1
|
Wang T, Homberg JR, Boreggio L, Samina MCF, Castro RCR, Kolk SM, Alenina N, Bader M, Dai J, Wöhr M. Socio-affective communication in Tph2-deficient rat pups: communal nesting aggravates growth retardation despite ameliorating maternal affiliation deficits. Mol Autism 2024; 15:50. [PMID: 39614401 PMCID: PMC11606121 DOI: 10.1186/s13229-024-00629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND A lack of serotonin (also known as 5-hydroxytryptamine, 5-HT) in the brain due to deficiency of the rate-limiting enzyme in 5-HT synthesis, tryptophan hydroxylase 2 (TPH2), was recently reported to result in impaired maternal affiliation across species, including mice, rats, and monkeys. In rodents, this was reflected in a lack of preference for maternal odors and reduced levels of isolation-induced ultrasonic vocalizations (USV), possibly contributing to a severe growth retardation phenotype. METHODS Here, we tested whether growth retardation, maternal affiliation deficits, and/or impairments in socio-affective communication caused by Tph2 deficiency can be rescued through early social enrichment in rats. To this aim, we compared male and female Tph2-/- knockout and Tph2+/- heterozygous rat pups to Tph2+/+ wildtype littermate controls, with litters being randomly assigned to standard nesting (SN; one mother with her litter) or communal nesting (CN; two mothers with their two litters). RESULTS Our results show that Tph2 deficiency causes severe growth retardation, together with moderate impairments in somatosensory reflexes and thermoregulatory capabilities, partially aggravated by CN. Tph2 deficiency further led to deficits in socio-affective communication, as evidenced by reduced emission of isolation-induced USV, associated with changes in acoustic features, clustering of subtypes, and temporal organization. Although CN did not rescue the impairments in socio-affective communication, CN ameliorated the maternal affiliation deficit caused by Tph2 deficiency in the homing test. To close the communicative loop between mother and pup, we assessed maternal preference and showed that mothers display a preference for Tph2+/+ controls over Tph2-/- pups, particularly under CN conditions. This is consistent with the aggravated growth phenotype in Tph2-/- pups exposed to the more competitive CN environment. CONCLUSION Together, this indicates that CN aggravates growth retardation despite ameliorating maternal affiliation deficits in Tph2-deficient rat pups, possibly due to reduced and acoustically altered isolation-induced USV, hindering efficient socio-affective communication between mother and pup.
Collapse
Affiliation(s)
- Tianhua Wang
- Faculty of Psychology, Experimental and Biological Psychology, Philipps-Universität Marburg, Behavioral Neuroscience, 35032, Marburg, Germany
- Philipps-Universität Marburg, Center for Mind, Brain, and Behavior (CMBB), 35032, Marburg, Germany
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, 6525 EN, Nijmegen, The Netherlands
| | - Laura Boreggio
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
| | - Marta C F Samina
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ, Nijmegen, The Netherlands
| | - Rogério C R Castro
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, 6525 EN, Nijmegen, The Netherlands
| | - Sharon M Kolk
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, 6525 AJ, Nijmegen, The Netherlands
| | - Natalia Alenina
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785, Berlin, Germany
| | - Michael Bader
- Molecular Biology of Peptide Hormones, Max-Delbrück-Centrum Für Molekulare Medizin (MDC), 13125, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, 10785, Berlin, Germany
- Charité University Medicine Berlin, 10117, Berlin, Germany
- Institute for Biology, University of Lübeck, 23562, Lübeck, Germany
| | - Jinye Dai
- Department of Pharmacological Sciences and Department of Neuroscience, Mount Sinai, Icahn School of Medicine, Friedman Brain Institute, New York, 10029, USA
| | - Markus Wöhr
- Faculty of Psychology, Experimental and Biological Psychology, Philipps-Universität Marburg, Behavioral Neuroscience, 35032, Marburg, Germany.
- Philipps-Universität Marburg, Center for Mind, Brain, and Behavior (CMBB), 35032, Marburg, Germany.
- Faculty of Psychology and Educational Sciences, Research Unit Brain and Cognition, Laboratory of Biological Psychology, Social and Affective Neuroscience Research Group, KU Leuven, Tiensestraat 102 - Bus 3714, 3000, Louvain, Belgium.
- KU Leuven, Leuven Brain Institute, 3000, Louvain, Belgium.
