1
|
Fang T, Hu S, Song X, Wang J, Zuo R, Yun S, Jiang S, Guo D. Combination of monensin and erlotinib synergistically inhibited the growth and cancer stem cell properties of triple-negative breast cancer by simultaneously inhibiting EGFR and PI3K signaling pathways. Breast Cancer Res Treat 2024; 207:435-451. [PMID: 38958784 DOI: 10.1007/s10549-024-07374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSCs) in triple-negative breast cancer (TNBC) are recognized as a highly challenging subset of cells, renowned for their heightened propensity for relapse and unfavorable prognosis. Monensin, an ionophoric antibiotic, has been reported to exhibit significant therapeutic efficacy against various cancers, especially CSCs. Erlotinib is classified as one of the EGFR-TKIs and has been previously identified as a promising therapeutic target for TNBC. Our research aims to assess the effectiveness of combination of monensin and erlotinib as a potential treatment strategy for TNBC. METHODS The combination of monensin and erlotinib was assessed for its potential anticancer activity through various in vitro assays, including cytotoxicity assay, colony formation assay, wound healing assay, transwell assay, mammosphere formation assay, and proportion of CSCs assay. Additionally, an in vivo study using tumor-bearing nude mice was conducted to evaluate the inhibitory effect of the monensin and erlotinib combination on tumor growth. RESULTS The results indicated that combination of monensin with erlotinib synergistically inhibited cell proliferation, the migration rate, the invasion ability and decreased the CSCs proportion, and CSC markers SOX2 and CD133 in vivo and in vitro. Furthermore, the primary proteins involved in the signaling pathways of the EGFR/ERK and PI3K/AKT are simultaneously inhibited by the combination treatment of monensin and erlotinib in vivo and in vitro. CONCLUSIONS The simultaneous inhibition of the EGFR/ERK and PI3K/AKT/mTOR signaling pathways by the combination of monensin and erlotinib exhibited a synergistic effect on suppressing tumor proliferation and cancer cell stemness in TNBC.
Collapse
Affiliation(s)
- Tian Fang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shiheng Hu
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Xinhao Song
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Junqi Wang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Runan Zuo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Shifeng Yun
- Department of Comparative Medicine, Affiliated Hospital of Medicine School, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Shanxiang Jiang
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| | - Dawei Guo
- Engineering Center of Innovativennovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
2
|
Lee ZY, Lee WH, Lim JS, Ali AAA, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Golgi apparatus targeted therapy in cancer: Are we there yet? Life Sci 2024; 352:122868. [PMID: 38936604 DOI: 10.1016/j.lfs.2024.122868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
Membrane trafficking within the Golgi apparatus plays a pivotal role in the intracellular transportation of lipids and proteins. Dysregulation of this process can give rise to various pathological manifestations, including cancer. Exploiting Golgi defects, cancer cells capitalise on aberrant membrane trafficking to facilitate signal transduction, proliferation, invasion, immune modulation, angiogenesis, and metastasis. Despite the identification of several molecular signalling pathways associated with Golgi abnormalities, there remains a lack of approved drugs specifically targeting cancer cells through the manipulation of the Golgi apparatus. In the initial section of this comprehensive review, the focus is directed towards delineating the abnormal Golgi genes and proteins implicated in carcinogenesis. Subsequently, a thorough examination is conducted on the impact of these variations on Golgi function, encompassing aspects such as vesicular trafficking, glycosylation, autophagy, oxidative mechanisms, and pH alterations. Lastly, the review provides a current update on promising Golgi apparatus-targeted inhibitors undergoing preclinical and/or clinical trials, offering insights into their potential as therapeutic interventions. Significantly more effort is required to advance these potential inhibitors to benefit patients in clinical settings.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Wen Hwei Lee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Sheng Lim
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Afiqah Ali Ajmel Ali
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400 Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Selangor, Malaysia; Digital Health and Medical Advancements Impact Lab, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Martins M, Vieira J, Pereira-Leite C, Saraiva N, Fernandes AS. The Golgi Apparatus as an Anticancer Therapeutic Target. BIOLOGY 2023; 13:1. [PMID: 38275722 PMCID: PMC10813373 DOI: 10.3390/biology13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Although the discovery of the Golgi apparatus (GA) was made over 125 years ago, only a very limited number of therapeutic approaches have been developed to target this complex organelle. The GA serves as a modification and transport center for proteins and lipids and also has more recently emerged as an important store for some ions. The dysregulation of GA functions is implicated in many cellular processes associated with cancer and some GA proteins are indeed described as cancer biomarkers. This dysregulation can affect protein modification, localization, and secretion, but also cellular metabolism, redox status, extracellular pH, and the extracellular matrix structure. Consequently, it can directly or indirectly affect cancer progression. For these reasons, the GA is an appealing anticancer pharmacological target. Despite this, no anticancer drug specifically targeting the GA has reached the clinic and few have entered the clinical trial stage. Advances in nanodelivery approaches may help change this scenario by specifically targeting tumor cells and/or the GA through passive, active, or physical strategies. This article aims to examine the currently available anticancer GA-targeted drugs and the nanodelivery strategies explored for their administration. The potential benefits and challenges of modulating and specifically targeting the GA function in the context of cancer therapy are discussed.
