1
|
Avsar C. Assessment of rice rhizosphere-isolated bacteria for their ability to stimulate plant growth and their antagonistic effects against Xanthomonas arboricola pv. juglandis. 3 Biotech 2024; 14:229. [PMID: 39268413 PMCID: PMC11387564 DOI: 10.1007/s13205-024-04077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
This study looked at the possibility of using bacteria that were separated from the rhizosphere of rice plants to promote plant development and offer biological control against pests that affect agriculture. A total of 119 bacteria were isolated from rice rhizospheres collected from six different locations. Of these, 15.47% showed phosphate solubilization, 47.05% showed IAA, 89.07% showed siderophore, and 10.08% showed ACC deaminase activity. Generally, high siderophore production was observed in strains showing ACC deaminase activity. The antagonistic behavior of all strains against the walnut pest Xanthomonas arbiricola was also studied, and eight (6.7%) isolates suppressed the growth of this pathogen (7-43 ± 2 mm zone diameter). It was also noted that these eight isolates showed almost exclusively siderophore activity. In contrast to IAA and siderophore synthesis, the study demonstrated reduced activity levels for phosphate solubilization and ACC deaminase. The 16S rRNA sequence results of some of the bacteria selected in this study and AFLP analysis based on some restriction enzymes showed that the diversity was quite high. According to the 16S rRNA analysis, the high antagonistic effect of strain 71, which is one of the members of the Enterobacter genus, shows that it can be used as a biocontrol agent. In this study, it was revealed in detail that bacteria can be preferred as alternative biological agents for plant growth instead of synthetic fertilizers. This is the first study on this subject in this region, which is one of the important points of the country in terms of rice production. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04077-5.
Collapse
Affiliation(s)
- Cumhur Avsar
- Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, 57000 Turkey
| |
Collapse
|
2
|
Ki SH, Ji SH, Kim SB, Park S. Characteristics of low-temperature plasma for activation of plastic-degrading microorganisms. Sci Rep 2024; 14:19749. [PMID: 39187510 PMCID: PMC11347650 DOI: 10.1038/s41598-024-70207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Plastic pollution is a problem that threatens the future of humanity, and various methods are being researched to solve it. Plastic biodegradation using microorganisms is one of these methods, and a recent study reported that plastic-degrading microorganisms activated by plasma increase the plastic decomposition rate. In contrast to microbial sterilization using low-temperature plasma, microbial activation requires a stable plasma discharge with a low electrode temperature suitable for biological samples and precise control over a narrow operating range. In this study, various plasma characteristics were evaluated using SDBD (Surface Dielectric Barrier Discharge) to establish the optimal conditions of plasma that can activate plastic-degrading microorganisms. The SDBD electrode was manufactured using low-temperature co-fired ceramic (LTCC) technology to ensure chemical resistance, minimize impurities, improve heat conduction, and consider freedom in designing the electrode metal part. Plasma stability, which is important for microbial activation, was investigated by changing the frequency and pulse width of the voltage applied to the electrode, and the degree of activation of plastic-degrading microorganisms was evaluated under each condition. The results of this study are expected to be used as basic data for research on the activation of useful microorganisms using low-temperature plasma.
Collapse
Affiliation(s)
- Se Hoon Ki
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea
| | - Sang Hye Ji
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea
| | - Seong Bong Kim
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea
| | - Seungil Park
- Institute of Plasma Technology, Korea Institute of Fusion Energy, 37 Dongjansan-ro, Jeollabuk-do, Gunsan, 54004, Republic of Korea.