| |
Collapse
|
2
|
Warner AK, Iskander L, Allen K, Quatela I, Borrelli H, Sachs BD. The effects of brain serotonin deficiency on the behavioral and neurogenesis-promoting effects of voluntary exercise in tryptophan hydroxylase 2 (R439H) knock-in mice. Neuropharmacology 2024; 258:110082. [PMID: 39009217 DOI: 10.1016/j.neuropharm.2024.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Exercise is known to reduce depression and anxiety symptoms. Although the cellular and molecular mechanisms underlying this effect remain unknown, exercise-induced increases in neurotransmitter release and hippocampal neurogenesis have been hypothesized to play key roles. One neurotransmitter that has been implicated in both antidepressant-like effects and the regulation of hippocampal neurogenesis is serotonin (5-HT). Complete loss of function of the brain 5-HT synthesis enzyme (tryptophan hydroxylase 2, Tph2) has been reported to prevent exercise-induced increases in neurogenesis and to block a subset of antidepressant-like responses to selective serotonin reuptake inhibitors (SSRIs), but whether partial loss of Tph2 function blocks the behavioral and neurogenic effects of exercise has not been established. This study used four tests that are predictive of antidepressant efficacy to determine the impact of 5-HT deficiency on responses to exercise in male and female mice. Our results demonstrate that low 5-HT impairs the behavioral effects of exercise in females in the forced swim and novelty-suppressed feeding tests. However, genetic reductions in 5-HT synthesis did not significantly impact exercise-induced alterations in cellular proliferation or immature neuron production in the hippocampus in either sex. These findings highlight the importance of brain 5-HT in mediating behavioral responses to exercise and suggest that individual differences in brain 5-HT synthesis could influence sensitivity to the mental health benefits of exercise. Furthermore, the observed disconnect between neurogenic and behavioral responses to exercise suggests that increased neurogenesis is unlikely to be the primary driver of the behavioral effects of exercise observed here.
Collapse
Affiliation(s)
- Allison K Warner
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Lauren Iskander
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Kristen Allen
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Isabella Quatela
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Hannah Borrelli
- Department of Psychological and Brain Sciences, Villanova University, USA
| | - Benjamin D Sachs
- Department of Psychological and Brain Sciences, Villanova University, USA.
| |
Collapse
|
3
|
Su C, Zhang L, Pan Y, Jiao J, Luo P, Chang X, Zhang H, Si X, Chen W, Huang Y. Enhancing aggression in Henan gamecocks via augmentation of serotonergic-dopaminergic signaling and attenuation of neuroimmune response. Poult Sci 2024; 103:104055. [PMID: 39190992 PMCID: PMC11395772 DOI: 10.1016/j.psj.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 08/29/2024] Open
Abstract
Animal aggression is one of the most conserved behaviors. Excessive and inappropriate aggression was a serious social concern across species. After long-term selection under strict stress conditions, Henan gamecock serves as a good model for studying aggressive behavior. In this research, we constructed a Henan game chicken backcross population containing 25% Rhode Island Red (RIR), and conducted brain transcriptomics and serum metabolomics analyses on Henan gamecock (HGR) through its comparison with its female encounters (HGH) and the male backcross birds (BGR). The study revealed that seven differential metabolites in serum and 172 differentially expressed genes in the brain were commonly shared in both HGR vs. HGH and HGR vs. BGR comparisons. They exhibited the same patterns of modulation in Henan gamecocks, following either HGH < HGR > BGR or HGH > HGR < BGR style. Therein, some neurological genes involving in serotonergic and dopaminergic signaling were upregulated, while the levels of many genes related with neuro-immune function were decreased in Henan gamecock. In addition, many unknown genes specifically or highly expressed in the brain of the Henan gamecock were identified. These genes are potentially key candidates for enhancing the bird's aggression. Multi-omics joint analysis revealed that tyrosine metabolism and neuroactive ligand-receptor interaction were commonly affected. Overall, our results propose that the aggressiveness of Henan gamecocks can be heightened by the activation of the serotonergic-dopaminergic metabolic process in the brain, which concurrently impairs the neuroimmune system. Further research is needed to identify the function of these unknown genes on the bird's aggressive behavior.
Collapse
Affiliation(s)
- Chuanchen Su
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Lin Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yuxian Pan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Jingya Jiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Pengna Luo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xinghai Chang
- Henan Changxing Agriculture and Animal Husbandry co., LTD, Kaifeng, Henan 475000, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Xuemeng Si
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou Henan 450046, China.
| |
Collapse
|
4
|
Nemets VV, Vinogradova EP, Zavialov V, Grinevich VP, Budygin EA, Gainetdinov RR. Accumbal Dopamine Responses Are Distinct between Female Rats with Active and Passive Coping Strategies. Biomolecules 2024; 14:1280. [PMID: 39456212 PMCID: PMC11505701 DOI: 10.3390/biom14101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
There is a gap in existing knowledge of stress-triggered neurochemical and behavioral adaptations in females. This study was designed to explore the short-term consequences of a single social defeat (SD) on accumbal dopamine (DA) dynamics and related behaviors in female Wistar rats. During the SD procedure, rats demonstrated different stress-handling strategies, which were defined as active and passive coping. The "active" subjects expressed a significantly higher level of activity directed toward handling stress experience, while the "passive" ones showed an escalated freezing pattern. Remarkably, these opposite behavioral manifestations were negatively correlated. Twenty-four hours following the SD exposure, decreased immobility latency in the Porsolt test and cognitive augmentation in the new object recognition evaluation were evident, along with an increase in electrically evoked mesolimbic DA release in passive coping rats. Rats exhibiting an active pattern of responses showed insignificant changes in immobility and cognitive performance as well as in evoked mesolimbic DA response. Furthermore, the dynamics of the decline and recovery of DA efflux under the depletion protocol were significantly altered in the passive but not active female rats. Taken together, these data suggest that female rats with a passive coping strategy are more susceptible to developing behavioral and neurochemical alterations within 24 h after stress exposure. This observation may represent both maladaptive and protective responses of an organism on a short timescale.