Collapse
Affiliation(s)
- Marta Martins
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - João Vieira
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Catarina Pereira-Leite
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nuno Saraiva
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
| | - Ana Sofia Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (M.M.); (J.V.); (C.P.-L.)
| |
Collapse
|
4
|
Berning L, Lenz T, Bergmann AK, Poschmann G, Brass HUC, Schlütermann D, Friedrich A, Mendiburo MJ, David C, Akgün S, Pietruszka J, Stühler K, Stork B. The Golgi stacking protein GRASP55 is targeted by the natural compound prodigiosin. Cell Commun Signal 2023; 21:275. [PMID: 37798768 PMCID: PMC10552397 DOI: 10.1186/s12964-023-01275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Hannah U C Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - María José Mendiburo
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Seda Akgün
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany.
| |
Collapse
|
5
|
Marjanović M, Mikecin Dražić AM, Mioč M, Paradžik M, Kliček F, Novokmet M, Lauc G, Kralj M. Salinomycin disturbs Golgi function and specifically affects cells in epithelial-to-mesenchymal transition. J Cell Sci 2023; 136:jcs260934. [PMID: 37545292 DOI: 10.1242/jcs.260934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) gives rise to cells with properties similar to cancer stem cells (CSCs). Targeting the EMT program to selectively eliminate CSCs is a promising way to improve cancer therapy. Salinomycin (Sal), a K+/H+ ionophore, was identified as highly selective towards CSC-like cells, but its mechanism of action and selectivity remains elusive. Here, we show that Sal, similar to monensin and nigericin, disturbs the function of the Golgi. Sal alters the expression of Golgi-related genes and leads to marked changes in Golgi morphology, particularly in cells that have undergone EMT. Moreover, Golgi-disturbing agents severely affect post-translational modifications of proteins, including protein processing, glycosylation and secretion. We discover that the alterations induced by Golgi-disturbing agents specifically affect the viability of EMT cells. Collectively, our work reveals a novel vulnerability related to the EMT, suggesting an important role for the Golgi in the EMT and that targeting the Golgi could represent a novel therapeutic approach against CSCs.
Collapse
Affiliation(s)
- Marko Marjanović
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Ana-Matea Mikecin Dražić
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Marija Mioč
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Mladen Paradžik
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Filip Kliček
- GENOS, Glycoscience Research Laboratory, Borongajska c. 83, 10000 Zagreb, Croatia
| | - Mislav Novokmet
- GENOS, Glycoscience Research Laboratory, Borongajska c. 83, 10000 Zagreb, Croatia
| | - Gordan Lauc
- GENOS, Glycoscience Research Laboratory, Borongajska c. 83, 10000 Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Anand U, Dey A, Chandel AKS, Sanyal R, Mishra A, Pandey DK, De Falco V, Upadhyay A, Kandimalla R, Chaudhary A, Dhanjal JK, Dewanjee S, Vallamkondu J, Pérez de la Lastra JM. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis 2023; 10:1367-1401. [PMID: 37397557 PMCID: PMC10310991 DOI: 10.1016/j.gendis.2022.02.007] [Citation(s) in RCA: 269] [Impact Index Per Article: 269.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
Cancer is an abnormal state of cells where they undergo uncontrolled proliferation and produce aggressive malignancies that causes millions of deaths every year. With the new understanding of the molecular mechanism(s) of disease progression, our knowledge about the disease is snowballing, leading to the evolution of many new therapeutic regimes and their successive trials. In the past few decades, various combinations of therapies have been proposed and are presently employed in the treatment of diverse cancers. Targeted drug therapy, immunotherapy, and personalized medicines are now largely being employed, which were not common a few years back. The field of cancer discoveries and therapeutics are evolving fast as cancer type-specific biomarkers are progressively being identified and several types of cancers are nowadays undergoing systematic therapies, extending patients' disease-free survival thereafter. Although growing evidence shows that a systematic and targeted approach could be the future of cancer medicine, chemotherapy remains a largely opted therapeutic option despite its known side effects on the patient's physical and psychological health. Chemotherapeutic agents/pharmaceuticals served a great purpose over the past few decades and have remained the frontline choice for advanced-stage malignancies where surgery and/or radiation therapy cannot be prescribed due to specific reasons. The present report succinctly reviews the existing and contemporary advancements in chemotherapy and assesses the status of the enrolled drugs/pharmaceuticals; it also comprehensively discusses the emerging role of specific/targeted therapeutic strategies that are presently being employed to achieve better clinical success/survival rate in cancer patients.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Arvind K. Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Rupa Sanyal
- Department of Botany, Bhairab Ganguly College (affiliated to West Bengal State University), Kolkata, West Bengal 700056, India
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Devendra Kumar Pandey
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Valentina De Falco
- Institute of Endocrinology and Experimental Oncology (IEOS), National Research Council (CNR), Department of Molecular Medicine and Medical Biotechnology (DMMBM), University of Naples Federico II, Naples 80131, Italy
| | - Arun Upadhyay
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Bandar Sindari, Kishangarh Ajmer, Rajasthan 305817, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana 506007, India
| | - Anupama Chaudhary
- Orinin-BioSystems, LE-52, Lotus Road 4, CHD City, Karnal, Haryana 132001, India
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-D), Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Jayalakshmi Vallamkondu
- Department of Physics, National Institute of Technology-Warangal, Warangal, Telangana 506004, India