| |
Collapse
|
3
|
Acuña JJ, Hu J, Inostroza NG, Valenzuela T, Perez P, Epstein S, Sessitsch A, Zhang Q, Jorquera MA. Endophytic bacterial communities in ungerminated and germinated seeds of commercial vegetables. Sci Rep 2023; 13:19829. [PMID: 37963999 PMCID: PMC10645892 DOI: 10.1038/s41598-023-47099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 11/16/2023] Open
Abstract
Chile is a prominent seed exporter globally, but the seed microbiome of vegetables (46% of seeds) and its role in the early stages of plant growth have remained largely unexplored. Here, we employed DNA metabarcoding analysis to investigate the composition and putative functions of endophytic bacterial communities in ungerminated and germinated seeds of the commercial vegetables Apiaceae (parsley and carrot), Asteraceae (lettuce), Brassicaceae (cabbage and broccoli), and Solanaceae (tomato). Bacterial quantification showed 104 to 108 copies of the 16S rRNA gene per gram of ungerminated and germinated seeds. Alpha diversity analysis (e.g., Chao1, Shannon, and Simpson indices) did not indicate significant differences (Kruskal-Wallis test) between ungerminated and germinated seeds, except for Solanaceae. However, beta diversity (PCoA) analysis showed distinctions (Adonis test) between ungerminated and germinated seeds, except Apiaceae. Pseudomonadota and Bacillota were identified as the dominant and specialist taxa in both ungerminated and germinated seed samples. Chemoheterotrophy and fermentation were predicted as the main microbial functional groups in the endophytic bacterial community. Notably, a considerable number of the 143 isolated endophytic strains displayed plant growth-promoting traits (10 to 64%) and biocontrol activity (74% to 82%) against plant pathogens (Xanthomonas and Pseudomonas). This study revealed the high variability in the abundance, diversity, composition, and functionality of endophytic bacteria between ungerminated and germinated seeds in globally commercialized vegetables. Furthermore, potential beneficial endophytic bacteria contained in their seed microbiomes that may contribute to the microbiome of the early stages, development, growth and progeny of vegetables were found.
Collapse
Affiliation(s)
- Jacquelinne J Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Millennium Institute Center for Genome Regulation (MI-CGR), Valenzuela Puelma 10207, 7800003, Santiago, La Reina, Chile
| | - Jingming Hu
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Nitza G Inostroza
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
| | - Tamara Valenzuela
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Pablo Perez
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco, Chile
| | - Slava Epstein
- College of Science, Northeastern University, 360 Huntington Ave., Boston, MA, 02115, USA
| | - Angela Sessitsch
- Health & Bioresources, AIT Austrian Institute of Technology, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Qian Zhang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen, 361102, China.
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Ave. Francisco Salazar, 01145, Temuco, Chile.
| |
Collapse
|
4
|
Ferrarezi JA, Defant H, de Souza LF, Azevedo JL, Hungria M, Quecine MC. Meta-omics integration approach reveals the effect of soil native microbiome diversity in the performance of inoculant Azospirillum brasilense. FRONTIERS IN PLANT SCIENCE 2023; 14:1172839. [PMID: 37457347 PMCID: PMC10340089 DOI: 10.3389/fpls.2023.1172839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been used as integrative inputs to minimize the use of chemical fertilizers. However, a holistic comprehension about PGPB-plant-microbiome interactions is still incipient. Furthermore, the interaction among PGPB and the holobiont (host-microbiome association) represent a new frontier to plant breeding programs. We aimed to characterize maize bulk soil and rhizosphere microbiomes in irradiated soil (IS) and a native soil (NS) microbial community gradient (dilution-to-extinction) with Azospirillum brasilense Ab-V5, a PGPB commercial inoculant. Our hypothesis was that plant growth promotion efficiency is a result of PGPB niche occupation and persistence according to the holobiont conditions. The effects of Ab-V5 and NS microbial communities were evaluated in microcosms by a combined approach of microbiomics (species-specific qPCR, 16S rRNA metataxonomics and metagenomics) and plant phenomics (conventional and high-throughput methods). Our results revealed a weak maize growth promoting effect of Ab-V5 inoculation in undiluted NS, contrasting the positive effects of NS dilutions 10-3, 10-6, 10-9 and IS with Ab-V5. Alpha diversity in NS + Ab-V5 soil samples was higher than in all other treatments in a time course of 25 days after sowing (DAS). At 15 DAS, alpha diversity indexes were different between NS and IS, but similar in all NS dilutions in rhizospheric samples. These differences were not persistent at 25 DAS, demonstrating a stabilization process in the rhizobiomes. In NS 10-3 +Ab-V5 and NS 10-6 Ab-V5, Ab-V5 persisted in the maize rhizosphere until 15 DAS in higher abundances compared to NS. In NS + Ab-V5, abundance of six taxa were positively correlated with response to (a)biotic stresses in plant-soil interface. Genes involved in bacterial metabolism of riboses and amino acids, and cresol degradation were abundant on NS 10-3 + Ab-V5, indicating that these pathways can contribute to plant growth promotion and might be a result of Ab-V5 performance as a microbial recruiter of beneficial functions to the plant. Our results demonstrated the effects of holobiont on Ab-V5 performance. The meta-omics integration supported by plant phenomics opens new perspectives to better understanding of inoculants-holobiont interaction and for developing better strategies for optimization in the use of microbial products.
