in Three-Dimensional PEG Scaffolds. Biomolecules 2020; 11:E21. [PMID: 33379237 PMCID: PMC7824559 DOI: 10.3390/biom11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/09/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022] Open
Abstract
Naïve human embryonic stem cells (ESCs) are characterized by improved viability, proliferation, and differentiation capacity in comparison to traditionally derived primed human ESCs. However, currently used two-dimensional (2-D) cell culture techniques fail to mimic the three-dimensional (3-D) in vivo microenvironment, altering morphological and molecular characteristics of ESCs. Here, we describe the use of 3-D self-assembling scaffolds that support growth and maintenance of the naïve state characteristics of ESC line, Elf1. Scaffolds were formed via a Michael addition reaction upon the combination of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups. 3-D scaffold environment maintained the naïve state and supported the long-term growth of ESCs. RNA-sequencing demonstrated significant changes in gene expression profiles between 2-D and 3-D grown cells. Gene ontology analysis revealed upregulation of biological processes involved in the regulation of transcription and translation, extracellular matrix organization, and chromatin remodeling in 3-D grown cells. 3-D culture conditions also induced upregulation of genes associated with Wnt and focal adhesion signaling, while p53 signaling pathway associated genes were downregulated. Our findings, for the first time, provide insight into the possible mechanisms of self-renewal of naïve ESCs stimulated by the transduction of mechanical signals from the 3-D microenvironment.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Chhabi K. Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.); (S.B.); (K.W.); (C.K.G.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| |
Collapse
|
21
|
The Pancreatic Microbiome is Associated with Carcinogenesis and Worse Prognosis in Males and Smokers. Cancers (Basel) 2020; 12:cancers12092672. [PMID: 32962112 PMCID: PMC7565819 DOI: 10.3390/cancers12092672] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The cancer microbiome has been suggested to be closely involved in the immune dysregulation that leads to carcinogenesis. Given that pancreatic adenocarcinoma (PAAD) is one of the most lethal cancers, it is important to identify features of the microbiome that may contribute to more deadly PAAD tumors. In this study, we analyzed PAAD patient RNA-sequencing data from The Cancer Genome Atlas (TCGA) to correlate abundance of intra-pancreatic microbes to dysregulation of immune and cancer-associated genes and pathways. We discovered that the presence of several bacteria species within PAAD tumors is linked to metastasis and immune suppression. Furthermore, we found that the increased prevalence and poorer prognosis of PAAD in males and smokers are linked to the presence of potentially cancer-promoting or immune-inhibiting microbes. Further study into the roles of these microbes in PAAD is imperative for understanding how a pro-tumor microenvironment may be treated to limit cancer progression. Abstract An intra-pancreatic microbiota was recently discovered in several prominent studies. Since pancreatic adenocarcinoma (PAAD) is one of the most lethal cancers worldwide, and the intratumor microbiome was found to be a significant contributor to carcinogenesis in other cancers, this study aims to characterize the PAAD microbiome and elucidate how it may be associated with PAAD prognosis. We further explored the association between the intra-pancreatic microbiome and smoking and gender, which are both risk factors for PAAD. RNA-sequencing data from The Cancer Genome Atlas (TCGA) were used to infer microbial abundance, which was correlated to clinical variables and to cancer and immune-associated gene expression, to determine how microbes may contribute to cancer progression. We discovered that the presence of several bacteria species within PAAD tumors is linked to metastasis and immune suppression. This is the first large-scale study to report microbiome-immune correlations in human pancreatic cancer samples. Furthermore, we found that the increased prevalence and poorer prognosis of PAAD in males and smokers are linked to the presence of potentially cancer-promoting or immune-inhibiting microbes. Further study into the roles of these microbes in PAAD is imperative for understanding how a pro-tumor microenvironment may be treated to limit cancer progression.