| | - José M. Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, IPNA-CSIC, San Cristóbal de La Laguna 38206, Tenerife, Spain
| |
Collapse
|
7
|
Clemente N, Baroni S, Fiorilla S, Tasso F, Reano S, Borsotti C, Ruggiero MR, Alchera E, Corrazzari M, Walker G, Follenzi A, Crich SG, Carini R. Boosting intracellular sodium selectively kills hepatocarcinoma cells and induces hepatocellular carcinoma tumor shrinkage in mice. Commun Biol 2023; 6:574. [PMID: 37248274 DOI: 10.1038/s42003-023-04946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Pharmacological treatments for advanced hepatocellular carcinoma (HCC) have a partial efficacy. Augmented Na+ content and water retention are observed in human cancers and offer unexplored targets for anticancer therapies. Na+ levels are evaluated upon treatments with the antibiotic cation ionophore Monensin by fluorimetry, ICP-MS, 23Na-MRI, NMR relaxometry, confocal or time-lapse analysis related to energy production, water fluxes and cell death, employing both murine and human HCC cell lines, primary murine hepatocytes, or HCC allografts in NSG mice. Na+ levels of HCC cells and tissue are 8-10 times higher than that of healthy hepatocytes and livers. Monensin further increases Na+ levels in HCC cells and in HCC allografts but not in primary hepatocytes and in normal hepatic and extrahepatic tissue. The Na+ increase is associated with energy depletion, mitochondrial Na+ load and inhibition of O2 consumption. The Na+ increase causes an enhancement of the intracellular water lifetime and death of HCC cells, and a regression and necrosis of allograft tumors, without affecting the proliferating activity of either HCCs or healthy tissues. These observations indicate that HCC cells are, unlike healthy cells, energetically incapable of compensating and surviving a pharmacologically induced Na+ load, highlighting Na+ homeostasis as druggable target for HCC therapy.
Collapse
Affiliation(s)
- Nausicaa Clemente
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simona Baroni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy
| | - Simone Fiorilla
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Francesco Tasso
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simone Reano
- Department of Department of Translational Medicine, Unit of Muscle Biology, Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Chiara Borsotti
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Maria Rosaria Ruggiero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS, Ospedale San Raffaele, Milan, Italy
| | - Marco Corrazzari
- Department of Health Science and Interdisciplinary Research Center of Autoimmune Disease (IRCAD), Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Gillian Walker
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Antonia Follenzi
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy
| | - Simonetta Geninatti Crich
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza, 52, 10126, Torino, Italy.
| | - Rita Carini
- Department of Health Science Università del Piemonte Orientale, Via Solaroli, 17, 28100, Novara, Italy.
| |
Collapse
|
8
|
Pećina-Šlaus N, Aničić S, Bukovac A, Kafka A. Wnt Signaling Inhibitors and Their Promising Role in Tumor Treatment. Int J Mol Sci 2023; 24:ijms24076733. [PMID: 37047705 PMCID: PMC10095594 DOI: 10.3390/ijms24076733] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
In a continuous search for the improvement of antitumor therapies, the inhibition of the Wnt signaling pathway has been recognized as a promising target. The altered functioning of the Wnt signaling in human tumors points to the strategy of the inhibition of its activity that would impact the clinical outcomes and survival of patients. Because the Wnt pathway is often mutated or epigenetically altered in tumors, which promotes its activation, inhibitors of Wnt signaling are being intensively investigated. It has been shown that knocking down specific components of the Wnt pathway has inhibitory effects on tumor growth in vivo and in vitro. Thus, similar effects are expected from the application of Wnt inhibitors. In the last decades, molecules acting as inhibitors on the pathway’s specific molecular levels have been identified and characterized. This review will discuss the inhibitors of the canonical Wnt pathway, summarize knowledge on their effectiveness as therapeutics, and debate their side effects. The role of the components frequently mutated in various tumors that are principal targets for Wnt inhibitors is also going to be brought to the reader’s attention. Some of the molecules identified as Wnt pathway inhibitors have reached early stages of clinical trials, and some have only just been discovered. All things considered, inhibition of the Wnt signaling pathway shows potential for the development of future therapies.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anja Bukovac
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10000 Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| |
Collapse
|
9
|
Khine MN, Sakurai K. Golgi-Targeting Anticancer Natural Products. Cancers (Basel) 2023; 15:cancers15072086. [PMID: 37046746 PMCID: PMC10093635 DOI: 10.3390/cancers15072086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 04/03/2023] Open
Abstract
The Golgi apparatus plays an important role in maintaining cell homeostasis by serving as a biosynthetic center for glycans, lipids and post-translationally modified proteins and as a sorting center for vesicular transport of proteins to specific destinations. Moreover, it provides a signaling hub that facilitates not only membrane trafficking processes but also cellular response pathways to various types of stresses. Altered signaling at the Golgi apparatus has emerged as a key regulator of tumor growth and survival. Among the small molecules that can specifically perturb or modulate Golgi proteins and organization, natural products with anticancer property have been identified as powerful chemical probes in deciphering Golgi-related pathways and, in particular, recently described Golgi stress response pathways. In this review, we highlight a set of Golgi-targeting natural products that enabled the characterization of the Golgi-mediated signaling events leading to cancer cell death and discuss the potential for selectively exploiting these pathways for the development of novel chemotherapeutic agents.