Collapse
Affiliation(s)
- Jessica Aparecida Ferrarezi
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Heloísa Defant
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Leandro Fonseca de Souza
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - João Lúcio Azevedo
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Maria Carolina Quecine
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
5
|
Ait Bessai S, Cruz J, Carril P, Melo J, Santana MM, Mouazen AM, Cruz C, Yadav AN, Dias T, Nabti EH. The Plant Growth-Promoting Potential of Halotolerant Bacteria Is Not Phylogenetically Determined: Evidence from Two Bacillus megaterium Strains Isolated from Saline Soils Used to Grow Wheat. Microorganisms 2023; 11:1687. [PMID: 37512860 PMCID: PMC10384442 DOI: 10.3390/microorganisms11071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Increasing salinity, further potentiated by climate change and soil degradation, will jeopardize food security even more. Therefore, there is an urgent need for sustainable agricultural practices capable of maintaining high crop yields despite adverse conditions. Here, we tested if wheat, a salt-sensitive crop, could be a good reservoir for halotolerant bacteria with plant growth-promoting (PGP) capabilities. (2) Methods: We used two agricultural soils from Algeria, which differ in salinity but are both used to grow wheat. Soil halotolerant bacterial strains were isolated and screened for 12 PGP traits related to phytohormone production, improved nitrogen and phosphorus availability, nutrient cycling, and plant defence. The four 'most promising' halotolerant PGPB strains were tested hydroponically on wheat by measuring their effect on germination, survival, and biomass along a salinity gradient. (3) Results: Two halotolerant bacterial strains with PGP traits were isolated from the non-saline soil and were identified as Bacillus subtilis and Pseudomonas fluorescens, and another two halotolerant bacterial strains with PGP traits were isolated from the saline soil and identified as B. megaterium. When grown under 250 mM of NaCl, only the inoculated wheat seedlings survived. The halotolerant bacterial strain that displayed all 12 PGP traits and promoted seed germination and plant growth the most was one of the B. megaterium strains isolated from the saline soil. Although they both belonged to the B. megaterium clade and displayed a remarkable halotolerance, the two bacterial strains isolated from the saline soil differed in two PGP traits and had different effects on plant performance, which clearly shows that PGP potential is not phylogenetically determined. (4) Conclusions: Our data highlight that salt-sensitive plants and non-saline soils can be reservoirs for halotolerant microbes with the potential to become effective and sustainable strategies to improve plant tolerance to salinity. However, these strains need to be tested under field conditions and with more crops before being considered biofertilizer candidates.
Collapse
Affiliation(s)
- Sylia Ait Bessai
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Joana Cruz
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Competence Centre for Molecular Biology, SGS Molecular, Polo Tecnológico de Lisboa, Rua Cesina Adães Bermudes, Lt 11, 1600-604 Lisboa, Portugal
| | - Pablo Carril
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Juliana Melo
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Margarida M Santana
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Abdul M Mouazen
- Department of Environment, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Cristina Cruz
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour 173101, India
| | - Teresa Dias
- cE3c-Centre for Ecology, Evolution and Environmental Changes and CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - El-Hafid Nabti
- Laboratoire de Maitrise des Energies Renouvelables, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| |
Collapse
|
6
|
Kisvarga S, Hamar-Farkas D, Ördögh M, Horotán K, Neményi A, Kovács D, Orlóci L. The Role of the Plant-Soil Relationship in Agricultural Production-With Particular Regard to PGPB Application and Phytoremediation. Microorganisms 2023; 11:1616. [PMID: 37375118 DOI: 10.3390/microorganisms11061616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) and other living organisms can help with the challenges of modern agriculture. PGPB offer ever-expanding possibilities for science and commerce, and the scientific results have been very advanced in recent years. In our current work, we collected the scientific results of recent years and the opinions of experts on the subject. Opinions and results on soil-plant relations, as well as the importance of PGPB and the latest related experiences, are important topics of our review work, which highlights the scientific results of the last 3-4 years. Overall, it can be concluded from all these observations that the bacteria that promote plant development are becoming more and more important in agriculture almost all over the world, thus, promoting more sustainable and environmentally conscious agricultural production and avoiding the use of artificial fertilizers and chemicals. Since many mechanisms of action, namely biochemical and operational processes, are still under investigation, a new emerging scientific direction is expected in the coming years with regard to PGPB, microbial, and other plant growth-stimulating substances, in which omics and microbial modulation also play a leading role.