Collapse
Affiliation(s)
- Vsevolod V. Nemets
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Ekaterina P. Vinogradova
- Department of High Neuros Activity, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Vladislav Zavialov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| | - Vladimir P. Grinevich
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Evgeny A. Budygin
- Department of Neurobiology, Sirius University of Science and Technology, 354340 Sirius, Russia; (V.P.G.); (E.A.B.)
| | - Raul R. Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 Saint Petersburg, Russia; (V.V.N.); (V.Z.)
| |
Collapse
|
5
|
Rivalan M, Alonso L, Mosienko V, Bey P, Hyde A, Bader M, Winter Y, Alenina N. Serotonin drives aggression and social behaviors of laboratory male mice in a semi-natural environment. Front Behav Neurosci 2024; 18:1450540. [PMID: 39359324 PMCID: PMC11446219 DOI: 10.3389/fnbeh.2024.1450540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Aggression is an adaptive social behavior crucial for the stability and prosperity of social groups. When uncontrolled, aggression leads to pathological violence that disrupts group structure and individual wellbeing. The comorbidity of uncontrolled aggression across different psychopathologies makes it a potential endophenotype of mental disorders with the same neurobiological substrates. Serotonin plays a critical role in regulating impulsive and aggressive behaviors. Mice lacking in brain serotonin, due to the ablation of tryptophan hydroxylase 2 (TPH2), the rate-limiting enzyme in serotonin synthesis, could serve as a potential model for studying pathological aggression. Home cage monitoring allows for the continuous observation and quantification of social and non-social behaviors in group-housed, freely-moving mice. Using an ethological approach, we investigated the impact of central serotonin ablation on the everyday expression of social and non-social behaviors and their correlations in undisturbed, group-living Tph2-deficient and wildtype mice. By training a machine learning algorithm on behavioral time series, "allogrooming", "struggling at feeder", and "eating" emerged as key behaviors dissociating one genotype from the other. Although Tph2-deficient mice exhibited characteristics of pathological aggression and reduced communication compared to wildtype animals, they still demonstrated affiliative huddle behaviors to normal levels. Altogether, such a distinct and dynamic phenotype of Tph2-deficient mice influenced the group's structure and the subsequent development of its hierarchical organization. These aspects were analyzed using social network analysis and the Glicko rating methods. This study demonstrates the importance of the ethological approach for understanding the global impact of pathological aggression on various aspects of life, both at the individual and group levels. Home cage monitoring allows the observation of the natural behaviors of mice in a semi-natural habitat, providing an accurate representation of real-world phenomena and pathological mechanisms. The results of this study provide insights into the neurobiological substrate of pathological aggression and its potential role in complex brain disorders.
Collapse
Affiliation(s)
- Marion Rivalan
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Neuroscience Paris-Saclay, CNRS, Université Paris-Saclay, Saclay, France
| | - Lucille Alonso
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- University of Bristol, School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University Walk, Bristol, United Kingdom
| | - Patrik Bey
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology with Experimental Neurology, Brain Simulation Section, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexia Hyde
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
| | - Michael Bader
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Institute for Biology, University of Lübeck, Lübeck, Germany
| | - York Winter
- Humboldt University Institute of Biology, Chair of Cognitive Neurobiology, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
6
|
Fu Y, Cheng HW. The Influence of Cecal Microbiota Transplantation on Chicken Injurious Behavior: Perspective in Human Neuropsychiatric Research. Biomolecules 2024; 14:1017. [PMID: 39199404 PMCID: PMC11352350 DOI: 10.3390/biom14081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Numerous studies have evidenced that neuropsychiatric disorders (mental illness and emotional disturbances) with aggression (or violence) pose a significant challenge to public health and contribute to a substantial economic burden worldwide. Especially, social disorganization (or social inequality) associated with childhood adversity has long-lasting effects on mental health, increasing the risk of developing neuropsychiatric disorders. Intestinal bacteria, functionally as an endocrine organ and a second brain, release various immunomodulators and bioactive compounds directly or indirectly regulating a host's physiological and behavioral homeostasis. Under various social challenges, stress-induced dysbiosis increases gut permeability causes serial reactions: releasing neurotoxic compounds, leading to neuroinflammation and neuronal injury, and eventually neuropsychiatric disorders associated with aggressive, violent, or impulsive behavior in humans and various animals via a complex bidirectional communication of the microbiota-gut-brain (MGB) axis. The dysregulation of the MGB axis has also been recognized as one of the reasons for the prevalence of social stress-induced injurious behaviors (feather pecking, aggression, and cannibalistic pecking) in chickens. However, existing knowledge of preventing and treating these disorders in both humans and chickens is not well understood. In previous studies, we developed a non-mammal model in an abnormal behavioral investigation by rationalizing the effects of gut microbiota on injurious behaviors in chickens. Based on our earlier success, the perspective article outlines the possibility of reducing stress-induced injurious behaviors in chickens through modifying gut microbiota via cecal microbiota transplantation, with the potential for providing a biotherapeutic rationale for preventing injurious behaviors among individuals with mental disorders via restoring gut microbiota diversity and function.