Collapse
|
10
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
11
|
Chen L, Jiang P, Shen X, Lyu J, Liu C, Li L, Huang Y. Cascade Delivery to Golgi Apparatus and On-Site Formation of Subcellular Drug Reservoir for Cancer Metastasis Suppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204747. [PMID: 36585358 DOI: 10.1002/smll.202204747] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
As the foremost cause of cancer-related death, metastasis consists of three steps: invasion, circulation, and colonization. Only targeting one single phase of the metastasis cascade may be insufficient since there are many alternative routes for tumor cells to disseminate. Here, to target the whole cascade of metastasis, hybrid erythrocyte and tumor cell membrane-coated nanoparticle (Hyb-NP) is designed with dual functions of increasing circulation time and recognizing primary, circulating, and colonized tumors. After loading with monensin, a recently reported metastasis inhibitor, the delivery system profoundly reduces spontaneous metastasis in an orthotopic breast cancer model. Underlying mechanism studies reveal that Hyb-NP can deliver monensin to its action site in the Golgi apparatus, and in return, monensin can block the exocytosis of Hyb-NP from the Golgi apparatus, forming a reservoir-like subcellular structure. Notably, the Golgi apparatus reservoir displays three vital functions for suppressing metastasis initialization, including enhanced subcellular drug retention, metastasis-related cytokine release inhibition, and directional migration inhibition. Collectively, based on metastasis cascade targeting at the tissue level, further formation of the Golgi apparatus drug reservoir at the subcellular level provides a potential therapeutic strategy for cancer metastasis suppression.
Collapse
Affiliation(s)
- Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Peihang Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Xinran Shen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Jiayan Lyu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Chendong Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
12
|
Xie D, Ma W, Wang C, Zhang W, Ding Z. Mitochondria-targeted fluorescent probe for imaging viscosity in hepatic ischemia-reperfusion injury cell model. Chem Commun (Camb) 2023; 59:1030-1033. [PMID: 36601999 DOI: 10.1039/d2cc06238k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The viscosity of the cell microenvironment is a parameter that affects cell physiological processes. A fluorescent probe X-V was designed to detect the viscosity changes of a hepatic ischemia-reperfusion injury (HIRI) cell model with high selectivity and sensitivity. The fluorescence emission wavelength is 615 nm and the Stokes shift can be up to 125 nm, which can be used not only for intracellular viscosity changes stimulated by different drugs but also for the detection of cell viscosity changes in the HIRI cell model. Probe X-V provides a useful tool to study the relationship between mitochondrial viscosity and related diseases.
Collapse
Affiliation(s)
- Dicheng Xie
- Weifang People's Hospital, Weifang, 261044, P. R. China.
| | - Wenchao Ma
- Weifang People's Hospital, Weifang, 261044, P. R. China.
| | - Chao Wang
- Weifang People's Hospital, Weifang, 261044, P. R. China.
| | - Weiping Zhang
- Weifang People's Hospital, Weifang, 261044, P. R. China.
| | - Zhiying Ding
- Weifang People's Hospital, Weifang, 261044, P. R. China.
| |
Collapse
|
13
|
Singhal S, Maheshwari P, Krishnamurthy PT, Patil VM. Drug Repurposing Strategies for Non-Cancer to Cancer Therapeutics. Anticancer Agents Med Chem 2022; 22:2726-2756. [PMID: 35301945 DOI: 10.2174/1871520622666220317140557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/15/2021] [Accepted: 11/27/2021] [Indexed: 11/22/2022]
Abstract
Global efforts invested for the prevention and treatment of cancer need to be repositioned to develop safe, effective, and economic anticancer therapeutics by adopting rational approaches of drug discovery. Drug repurposing is one of the established approaches to reposition old, clinically approved off patent noncancer drugs with known targets into newer indications. The literature review suggests key role of drug repurposing in the development of drugs intended for cancer as well as noncancer therapeutics. A wide category of noncancer drugs namely, drugs acting on CNS, anthelmintics, cardiovascular drugs, antimalarial drugs, anti-inflammatory drugs have come out with interesting outcomes during preclinical and clinical phases. In the present article a comprehensive overview of the current scenario of drug repurposing for the treatment of cancer has been focused. The details of some successful studies along with examples have been included followed by associated challenges.