Collapse
|
22
|
Alba G, Martínez R, Postigo-Corrales F, López S, Santa-María C, Jiménez J, Cahuana GM, Soria B, Bedoya FJ, Tejedo JR. AICAR Stimulates the Pluripotency Transcriptional Complex in Embryonic Stem Cells Mediated by PI3K, GSK3β, and β-Catenin. ACS OMEGA 2020; 5:20270-20282. [PMID: 32832780 PMCID: PMC7439381 DOI: 10.1021/acsomega.0c02137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
Pluripotent stem cells maintain the property of self-renewal and differentiate into all cell types under clear environments. Though the gene regulatory mechanism for pluripotency has been investigated in recent years, it is still not completely understood. Here, we show several signaling pathways involved in the maintenance of pluripotency. To investigate whether AMPK is involved in maintaining the pluripotency in mouse embryonic stem cells (mESCs) and elucidating the possible molecular mechanisms, implicated D3 and R1/E mESC lines were used in this study. Cells were cultured in the absence or presence of LIF and treated with 1 mM and 0.5 mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR), 2 mM metformin, compound C, and the PI3K inhibitor LY294002 for 24, 72, and 120 h. The levels of Nanog, Oct3/4, and REX1 and Brachyury, Notch2, and Gata4 mRNAs and Nanog or OCT3/4 protein levels were analyzed. Alkaline phosphatase and the cellular cycle were determined. The pGSK3β, GSK3β, p-β-catenin, and β-catenin protein levels were also investigated. We found that AMPK activators such as AICAR and metformin increase mRNA expression of pluripotency markers and decrease mRNA expression of differentiation markers in R1/E and D3 ES cells. AICAR increases phosphatase activity and arrests the cellular cycle in the G1 phase in these cells. We describe that AICAR effects were mediated by AMPK activation using a chemical inhibitor or by silencing this gene. AICAR effects were also mediated by PI3K, GSK3β, and β-catenin in R1/E ES cells. According to our findings, we provide a mechanism by which AICAR increases and maintains a pluripotency state through enhanced Nanog expression, involving AMPK/PI3K and p-GSK3β Ser21/9 pathways backing up the AICAR function as a potential target for this drug controlling pluripotency. The highlights of this study are that AICAR (5-aminoimidazole-4-carboxamied-1-b-riboside), an AMP protein kinase (AMPK) activator, blocks the ESC differentiation and AMPK is a key enzyme for pluripotency and shows valuable data to clarify the molecular pluripotency mechanism.
Collapse
Affiliation(s)
- Gonzalo Alba
- Department
of Medical Biochemistry and Molecular Biology, Universidad de Sevilla, Seville 41009, Spain
- . Telephone: +34-955421044. Fax: +34-954907048
| | - Raquel Martínez
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
| | - Fátima Postigo-Corrales
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
| | - Soledad López
- Department
of Medical Biochemistry and Molecular Biology, Universidad de Sevilla, Seville 41009, Spain
| | - Consuelo Santa-María
- Department
of Biochemistry and Molecular Biology, Universidad
de Sevilla, Seville 41009, Spain
| | - Juan Jiménez
- Department
of Medical Biochemistry and Molecular Biology, Universidad de Sevilla, Seville 41009, Spain
| | - Gladys M. Cahuana
- Department
of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Bernat Soria
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
- Cell
Therapy
Network, Madrid (RED-TERCEL), Instituto
de Salud Carlos III, Madrid 28029, Spain
- Universidad
Miguel Hernández, Alicante 03550, Spain
| | - Francisco J. Bedoya
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
- Department
of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
- Cell
Therapy
Network, Madrid (RED-TERCEL), Instituto
de Salud Carlos III, Madrid 28029, Spain
| | - Juan R. Tejedo
- Department
of Regeneration and Cell Therapy, Andalusian Center for Molecular
Biology and Regenerative Medicine-CABIMER, Universidad Pablo de Olavide-University of Seville-CSIC, Seville 41013, Spain
- Department
of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville 41013, Spain
- Biomedical
Research Network for Diabetes and Related Metabolic Diseases-CIBERDEM,
Instituto de Salud Carlos III, Madrid 28029, Spain
- Cell
Therapy
Network, Madrid (RED-TERCEL), Instituto
de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
23
|
Zhang M, Lai Y, Krupalnik V, Guo P, Guo X, Zhou J, Xu Y, Yu Z, Liu L, Jiang A, Li W, Abdul MM, Ma G, Li N, Fu X, Lv Y, Jiang M, Tariq M, Kanwal S, Liu H, Xu X, Zhang H, Huang Y, Wang L, Chen S, Babarinde IA, Luo Z, Wang D, Zhou T, Ward C, He M, Ibañez DP, Li Y, Zhou J, Yuan J, Feng Y, Arumugam K, Di Vicino U, Bao X, Wu G, Schambach A, Wang H, Sun H, Gao F, Qin B, Hutchins AP, Doble BW, Hartmann C, Cosma MP, Qin Y, Xu GL, Chen R, Volpe G, Chen L, Hanna JH, Esteban MA. β-Catenin safeguards the ground state of mousepluripotency by strengthening the robustness of the transcriptional apparatus. SCIENCE ADVANCES 2020; 6:eaba1593. [PMID: 32832621 PMCID: PMC7439582 DOI: 10.1126/sciadv.aba1593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/05/2020] [Indexed: 05/12/2023]
Abstract
Mouse embryonic stem cells cultured with MEK (mitogen-activated protein kinase kinase) and GSK3 (glycogen synthase kinase 3) inhibitors (2i) more closely resemble the inner cell mass of preimplantation blastocysts than those cultured with SL [serum/leukemia inhibitory factor (LIF)]. The transcriptional mechanisms governing this pluripotent ground state are unresolved. Release of promoter-proximal paused RNA polymerase II (Pol2) is a multistep process necessary for pluripotency and cell cycle gene transcription in SL. We show that β-catenin, stabilized by GSK3 inhibition in medium with 2i, supplies transcriptional coregulators at pluripotency loci. This selectively strengthens pluripotency loci and renders them addicted to transcription initiation for productive gene body elongation in detriment to Pol2 pause release. By contrast, cell cycle genes are not bound by β-catenin, and proliferation/self-renewal remains tightly controlled by Pol2 pause release under 2i conditions. Our findings explain how pluripotency is reinforced in the ground state and also provide a general model for transcriptional resilience/adaptation upon network perturbation in other contexts.