Collapse
Affiliation(s)
- Szilvia Kisvarga
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
| | - Dóra Hamar-Farkas
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Máté Ördögh
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - Katalin Horotán
- Zoological Department, Institute of Biology, Eszterházy Károly Catholic University, 3300 Eger, Hungary
| | - András Neményi
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
| | - Dezső Kovács
- Department of Floriculture and Dendrology, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1118 Budapest, Hungary
| | - László Orlóci
- Ornamental Plant and Green System Management Research Group, Institute of Landscape Architecture, Urban Planning and Garden Art, Hungarian University of Agriculture and Life Sciences (MATE), 1223 Budapest, Hungary
| |
Collapse
|
7
|
Chiaranunt P, White JF. Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:400. [PMID: 36679113 PMCID: PMC9861093 DOI: 10.3390/plants12020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this literature review, we discuss the various functions of beneficial plant bacteria in improving plant nutrition, the defense against biotic and abiotic stress, and hormonal regulation. We also review the recent research on rhizophagy, a nutrient scavenging mechanism in which bacteria enter and exit root cells on a cyclical basis. These concepts are covered in the contexts of soil agriculture and controlled environment agriculture, and they are also used in vertical farming systems. Vertical farming-its advantages and disadvantages over soil agriculture, and the various climatic factors in controlled environment agriculture-is also discussed in relation to plant-bacterial relationships. The different factors under grower control, such as choice of substrate, oxygenation rates, temperature, light, and CO2 supplementation, may influence plant-bacterial interactions in unintended ways. Understanding the specific effects of these environmental factors may inform the best cultural practices and further elucidate the mechanisms by which beneficial bacteria promote plant growth.
Collapse
|
8
|
Egan A, Kakouli‐Duarte T. Observations on the interaction between plant growth-promoting bacteria and the root-knot nematode Meloidogyne javanica. Microbiologyopen 2022; 11:e1319. [PMID: 36479625 PMCID: PMC9701088 DOI: 10.1002/mbo3.1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Pseudomonas fluorescens, strains L124, L228, L321, and the positive control strain F113 used in this study, produce compounds associated with plant growth promotion, biocontrol, antimicrobial and antiviral activity, and adaptation to stresses. These bacterial strains were tested in vitro and in vivo in tomato plants, to determine their potential role in Meloidogyne javanica suppression. In laboratory experiments, only 2% of M. javanica eggs hatched when exposed to the metabolites of each bacterial strain. Additionally, 100% M. javanica J2 mortality was recorded when nematodes were exposed to the metabolites of F113 and L228. In greenhouse experiments, M. javanica infected tomato plants, which were also inoculated with the bacterial strains F113 and L124, displayed the highest biomass (height, number of leaves, fresh and dry weight) of all bacterial treatments tested. Results from the development and induced systemic resistance experiments indicated that the bacterial strains F113 and L321 had the most effective biocontrol capacity over nematode infection, delayed nematode development (J3/J4, adults and galls), and reduced nematode fecundity. In addition, these results indicated that the bacterial strain L124 is an effective plant growth promoter of tomato plants. Furthermore, it was determined that the bacterial strain L321 was capable of M. javanica biocontrol. P. fluorescens F113 was effective at both increasing tomato plant biomass and M. javanica biocontrol. In an agricultural context, applying successional drenches with these beneficial plant growth promoting rhizobacteria would ensure bacteria viability in the rhizosphere of the plants, encourage positive plant bacterial interactions and increase biocontrol against M. javanica.
Collapse
Affiliation(s)
- Aoife Egan
- enviroCORE, Department of Applied ScienceSouth East Technological UniversityCarlowIreland
| | - Thomais Kakouli‐Duarte
- enviroCORE, Department of Applied ScienceSouth East Technological UniversityCarlowIreland
| |
Collapse
|
9
|
Mildaziene V, Ivankov A, Sera B, Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. PLANTS (BASEL, SWITZERLAND) 2022; 11:856. [PMID: 35406836 PMCID: PMC9003542 DOI: 10.3390/plants11070856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Among the innovative technologies being elaborated for sustainable agriculture, one of the most rapidly developing fields relies on the positive effects of non-thermal plasma (NTP) treatment on the agronomic performance of plants. A large number of recent publications have indicated that NTP effects are far more persistent and complex than it was supposed before. Knowledge of the molecular basis and the resulting outcomes of seed treatment with NTP is rapidly accumulating and requires to be analyzed and presented in a systematic way. This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity. Wide-scale changes evolving at the epigenomic, transcriptomic, proteomic and metabolic levels are triggered by seed irradiation with NTP and contribute to changes in germination, early seedling growth, phytohormone amounts, metabolic and defense enzyme activity, secondary metabolism, photosynthesis, adaptability to biotic and abiotic stress, microbiome composition, and increased plant fitness, productivity and growth on a longer time scale. This review highlights the importance of these novel findings, as well as unresolved issues that remain to be investigated.