Collapse
Affiliation(s)
- Shipra Singhal
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Priyal Maheshwari
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | | | - Vaishali M Patil
- Department of Pharmaceutical Chemistry KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| |
Collapse
|
14
|
Yao S, Wang W, Zhou B, Cui X, Yang H, Zhang S. Monensin suppresses cell proliferation and invasion in ovarian cancer by enhancing MEK1 SUMOylation. Exp Ther Med 2021; 22:1390. [PMID: 34650638 PMCID: PMC8506924 DOI: 10.3892/etm.2021.10826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/30/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, and is usually diagnosed at an advanced stage. Most patients relapse within 12-24 months and die from progressive chemotherapy-resistant diseases. Significant progress has been made in developing new targeted therapies for human cancer, including ovarian cancer. However, an effective alternative to drug development is to repurpose drugs. The present study investigated the possibility of reusing the antibiotic monensin as an anti-ovarian cancer drug. After applying a series of titrated monensin on a panel of ovarian cancer cell lines, the growth, migration and invasion of cells were explored. Multiple signaling molecules associated with epithelial-to-mesenchymal transition were also regulated by monensin. The mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK) pathway was further found to be the key regulator affected by monensin. Additionally, monensin enhanced the MEK1 SUMOylation in vitro and in vivo, and the SUMOylation degree depended on time and dose. Xenograft studies verified that monensin effectively inhibited xenograft tumor growth by increasing the SUMOylation of MEK1. The aforementioned results suggested that monensin is a good candidate for anti-ovarian cancer by enhancing MEK1 SUMOylation and inhibiting the MEK-ERK pathway.
Collapse
Affiliation(s)
- Shujuan Yao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Obstetrics and Gynecology, Affiliated Hospital of Shandong University of TCM, Jinan, Shandong 250014, P.R. China
| | - Wen Wang
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Bin Zhou
- Department of Obstetrics and Gynecology, Tai'an City Central Hospital, Tai'an, Shandong 271000, P.R. China
| | - Xiujuan Cui
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Jining Medical University Affiliated Tengzhou Central People's Hospital, Tengzhou, Shandong 277599, P.R. China
| | - Shiqian Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
15
|
Hansen MB, Postol M, Tvingsholm S, Nielsen IØ, Dietrich TN, Puustinen P, Maeda K, Dinant C, Strauss R, Egan D, Jäättelä M, Kallunki T. Identification of lysosome-targeting drugs with anti-inflammatory activity as potential invasion inhibitors of treatment resistant HER2 positive cancers. Cell Oncol (Dordr) 2021; 44:805-820. [PMID: 33939112 PMCID: PMC8090911 DOI: 10.1007/s13402-021-00603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2021] [Indexed: 10/26/2022] Open
Abstract
PURPOSE Most HER2 positive invasive cancers are either intrinsic non-responsive or develop resistance when treated with 1st line HER2 targeting drugs. Both 1st and 2nd line treatments of HER2 positive cancers are aimed at targeting the HER2 receptor directly, thereby strongly limiting the treatment options of HER2/ErbB2 inhibition resistant invasive cancers. METHODS We used phenotypic high throughput microscopy screening to identify efficient inhibitors of ErbB2-induced invasion using 1st line HER2 inhibitor trastuzumab- and pertuzumab-resistant, p95-ErbB2 expressing breast cancer cells in conjunction with the Prestwick Chemical Library®. The screening entailed a drug's ability to inhibit ErbB2-induced, invasion-promoting positioning of lysosomes at the cellular periphery, a phenotype that defines their invasiveness. In addition, we used high throughput microscopy and biochemical assays to assess the effects of the drugs on lysosomal membrane permeabilization (LMP) and autophagy, two features connected to cancer treatment. Using 2nd line HER2 inhibitor lapatinib resistant 3-dimensional model systems, we assessed the effects of the drugs on ErbB2 positive breast cancer spheroids and developed a high-throughput invasion assay for HER2 positive ovarian cancer organoids for further evaluation. RESULTS We identified Auranofin, Colchicine, Monensin, Niclosamide, Podophyllotoxin, Quinacrine and Thiostrepton as efficient inhibitors of invasive growth of 2nd line HER2 inhibitor lapatinib resistant breast cancer spheroids and ovarian cancer organoids. We classified these drugs into four groups based on their ability to target lysosomes by inducing autophagy and/or LMP, i.e., drugs inducing early LMP, early autophagy with late LMP, late LMP, or neither. CONCLUSIONS Our results indicate that targetable lysosome-engaging cellular pathways downstream of ErbB2 contribute to invasion. They support lysosomal trafficking as an attractive target for therapy aiming at preventing the spreading of cancer cells. Since these drugs additionally possess anti-inflammatory activities, they could serve as multipurpose drugs simultaneously targeting infection/inflammation and cancer spreading.