Collapse
Affiliation(s)
- Meng Zhang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Yiwei Lai
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Vladislav Krupalnik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Pengcheng Guo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiangpeng Guo
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Jianguo Zhou
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Yan Xu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhijun Yu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Longqi Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ao Jiang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wenjuan Li
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Mazid Md. Abdul
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Gang Ma
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Na Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Xiuling Fu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuan Lv
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Mengling Jiang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Muqddas Tariq
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Shahzina Kanwal
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Hao Liu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Xueting Xu
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hui Zhang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yinghua Huang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Lulu Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Shuhan Chen
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Isaac A. Babarinde
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiwei Luo
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Guangzhou Medical University, Guangzhou 511436, China
| | - Dongye Wang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Tiantian Zhou
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Carl Ward
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Minghui He
- Forevergen Biosciences Center, Guangzhou 510000, China
| | - David P. Ibañez
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Yunpan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Jiajian Zhou
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jie Yuan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yayan Feng
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Karthik Arumugam
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Umberto Di Vicino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Xichen Bao
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Guangming Wu
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Axel Schambach
- Hannover Medical School, Institute of Experimental Hematology, Hannover 30625, Germany
- Division of Hematology and Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Fei Gao
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg DK1870C, Denmark
| | - Baoming Qin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Laboratory of Metabolism and Cell Fate, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Andrew P. Hutchins
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bradley W. Doble
- Departments of Pediatrics and Child Health and Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada
| | - Christine Hartmann
- Department of Bone and Skeletal Research, Institute of Musculoskeletal Medicine, Medical Faculty of the University of Münster, Münster D-48149, Germany
| | - Maria Pia Cosma
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08003, Spain
| | - Yan Qin
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Laboratory of Metabolism and Epigenetics, Institutes of Biomedical Sciences, Medical College of Fudan University, Shanghai 200032, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Giacomo Volpe
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
| | - Liang Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Corresponding author. (M.A.E.); (J.H.H.); (L.C.)
| | - Jacob H. Hanna
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Corresponding author. (M.A.E.); (J.H.H.); (L.C.)
| | - Miguel A. Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 511436, China
- Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Corresponding author. (M.A.E.); (J.H.H.); (L.C.)
| |
Collapse
|
24
|
Shanak S, Helms V. DNA methylation and the core pluripotency network. Dev Biol 2020; 464:145-160. [PMID: 32562758 DOI: 10.1016/j.ydbio.2020.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023]
Abstract
From the onset of fertilization, the genome undergoes cell division and differentiation. All of these developmental transitions and differentiation processes include cell-specific signatures and gradual changes of the epigenome. Understanding what keeps stem cells in the pluripotent state and what leads to differentiation are fascinating and biomedically highly important issues. Numerous studies have identified genes, proteins, microRNAs and small molecules that exert essential effects. Notably, there exists a core pluripotency network that consists of several transcription factors and accessory proteins. Three eminent transcription factors, OCT4, SOX2 and NANOG, serve as hubs in this core pluripotency network. They bind to the enhancer regions of their target genes and modulate, among others, the expression levels of genes that are associated with Gene Ontology terms related to differentiation and self-renewal. Also, much has been learned about the epigenetic rewiring processes during these changes of cell fate. For example, DNA methylation dynamics is pivotal during embryonic development. The main goal of this review is to highlight an intricate interplay of (a) DNA methyltransferases controlling the expression levels of core pluripotency factors by modulation of the DNA methylation levels in their enhancer regions, and of (b) the core pluripotency factors controlling the transcriptional regulation of DNA methyltransferases. We discuss these processes both at the global level and in atomistic detail based on information from structural studies and from computer simulations.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Science, Arab-American University, Jenin, Palestine; Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany.