Collapse
Affiliation(s)
- Yuechi Fu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Heng-Wei Cheng
- Livestock Behavior Research Unit, USDA-ARS, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
8
|
Meng X, Grandjean J, Sbrini G, Schipper P, Hofwijks N, Stoop J, Calabrese F, Homberg J. Tryptophan Hydroxylase 2 Knockout Male Rats Exhibit a Strengthened Oxytocin System, Are Aggressive, and Are Less Anxious. ACS Chem Neurosci 2022; 13:2974-2981. [PMID: 36197033 PMCID: PMC9585586 DOI: 10.1021/acschemneuro.2c00448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 01/20/2023] Open
Abstract
The central serotoninergic system is critical for stress responsivity and social behavior, and its dysregulations have been centrally implicated in virtually all neuropsychiatric disorders. Genetic serotonin depletion animal models could provide a tool to elucidate the causes and mechanisms of diseases and to develop new treatment approaches. Previously, mice lacking tryptophan hydroxylase 2 (Tph2) have been developed, showing altered behaviors and neurotransmission. However, the effect of congenital serotonin deficiency on emotional and social behavior in rats is still largely unknown, as are the underlying mechanisms. In this study, we used a Tph2 knockout (Tph2-/-) male rat model to study how the lack of serotonin in the rat brain affects anxiety-like and social behaviors. Since oxytocin is centrally implicated in these behaviors, we furthermore explored whether the effects of Tph2 knockout on behavior would relate to changes in the oxytocin system. We show that Tph2-/- rats display reduced anxiety-like behavior and a high level of aggression in social interactions. In addition, oxytocin receptor expression was increased in the infralimbic and prelimbic cortices, paraventricular nucleus, dorsal raphe nucleus, and some subregions of the hippocampus, which was paralleled by increased levels of oxytocin in the medial frontal cortex and paraventricular nucleus but not the dorsal raphe nucleus, central amygdala, and hippocampus. In conclusion, our study demonstrated reduced anxiety but exaggerated aggression in Tph2-/- male rats and reveals for the first time a potential involvement of altered oxytocin system function. Meanwhile, the research of oxytocin could be distinguished in almost any psychiatric disorder including anxiety and mental disorders. This research potentially proposes a new target for the treatment of such disorders, from a genetic serotonin deficiency aspect.
Collapse
Affiliation(s)
- Xianzong Meng
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Joanes Grandjean
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
- Department
of Medical Imaging, Radboud University Medical
Centre, 6525 GA Nijmegen, The Netherlands
| | - Giulia Sbrini
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Pieter Schipper
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Nita Hofwijks
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Jesse Stoop
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| | - Francesca Calabrese
- Department
of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Judith Homberg
- Department
of Cognitive Neuroscience, Donders Institute for Brain, Cognition,
and Behaviour, Radboud University Medical
Centre, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
9
|
Palavicino-Maggio CB, Sengupta S. The Neuromodulatory Basis of Aggression: Lessons From the Humble Fruit Fly. Front Behav Neurosci 2022; 16:836666. [PMID: 35517573 PMCID: PMC9062135 DOI: 10.3389/fnbeh.2022.836666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/07/2022] [Indexed: 11/22/2022] Open
Abstract
Aggression is an intrinsic trait that organisms of almost all species, humans included, use to get access to food, shelter, and mating partners. To maximize fitness in the wild, an organism must vary the intensity of aggression toward the same or different stimuli. How much of this variation is genetic and how much is externally induced, is largely unknown but is likely to be a combination of both. Irrespective of the source, one of the principal physiological mechanisms altering the aggression intensity involves neuromodulation. Any change or variation in aggression intensity is most likely governed by a complex interaction of several neuromodulators acting via a meshwork of neural circuits. Resolving aggression-specific neural circuits in a mammalian model has proven challenging due to the highly complex nature of the mammalian brain. In that regard, the fruit fly model Drosophila melanogaster has provided insights into the circuit-driven mechanisms of aggression regulation and its underlying neuromodulatory basis. Despite morphological dissimilarities, the fly brain shares striking similarities with the mammalian brain in genes, neuromodulatory systems, and circuit-organization, making the findings from the fly model extremely valuable for understanding the fundamental circuit logic of human aggression. This review discusses our current understanding of how neuromodulators regulate aggression based on findings from the fruit fly model. We specifically focus on the roles of Serotonin (5-HT), Dopamine (DA), Octopamine (OA), Acetylcholine (ACTH), Sex Peptides (SP), Tachykinin (TK), Neuropeptide F (NPF), and Drosulfakinin (Dsk) in fruit fly male and female aggression.