Collapse
Affiliation(s)
- Malene Bredahl Hansen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Maria Postol
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Siri Tvingsholm
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Inger Ødum Nielsen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Tiina Naumanen Dietrich
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Pietri Puustinen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Christoffel Dinant
- Genome Integrity Group, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Core Facility for Bioimaging, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Robert Strauss
- Genome Integrity Group, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - David Egan
- Department of Cell Biology, University Medical Center Utrecht (UMCU), Utrecht, The Netherlands
- Core Life Analytics, Padualaan, 83584 CH, Utrecht, The Netherlands
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
16
|
Shen H, Chen Y, Wan Y, Liu T, Wang J, Zhang Y, Wei L, Hu Q, Xu B, Chernov M, Frangou C, Zhang J. Identification of TAZ-Dependent Breast Cancer Vulnerabilities Using a Chemical Genomics Screening Approach. Front Cell Dev Biol 2021; 9:673374. [PMID: 34211974 PMCID: PMC8239392 DOI: 10.3389/fcell.2021.673374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer stem cells (BCSCs) represent a subpopulation of tumor cells that can self-renew and generate tumor heterogeneity. Targeting BCSCs may ameliorate therapy resistance, tumor growth, and metastatic progression. However, the origin and molecular mechanisms underlying their cellular properties are poorly understood. The transcriptional coactivator with PDZ-binding motif (TAZ) promotes mammary stem/progenitor cell (MaSC) expansion and maintenance but also confers stem-like traits to differentiated tumor cells. Here, we describe the rapid generation of experimentally induced BCSCs by TAZ-mediated reprogramming of human mammary epithelial cells, hence allowing for the direct analysis of BCSC phenotypes. Specifically, we establish genetically well-defined TAZ-dependent (TAZDEP) and -independent (TAZIND) cell lines with cancer stem cell (CSC) traits, such as self-renewal, variable resistance to chemotherapeutic agents, and tumor seeding potential. TAZDEP cells were associated with the epithelial to mesenchymal transition, embryonic, and MaSC signature genes. In contrast, TAZIND cells were characterized by a neuroendocrine transdifferentiation transcriptional program associated with Polycomb repressive complex 2 (PRC2). Mechanistically, we identify Cyclin D1 (CCND1) as a critical downstream effector for TAZ-driven tumorigenesis. Overall, our results reveal a critical TAZ-CCND1-CDK4/CDK6 signaling axis, suggesting novel therapeutic approaches to eliminate both BCSCs and therapy-resistant cancer cells.
Collapse
Affiliation(s)
- He Shen
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yanmin Chen
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yin Wan
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Bo Xu
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mikhail Chernov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Costa Frangou
- Molecular and Integrative Physiology Department, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Jianmin Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
17
|
Talamás-Lara D, Acosta-Virgen K, Chávez-Munguía B, Lagunes-Guillén A, Salazar-Villatoro L, Espinosa-Cantellano M, Martínez-Palomo A. Golgi apparatus components in Entamoeba histolytica and Entamoeba dispar after monensin treatment. Microsc Res Tech 2021; 84:1887-1896. [PMID: 33675108 DOI: 10.1002/jemt.23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/23/2021] [Accepted: 02/19/2021] [Indexed: 11/07/2022]
Abstract
Highly dynamic ribosomes, glycogen granules, thinly fibrillar material, and multiple membrane-bound vesicles are embedded in the matrix-rich cytoplasm of Entamoeba spp. trophozoites. The absence of a Golgi apparatus in these amoebae has been commonly accepted. Here we challenge this observation by incubating Entamoeba histolytica and Entamoeba dispar with monensin, an ionophore that produces swelling of the Golgi apparatus. We observe changes in the trophozoites through standard transmission electron microscopy, cryofixation and cryosubstitution, and analyze the label and expression of known resident proteins of the cis-GM130 and trans-TGN38 Golgi network through confocal microscopy and Western blot assays. Cryosubstitution and standard methods using the treatment, preserved membranous lamellae resembling Golgi components. GM130 and TGN38 Golgi antigens were found by immunoelectron, immunoblot, and co-localization by confocal microscopy using the reagent NBD C6-ceramide. Our results indicate that previously undetected Golgi apparatus components are present in the cytoplasm of E. histolytica and E. dispar.
Collapse
Affiliation(s)
- Daniel Talamás-Lara
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Karla Acosta-Virgen
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Anel Lagunes-Guillén
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Lizbeth Salazar-Villatoro
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Martha Espinosa-Cantellano
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Adolfo Martínez-Palomo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| |
Collapse
|
18
|
Study on in vitro Toxicity of Biometal(II) Monensinates Against Rat Zajdela Liver Tumour. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2021. [DOI: 10.2478/cdem-2020-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The ability of Monensic acid A (MonH∙H2O) and its neutral metal complexes [M(Mon)2(H2O)2]with ions of Mg2+, Ca2+, Mn2+, Co2+, Ni2+ and Zn2+ to decrease viability and proliferation of primary cell cultures, originating from a chemically induced transplantable liver tumour of Zajdela in rats, and bone marrow cells from the same tumour-bearers, was evaluated. Experimental data revealed that manganese(II) and nickel(II) complexes of Monensin A are relatively more selective against the tumour as compared to the healthy bone marrow cells.