| |
Collapse
|
25
|
Malgundkar SH, Burney I, Al Moundhri M, Al Kalbani M, Lakhtakia R, Okamoto A, Tamimi Y. FAT4 silencing promotes epithelial-to-mesenchymal transition and invasion via regulation of YAP and β-catenin activity in ovarian cancer. BMC Cancer 2020; 20:374. [PMID: 32366234 PMCID: PMC7197128 DOI: 10.1186/s12885-020-06900-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Background The adhesion molecule, FAT4, has a tumor suppressor function with a critical role in the epithelial-to-mesenchymal-transition (EMT) and anti-malignant growth in several cancers. No study has investigated yet its role in epithelial ovarian cancer (EOC) progression. In the present study, we examined the role of FAT4 in proliferation and metastasis, and its mechanisms of interaction in these processes. Methods We have performed cell viability, colony formation, and invasion assays in ovarian cancer cells treated with siRNA to knockdown FAT4 gene expression. The regulatory effects of FAT4 on proteins involved in apoptotic, Wnt, Hippo, and retinoblastoma signaling pathways were evaluated by Western blotting following FAT4 repression. Also, 426 ovarian tumor samples and 88 non-tumor samples from the Gene Expression Profiling Interactive Analysis (GEPIA) database were analyzed for the expression of FAT4. Pearson’s correlation was performed to determine the correlation between FAT4 and the E2F5, cyclin D1, cdk4, and caspase 9 expressions. Results Lower expression of FAT4 was observed in ovarian cancer cell lines and human samples as compared to non-malignant tissues. This down-regulation seems to enhance cell viability, invasion, and colony formation. Silencing FAT4 resulted in the upregulation of E2F5, vimentin, YAP, β-catenin, cyclin D1, cdk4, and Bcl2, and in the downregulation of GSK-3-β, and caspase 9 when compared to control. Furthermore, regulatory effects of FAT4 on the EMT and aggressive phenotype seem to occur through Hippo, Wnt, and cell cycle pathways. Conclusion FAT4 downregulation promotes increased growth and invasion through the activation of Hippo and Wnt-β-catenin pathways.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Departments of Biochemistry, Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Ikram Burney
- Departments ofMedicine, and Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Mansour Al Moundhri
- Departments ofMedicine, and Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Moza Al Kalbani
- Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman
| | - Ritu Lakhtakia
- Department of Pathology, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yahya Tamimi
- Departments of Biochemistry, Obstetrics & Gynecology, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, PC 123, Muscat, Sultanate of Oman.
| |
Collapse
|
26
|
Gao J, Liao Y, Qiu M, Shen W. Wnt/β-Catenin Signaling in Neural Stem Cell Homeostasis and Neurological Diseases. Neuroscientist 2020; 27:58-72. [PMID: 32242761 DOI: 10.1177/1073858420914509] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neural stem/progenitor cells (NSCs) maintain the ability of self-renewal and differentiation and compose the complex nervous system. Wnt signaling is thought to control the balance of NSC proliferation and differentiation via the transcriptional coactivator β-catenin during brain development and adult tissue homeostasis. Disruption of Wnt signaling may result in developmental defects and neurological diseases. Here, we summarize recent findings of the roles of Wnt/β-catenin signaling components in NSC homeostasis for the regulation of functional brain circuits. We also suggest that the potential role of Wnt/β-catenin signaling might lead to new therapeutic strategies for neurological diseases, including, but not limited to, spinal cord injury, Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Juanmei Gao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Liao
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,College of Life and Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wanhua Shen
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
27
|
Barzegari A, Gueguen V, Omidi Y, Ostadrahimi A, Nouri M, Pavon‐Djavid G. The role of Hippo signaling pathway and mechanotransduction in tuning embryoid body formation and differentiation. J Cell Physiol 2020; 235:5072-5083. [DOI: 10.1002/jcp.29455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Abolfazl Barzegari
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular BioengineeringUniversité Paris 13 Paris France
| | - Yadollah Omidi
- Research Center for Pharmaceutical NanotechnologyTabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutics, Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Alireza Ostadrahimi
- Nutrition Research CenterTabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food SciencesTabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical SciencesTabriz University of Medical Sciences Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of MedicineTabriz University of Medical Sciences Tabriz Iran
| | - Graciela Pavon‐Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular BioengineeringUniversité Paris 13 Paris France
| |
Collapse
|