Collapse
Affiliation(s)
- Caroline B Palavicino-Maggio
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Saheli Sengupta
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Boston, MA, United States
| |
Collapse
|
10
|
Hunter JN, Wood EK, Roberg BL, Neville L, Schwandt ML, Fairbanks LA, Barr C, Lindell SG, Goldman D, Suomi SJ, Higley JD. Mismatches in resident and stranger serotonin transporter genotypes lead to escalated aggression, and the target for aggression is mediated by sex differences in male and female rhesus monkeys (Macaca mulatta). Horm Behav 2022; 140:105104. [PMID: 35180497 PMCID: PMC9380749 DOI: 10.1016/j.yhbeh.2021.105104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/04/2022]
Abstract
A variety of studies show that the s-allele of the serotonin transporter genotype (5-HTT) is related to aggression. However, influences of sex and 5-HTT genotype of both subject and opponent have not received as much attention in aggression research. Using a nonhuman primate model, the present study explores differences in rates of aggression exhibited by 201 group-housed male and female rhesus monkeys (Macaca mulatta; 122 females; 79 males) exposed to an unfamiliar age- and sex-matched stranger while in the presence of other same-sex members of their social group. The study also assesses whether the rates of aggression increase when the home-cage resident, the unfamiliar stimulus animal, or both possess the short (s) allele of the 5-HTT. Results showed that, when compared to females, males exhibited higher rates of physical aggression toward the stranger, and when both the male resident and the male stranger possessed the s-allele, rates of physical aggression toward the stranger increased five-fold. Resident females also engaged in higher rates of physical aggression when they possessed the s-allele, although unlike the males, their physical aggression was directed toward familiar same-sex members of their social group. The findings of this study indicate that rates of physical aggression are modulated by 5-HTT resident and stranger suggest a role of sexual competition in the phenotype of the 5-HTT genotype. Importantly, when two males with impulse deficits, as a function of the s-allele, are placed together, rates of violence exhibited by the dyad escalate substantially.
Collapse
Affiliation(s)
- Jacob N Hunter
- Neuroscience Department, Brigham Young University, Provo, UT, USA.
| | - Elizabeth K Wood
- Psychology Department, Brigham Young University, Provo, UT, USA.
| | | | - Leslie Neville
- Neuroscience Department, Brigham Young University, Provo, UT, USA.
| | - Melanie L Schwandt
- Laboratory of Clinical and Translational Studies, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Poolesville, MD, USA.
| | - Lynn A Fairbanks
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Christina Barr
- Laboratory of Clinical and Translational Studies, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Poolesville, MD, USA.
| | - Stephen G Lindell
- Laboratory of Clinical and Translational Studies, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Poolesville, MD, USA.
| | - David Goldman
- Laboratory of Neurogenetics, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism (NIH/NIAAA), Rockville, MD, USA.
| | - Stephen J Suomi
- Laboratory of Comparative Ethology, NIH, National Institute of Child Health and Development, Poolesville, MD, USA.
| | - J Dee Higley
- Neuroscience Department, Brigham Young University, Provo, UT, USA; Columbia VA Health Care System, Columbia, SC, USA.
| |
Collapse
|
11
|
Svirin E, Veniaminova E, Costa-Nunes JP, Gorlova A, Umriukhin A, Kalueff AV, Proshin A, Anthony DC, Nedorubov A, Tse ACK, Walitza S, Lim LW, Lesch KP, Strekalova T. Predation Stress Causes Excessive Aggression in Female Mice with Partial Genetic Inactivation of Tryptophan Hydroxylase-2: Evidence for Altered Myelination-Related Processes. Cells 2022; 11:1036. [PMID: 35326487 PMCID: PMC8947002 DOI: 10.3390/cells11061036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2-/-) mice. In heterozygous male mice (Tph2+/-), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2+/- mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2+/- females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2+/- mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior.
Collapse
Affiliation(s)
- Evgeniy Svirin
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Ekaterina Veniaminova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - João Pedro Costa-Nunes
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Institute of Molecular Medicine, New University of Lisbon, 1649-028 Lisbon, Portugal
| | - Anna Gorlova
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Allan V. Kalueff
- Neuroscience Program, Sirius University, 354340 Sochi, Russia;
- Moscow Institute of Physics and Technology, School of Biological and Medical Physics, 141701 Dolgoprudny, Russia
- Institute of Natural Sciences, Ural Federal University, 620002 Yekaterinburg, Russia
| | - Andrey Proshin
- P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia;
| | - Daniel C. Anthony
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
- Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK
| | - Andrey Nedorubov
- Institute of Translational Medicine and Biotechnology, Sechenov University, 119991 Moscow, Russia;
| | - Anna Chung Kwan Tse
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Susanne Walitza
- Department for Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, 8032 Zurich, Switzerland;
| | - Lee Wei Lim
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China;
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands; (E.S.); (K.-P.L.)
- Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov University, 119991 Moscow, Russia; (E.V.); (J.P.C.-N.); (A.G.); (A.U.); (D.C.A.)
| |
Collapse
|
12
|
Nishina K, Shou Q, Takahashi H, Sakagami M, Inoue-Murayama M, Takagishi H. Association Between Polymorphism (5-HTTLPR) of the Serotonin Transporter Gene and Behavioral Response to Unfair Distribution. Front Behav Neurosci 2022; 16:762092. [PMID: 35368308 PMCID: PMC8966403 DOI: 10.3389/fnbeh.2022.762092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Behavioral responses to unfair distribution have been measured mainly using the Ultimatum Game (UG). Recent studies examining the biological basis of behavioral responses to unfair distribution have focused attention on the role of the serotonin transporter gene. However, studies, to date, have been conducted on non-Asians, and it has not been confirmed whether similar results can be seen in other ethnic groups. It has also been shown that behavioral responses to unfair distribution are not only seen in the case of victims themselves but also in the case of third parties not directly affected. This study aimed to determine whether the results of the previous study would be replicated in an Asian population and whether the serotonin transporter gene would also be associated with behavior toward unfair distribution by third parties. We examined the association between polymorphisms (5-HTTLPR) of the serotonin transporter gene and participants’ behavior in the UG and the third-party punishment game (TPPG). The results did not show an association between punishment for unfair proposals in the TPPG and genetic polymorphisms, while participants with the SL/LL genotype were more likely to reject unfair offers in the UG than those with the SS genotype. These results indicate that 5-HTTLPR is associated with behavior when unfair intentions are directed at oneself.
Collapse
Affiliation(s)
- Kuniyuki Nishina
- Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Qiulu Shou
- Graduate School of Brain Sciences, Tamagawa University, Tokyo, Japan
| | - Hidehiko Takahashi
- Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | | | | | - Haruto Takagishi
- Brain Science Institute, Tamagawa University, Tokyo, Japan
- *Correspondence: Haruto Takagishi,
| |
Collapse
|
13
|
Sontate KV, Rahim Kamaluddin M, Naina Mohamed I, Mohamed RMP, Shaikh MF, Kamal H, Kumar J. Alcohol, Aggression, and Violence: From Public Health to Neuroscience. Front Psychol 2022; 12:699726. [PMID: 35002823 PMCID: PMC8729263 DOI: 10.3389/fpsyg.2021.699726] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Alcohol has been associated with violent crimes and domestic violence across many nations. Various etiological factors were linked to chronic alcohol use and violence including psychiatric comorbidities of perpetrators such as personality disorders, mood disorders, and intermittent explosive disorders. Aggression is the precursor of violence and individuals prone to aggressive behaviors are more likely to commit impulsive violent crimes, especially under the influence of alcohol. Findings from brain studies indicate long-term alcohol consumption induced morphological changes in brain regions involved in self-control, decision-making, and emotional processing. In line with this, the inherent dopaminergic and serotonergic anomalies seen in aggressive individuals increase their susceptibility to commit violent crimes when alcohol present in their system. In relation to this, this article intends to investigate the influence of alcohol on aggression with sociopsychological and neuroscientific perspectives by looking into comorbidity of personality or mood disorders, state of the mind during alcohol consumption, types of beverages, environmental trigger, neurochemical changes, and gender differences that influence individual responses to alcohol intake and susceptibility to intoxicated aggression.
Collapse
Affiliation(s)
| | - Mohammad Rahim Kamaluddin
- Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Rashidi Mohamed Pakri Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
15
|
Oliveira VEDM, Bakker J. Neuroendocrine regulation of female aggression. Front Endocrinol (Lausanne) 2022; 13:957114. [PMID: 36034455 PMCID: PMC9399833 DOI: 10.3389/fendo.2022.957114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Classically the neurobiology of aggression has been studied exclusively in males. Thus, females have been considered mildly aggressive except during lactation. Interestingly, recent studies in rodents and humans have revealed that non-lactating females can show exacerbated and pathological aggression similarly to males. This review provides an overview of recent findings on the neuroendocrine mechanisms regulating aggressive behavior in females. In particular, the focus will be on novel rodent models of exaggerated aggression established in non-lactating females. Among the neuromodulatory systems influencing female aggression, special attention has been given to sex-steroids and sex-steroid-sensitive neuronal populations (i.e., the core nuclei of the neural pathway of aggression) as well as to the neuropeptides oxytocin and vasopressin which are major players in the regulation of social behaviors.