Collapse
|
19
|
Bondarev NV. Computer Analysis of Stability of Cation Complexes with
Ionophore Antibiotics. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220080149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Ochi K, Suzawa K, Tomida S, Shien K, Takano J, Miyauchi S, Takeda T, Miura A, Araki K, Nakata K, Yamamoto H, Okazaki M, Sugimoto S, Shien T, Yamane M, Azuma K, Okamoto Y, Toyooka S. Overcoming epithelial-mesenchymal transition-mediated drug resistance with monensin-based combined therapy in non-small cell lung cancer. Biochem Biophys Res Commun 2020; 529:760-765. [PMID: 32736704 DOI: 10.1016/j.bbrc.2020.06.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is a key process in tumor progression and metastasis and is also associated with drug resistance. Thus, controlling EMT status is a research of interest to conquer the malignant tumors. MATERIALS AND METHODS A drug repositioning analysis of transcriptomic data from a public cell line database identified monensin, a widely used in veterinary medicine, as a candidate EMT inhibitor that suppresses the conversion of the EMT phenotype. Using TGF-β-induced EMT cell line models, the effects of monensin on the EMT status and EMT-mediated drug resistance were assessed. RESULTS TGF-β treatment induced EMT in non-small cell lung cancer (NSCLC) cell lines and the EGFR-mutant NSCLC cell lines with TGF-β-induced EMT acquired resistance to EGFR-tyrosine kinase inhibitor. The addition of monensin effectively suppressed the TGF-β-induced-EMT conversion, and restored the growth inhibition and the induction of apoptosis by the EGFR-tyrosine kinase inhibitor. CONCLUSION Our data suggested that combined therapy with monensin might be a useful strategy for preventing EMT-mediated acquired drug resistance.
Collapse
Affiliation(s)
- Kosuke Ochi
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan; Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Ken Suzawa
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Kazuhiko Shien
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jui Takano
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shunsaku Miyauchi
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tatsuaki Takeda
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Miura
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kota Araki
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadahiko Shien
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaomi Yamane
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuo Azuma
- Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Yoshiharu Okamoto
- Department of Veterinary Clinical Medicine, Joint School of Veterinary Medicine, Tottori University, Tottori, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Sulik M, Maj E, Wietrzyk J, Huczyński A, Antoszczak M. Synthesis and Anticancer Activity of Dimeric Polyether Ionophores. Biomolecules 2020; 10:biom10071039. [PMID: 32664671 PMCID: PMC7408349 DOI: 10.3390/biom10071039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Polyether ionophores represent a group of natural lipid-soluble biomolecules with a broad spectrum of bioactivity, ranging from antibacterial to anticancer activity. Three seem to be particularly interesting in this context, namely lasalocid acid, monensin, and salinomycin, as they are able to selectively target cancer cells of various origin including cancer stem cells. Due to their potent biological activity and abundant availability, some research groups around the world have successfully followed semi-synthetic approaches to generate original derivatives of ionophores. However, a definitely less explored avenue is the synthesis and functional evaluation of their multivalent structures. Thus, in this paper, we describe the synthetic access to a series of original homo- and heterodimers of polyether ionophores, in which (i) two salinomycin molecules are joined through triazole linkers, or (ii) salinomycin is combined with lasalocid acid, monensin, or betulinic acid partners to form 'mixed' dimeric structures. Of note, all 11 products were tested in vitro for their antiproliferative activity against a panel of six cancer cell lines including the doxorubicin resistant colon adenocarcinoma LoVo/DX cell line; five dimers (14-15, 17-18 and 22) were identified to be more potent than the reference agents (i.e., both parent compound(s) and commonly used cytostatic drugs) in selective targeting of various types of cancer. Dimers 16 and 21 were also found to effectively overcome the resistance of the LoVo/DX cancer cell line.
Collapse
Affiliation(s)
- Michał Sulik
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61–614 Poznań, Poland; (M.S.); (A.H.)
| | - Ewa Maj
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław, Poland; (E.M.); (J.W.)
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53–114 Wrocław, Poland; (E.M.); (J.W.)
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61–614 Poznań, Poland; (M.S.); (A.H.)
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61–614 Poznań, Poland; (M.S.); (A.H.)