Collapse
|
16
|
Payet JM, Wilson KE, Russo AM, Angiolino A, Kavanagh-Ryan W, Kent S, Lowry CA, Hale MW. Involvement of dorsal raphe nucleus serotonergic systems in social approach-avoidance behaviour and in the response to fluoxetine treatment in peri-adolescent female BALB/c mice. Behav Brain Res 2021; 408:113268. [PMID: 33811952 DOI: 10.1016/j.bbr.2021.113268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/03/2021] [Accepted: 03/26/2021] [Indexed: 12/19/2022]
Abstract
Serotonergic systems are involved in the development and regulation of social behaviour, and drugs that target serotonin neurotransmission, such as selective serotonin reuptake inhibitors (SSRIs), also alter aspects of social approach-avoidance. The midbrain dorsal raphe nucleus (DR), which is a major serotonergic nucleus and main source of serotonergic innervation of the forebrain, has been proposed as an important target for SSRIs, although evidence in females is lacking. In this study, we examined the involvement of the DR serotonergic systems in social behaviour and in response to SSRI treatment, using peri-adolescent female BALB/c mice. Mice were exposed to the SSRI fluoxetine either chronically (18 mg/kg/day, in drinking water, for 12 days) or acutely (18 mg/kg, i.p.), or to vehicle control condition (0.9 % saline, i.p.), prior to being exposed to the three-chambered sociability test. Activation of serotonergic neurons across subregions of the DR were subsequently measured, using dual-label immunohistochemistry for TPH2 and c-Fos. Acute fluoxetine administration increased generalised and social avoidance, while mice exposed to chronic fluoxetine treatment showed levels of social approach behaviour that were comparable to controls. Serotonergic populations across the DR showed reduced activity following acute fluoxetine treatment. Further, activation of serotonergic neurons in the ventral DR correlated with social approach behaviour in vehicle-treated control mice. These data provide some support for the involvement of discrete populations of DR serotonergic neurons in the regulation of social approach-avoidance, although more research is needed to understand the effects and mechanisms of chronic SSRI treatment in females.
Collapse
Affiliation(s)
- Jennyfer M Payet
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Kira-Elise Wilson
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Adrian M Russo
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Anthony Angiolino
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - William Kavanagh-Ryan
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Stephen Kent
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Matthew W Hale
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
17
|
Karataş E, Kahraman ÇY, Akbıyık N. Association between polymorphisms in catechol-O-methyl transferase, opioid receptor Mu 1 and serotonin receptor genes with postoperative pain following root canal treatment. Int Endod J 2021; 54:1016-1025. [PMID: 33559241 DOI: 10.1111/iej.13493] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
AIM To evaluate the effect of single nucleotide polymorphisms in the COMT, OPRM1, 5HT1A, 5HT2A and 5HTR3B genes on the intensity of postoperative pain following root canal treatment. METHODOLOGY Ninety-five patients with mandibular and maxillary molar teeth diagnosed with symptomatic apical periodontitis and a level of preoperative pain greater than 50 on a 100 mm visual analogue scale (VAS) were included. Salivary DNA was collected from the participants and stored in Eppendorf tubes at -80 °C. Preoperative percussion pain values were recorded before the root canal treatment procedures. After completion of root canal treatment, the participants were given instructions to record their postoperative pain intensity levels at 24, 48 and 72 h, 5 days and 1 week after treatment, using the VAS. A second visit for the patients after seven days was planned to record their intensity levels of percussion pain on VAS. The percussion test was performed by tapping on the occlusal surface of the tooth with a blunt instrument. A QIAamp DNA Mini Kit was used to isolate DNA from saliva, and SNP Genotyping Analysis software version 1 was used to analyse the genotypes by calculating FAM and HEX signals. The Kruskal-Wallis and Mann-Whitney U-tests were used to evaluate pain intensity values amongst the genotypes, alleles, haplotypes and allele combinations. Nominal data (gender, intake and tooth number) were analysed using a Chi-square test. Bonferroni correction was performed. Thus, the significance level was set at 1.6% (P = 0.016), 2.5% (P = 0.025) and 1.25% (P = 0.0125) for genotype, allele and haplotype comparisons, respectively. RESULTS There was no significant difference amongst the genotypes and alleles in terms of pre- and postoperative pain intensity. There was no significant difference amongst the haplotypes formed for the COMT gene in terms of pain intensity. Additionally, there was no significant association between the allelic combination formed for 5HT1A + 5HT2A genes and the intensity of postoperative pain. CONCLUSION The findings indicate that none of the evaluated SNPs for COMT, OPRM1, 5HT1A, 5HT2A and 5HTR3B genes were associated with the intensity of postoperative pain.
Collapse
Affiliation(s)
- E Karataş
- Department of Endodontics, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Ç Y Kahraman
- Department of Medical Genetics, Medical Faculty, Atatürk University, Erzurum, Turkey
| | - N Akbıyık
- Department of Endodontics, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| |
Collapse
|
18
|
Chenxuan H, Qiaoxian Y, Yifan C, Dehe W, Rongyan Z, Guoxian Z, Hui C. Effects of in ovo injection of serotonin on behavior and hypothalamic genes expression in post hatch-chicks. Appl Anim Behav Sci 2021. [DOI: 10.1016/j.applanim.2020.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Feige-Diller J, Palme R, Kaiser S, Sachser N, Richter SH. The impact of varying food availability on health and welfare in mice: Testing the Match-Mismatch hypothesis. Physiol Behav 2020; 228:113193. [PMID: 33011232 DOI: 10.1016/j.physbeh.2020.113193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022]
Abstract
During early phases of life, an organism's phenotype can be shaped by the environmental conditions which it experiences. If the conditions change subsequently, the mismatch between the environment in early and later life could have negative effects on the individual's health and welfare. The aim of this study was to systematically test the predictions of this Match-Mismatch hypothesis in laboratory mice. Therefore, female C57BL/6 J mice were exposed to matching or mismatching combinations of low and high food availability in adolescence and early adulthood. A comprehensive analysis of various physiological and behavioral parameters was conducted. No indication of a mismatch effect was found, which might be attributed to the specific ecology of mice. Alternatively, food availability might cause a shaping of the phenotype only during the prenatal or early postnatal development. However, various effects of low vs high food availability were found regarding the individuals' physiology and, to a small extent, their behavior. Low food availability caused higher concentrations of fecal corticosterone metabolites, as well as higher liver and lower spleen weights, suggesting an adaptation of the metabolism to this situation.
Collapse
Affiliation(s)
- Janina Feige-Diller
- Department of Behavioral Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG RTG EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria.
| | - Sylvia Kaiser
- Department of Behavioral Biology, University of Münster, Badestr. 13, 48149 Münster, Germany.
| | - Norbert Sachser
- Department of Behavioral Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG RTG EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| | - S Helene Richter
- Department of Behavioral Biology, University of Münster, Badestr. 13, 48149 Münster, Germany; DFG RTG EvoPAD, University of Münster, Hüfferstr. 1a, 48149 Münster, Germany.
| |
Collapse
|
20
|
Wang Y, Miller JW, Bello NT, Shapses SA. Low-vitamin-D diet lowers cerebral serotonin concentration in mature female mice. Nutr Res 2020; 81:71-80. [PMID: 32920521 DOI: 10.1016/j.nutres.2020.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/21/2020] [Accepted: 07/16/2020] [Indexed: 01/07/2023]
Abstract
Low circulating 25-hydroxyvitamin D (25OHD) is commonly found in obese individuals and is often attributed to a volume dilution effect of adipose tissue. However, low vitamin D (LD) intake may contribute to the obesity itself. In this study, we examine whether low vitamin D status contributes to increased food intake and weight gain and can be explained by altered brain serotonin metabolism in 8-month-old female C57BL/6J mice. In a first experiment, mice were fed a 45% high-fat diet (HFD) containing different amounts of vitamin D at low (100 IU/kg), normal (1,000 IU/kg) or high (10,000 IU/kg) intake. After 10 weeks, mice fed LD had greater energy intake, weight gain, total and hepatic fat than the higher vitamin D groups (P < .05). In a second experiment, mice were examined for the central serotonin regulation of food intake after a 10% normal-fat diet (NFD) or 45% HFD containing low (100 IU/kg) or normal (1000 IU/kg) vitamin D. After 10 weeks, both HFD and LD diets attenuated circulating 25OHD concentration. Additionally, LD intake lowered cortical serotonin level, regardless of dietary fat intake (P < .05). In the arcuate and raphe nuclei, gene expression of vitamin D 1α-hydroxylase was lower due to LD during HFD feeding (P < .05). Tryptophan hydroxylase-2 and serotonin reuptake transporter gene expression was not altered due to LD. Overall, these findings suggest that a LD diet alters peripheral 25OHD, reduces central serotonin, and may contribute to weight gain in an obesogenic environment.
Collapse
Affiliation(s)
- Yang Wang
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Joshua W Miller
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Nicholas T Bello
- Department of Animal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Sue A Shapses
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; Department of Medicine, Rutgers-RWJ Medical School, New Brunswick, NJ.
| |
Collapse
|
21
|
Bubak AN, Watt MJ, Yaeger JDW, Renner KJ, Swallow JG. The stalk-eyed fly as a model for aggression - is there a conserved role for 5-HT between vertebrates and invertebrates? ACTA ACUST UNITED AC 2020; 223:223/1/jeb132159. [PMID: 31896721 DOI: 10.1242/jeb.132159] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Serotonin (5-HT) has largely been accepted to be inhibitory to vertebrate aggression, whereas an opposing stimulatory role has been proposed for invertebrates. Herein, we argue that critical gaps in our understanding of the nuanced role of 5-HT in invertebrate systems drove this conclusion prematurely, and that emerging data suggest a previously unrecognized level of phylogenetic conservation with respect to neurochemical mechanisms regulating the expression of aggressive behaviors. This is especially apparent when considering the interplay among factors governing 5-HT activity, many of which share functional homology across taxa. We discuss recent findings using insect models, with an emphasis on the stalk-eyed fly, to demonstrate how particular 5-HT receptor subtypes mediate the intensity of aggression with respect to discrete stages of the interaction (initiation, escalation and termination), which mirrors the complex behavioral regulation currently recognized in vertebrates. Further similarities emerge when considering the contribution of neuropeptides, which interact with 5-HT to ultimately determine contest progression and outcome. Relative to knowledge in vertebrates, much less is known about the function of 5-HT receptors and neuropeptides in invertebrate aggression, particularly with respect to sex, species and context, prompting the need for further studies. Our Commentary highlights the need to consider multiple factors when determining potential taxonomic differences, and raises the possibility of more similarities than differences between vertebrates and invertebrates with regard to the modulatory effect of 5-HT on aggression.
Collapse
Affiliation(s)
- Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Michael J Watt
- Department of Anatomy, University of Otago, Dunedin 9016, New Zealand
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kenneth J Renner
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - John G Swallow
- Department of Integrative Biology, University of Colorado-Denver, Denver, CO 80217, USA
| |
Collapse
|