- Correspondence: ; Tel.: +48-61-829-1786
| |
Collapse
|
22
|
Czerwonka D, Urbaniak A, Sobczak S, Piña-Oviedo S, Chambers TC, Antoszczak M, Huczyński A. Synthesis and Anticancer Activity of Tertiary Amides of Salinomycin and Their C20-oxo Analogues. ChemMedChem 2019; 15:236-246. [PMID: 31702860 DOI: 10.1002/cmdc.201900593] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 12/30/2022]
Abstract
The polyether ionophore salinomycin (SAL) has captured much interest because of its potent activity against cancer cells and cancer stem cells. Our previous studies have indicated that C1/C20 double-modification of SAL is a useful strategy to generate diverse agents with promising biological activity profiles. Thus, herein we describe the synthesis of a new class of SAL analogues that combine key modifications at the C1 and C20 positions. The activity of the obtained SAL derivatives was evaluated using primary acute lymphoblastic leukemia, human breast adenocarcinoma and normal mammary epithelial cells. One single- [N,N-dipropyl amide of salinomycin (5 a)] and two novel double-modified analogues [N,N-dipropyl amide of C20-oxosalinomycin (5 b) and piperazine amide of C20-oxosalinomycin (13 b)] were found to be more potent toward the MDA-MB-231 cell line than SAL or its C20-oxo analogue 2. When select analogues were tested against the NCI-60 human tumor cell line panel, 4 a [N,N-diethyl amide of salinomycin] showed particular activity toward the ovarian cancer cell line SK-OV-3. Additionally, both SAL and 2 were found to be potent ex vivo against human ER/PR+ , Her2- invasive mammary carcinoma, with 2 showing minimal toxicity toward normal epithelial cells. The present findings highlight the therapeutic potential of SAL derivatives for select targeting of different cancer types.
Collapse
Affiliation(s)
- Dominika Czerwonka
- Department of Bioorganic Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Alicja Urbaniak
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Szymon Sobczak
- Department of Materials Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Sergio Piña-Oviedo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Timothy C Chambers
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Michał Antoszczak
- Department of Bioorganic Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
23
|
Wakabayashi S, Morihara H, Yokoe S, Nakagawa T, Moriwaki K, Tomoda K, Asahi M. Overexpression of Na +/H + exchanger 1 specifically induces cell death in human iPS cells via sustained activation of the Rho kinase ROCK. J Biol Chem 2019; 294:19577-19588. [PMID: 31723030 DOI: 10.1074/jbc.ra119.010329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/04/2019] [Indexed: 01/15/2023] Open
Abstract
Understanding the specific properties of human induced pluripotent stem cells (iPSCs) is important for quality control of iPSCs. Having incidentally discovered that overexpression of plasma membrane Na+/H+ exchanger 1 (NHE1) induces cell death in iPSCs, we investigated the mechanism of NHE1-induced cell death. Doxycycline-induced NHE1 overexpression arrested cell growth, and nearly all cells were killed by a necrotic process within 72 h. NHE1 overexpression led to sustained activation of Rho-associated coiled-coil kinase (ROCK), accompanied by dramatic changes in cell shape, cell elongation, and swelling of peripheral cells in iPSC colonies, as well as marked stress fiber formation. The ROCK inhibitor Y27632 reduced NHE1-induced cell death. ROCK-dependent phenotypes were suppressed by a loss-of-function mutation of NHE1 and inhibited by an inhibitor of NHE1 activity, indicating that NHE1-mediated transport activity is required. Moreover, ROCK was activated by trimethylamine treatment-mediated cytosolic alkalinization and accumulated in the plasma membrane near NHE1 in peripheral iPSCs of cell colonies. By contrast, cell death did not occur in mesendoderm-like cells that had differentiated from iPSCs, indicating that the NHE1-mediated effects were specific for iPSCs. These results suggest that NHE1 overexpression specifically induces death of iPSCs via sustained ROCK activation, probably caused by an increase in local pH near NHE1. Finally, monensin, a Na+/H+ exchange ionophore, selectively killed iPSCs, suggesting that monensin could help eliminate iPSCs that remain after differentiation, a strategy that might be useful for improving regenerative medicine.
Collapse
Affiliation(s)
- Shigeo Wakabayashi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Hirofumi Morihara
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Takatoshi Nakagawa
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Kazumasa Moriwaki
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Kiichiro Tomoda
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Takatsuki City, Osaka 569-8686, Japan
| |
Collapse
|
24
|
Markowska A, Kaysiewicz J, Markowska J, Huczyński A. Doxycycline, salinomycin, monensin and ivermectin repositioned as cancer drugs. Bioorg Med Chem Lett 2019; 29:1549-1554. [PMID: 31054863 DOI: 10.1016/j.bmcl.2019.04.045] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 01/24/2023]
Abstract
Chemotherapy is one of the standard methods for the treatment of malignant tumors. It aims to cause lethal damage to cellular structures, mainly DNA. Noteworthy, in recent years discoveries of novel anticancer agents from well-known antibiotics have opened up new treatment pathways for several cancer diseases. The aim of this review article is to describe new applications for the following antibiotics: doxycycline (DOX), salinomycin (SAL), monensin (MON) and ivermectin (IVR) as they are known to show anti-tumor activity, but have not yet been introduced into standard oncological therapy. To date, these agents have been used for the treatment of a broad-spectrum of bacterial and parasitic infectious diseases and are widely available, which is why they were selected. The data presented here clearly show that the antibiotics mentioned above should be recognised in the near future as novel agents able to eradicate cancer cells and cancer stem cells (CSCs) across several cancer types.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women's Diseases, Poznan University of Medical Sciences, Polna 33, 60-545 Poznan, Poland
| | | | - Janina Markowska
- Department of Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznan, Poland
| | - Adam Huczyński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| |
Collapse
|