Collapse
Affiliation(s)
- Vida Mildaziene
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Anatolii Ivankov
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Bozena Sera
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia;
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
| |
Collapse
|
10
|
Enhancing Antioxidant Activities and Anti-Aging Effect of Rice Stem Cell Extracts by Plasma Treatment. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plant-derived substances exhibit antioxidant and antibacterial activities and have been proven to have beneficial effects in wound healing and skin regeneration. Plant stem cells have recently received much attention as research materials in cosmetic development because they promote regeneration after damage. In this paper, we demonstrate for the first time that the plasma treatment of stem cells obtained from rice-seed embryos can be effective in enhancing antioxidant activity and in regenerating human skin. We investigated this potential utilizing micro-DBD (Dielectric Barrier Discharge) plasma as a pretreatment technique to enhance the vitality and functional activity of rice stem cells. The results of the cell culture experiments show that plasma-treated rice stem cell extracts (RSCE) have promising antioxidant and anti-skin aging activities. The results of quantitative real-time PCR (qRT-PCR) for major antioxidant enzymes and anti-aging genes confirm that the plasma technique used in the pretreatment of RSCE was able to enhance cell activities in skin regeneration, including cell survival, proliferation, and collagen enhancement for Human Fibroblast (HFB) degraded by oxidative stress. These results show that the relatively low energy of less than 300 W and an amount of NOx-based reactive nitrogen species (RNS) from plasma discharge of about 3 μL/L were the key factors and that RSCE, of which the antioxidant activity was enhanced by plasma treatment, appeared to be a major contributor to the protective effect of HFB against oxidative stress. Plasma-treated RSCE induced excellent anti-aging properties by stimulating HFB to promote collagen synthesis, thereby promoting skin regeneration. These properties can protect the skin from various oxidative stresses. This study demonstrates that plasma-treated extracts of stem cells derived from rice-seed embryos have an excellent regenerative effect on aging-treated HFB. Our results demonstrate the potential utility of plasma-treated RSCE as a skin anti-aging agent in cosmeceutical formulations for the first time.
Collapse
|
11
|
Suwannarat S, Thammaniphit C, Srisonphan S. Electrohydraulic Streamer Discharge Plasma-Enhanced Alternaria brassicicola Disinfection in Seed Sterilization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43975-43983. [PMID: 34514773 DOI: 10.1021/acsami.1c10771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As emerging chemical-free and eco-friendly technologies, nonthermal (gas discharge) plasma and (liquid phase) plasma-activated water (PAW) offer exceptional microbial disinfection solutions for biological, medical, environmental, and agricultural applications. Herein, we present electrohydraulic streamer discharge plasma (ESDP), which combines streamer discharge plasma (SDP) and PAW generated at a gas-liquid interface, to sterilize Chinese kale (Brassica oleracea var. alboglabra) seeds contaminated with Alternaria brassicicola (A. brassicicola). The results showed that the ESDP treatment of A. brassicicola-inoculated seeds provides a ∼75% reduction of A. brassicicola (incident percentage) compared with nontreated seeds. Likewise, the healthy seedling percentage of the plasma-treated seeds was significantly improved to ∼70%, while that of the nontreated seeds remained at ∼15%. A microscopic examination was performed, and it confirmed that ESDP can damage the A. brassicicola spores attached to Chinese kale seeds and lead to severe morphological abnormalities after treatment. Also, an electric field simulation was performed, and it indicated that the strongly localized electric field at the liquid-gas interface on the seed surface boundary had initiated local breakdown of the gas at the air-liquid interface, resulting in exceptional physical-chemical reactions for antimicrobial efficacy beyond typical plasma treatments. Moreover, the optical emission spectra and physicochemical properties (pH, conductivity, and oxidation-reduction potential) showed that inactivation is mainly associated with the reactive oxygen-nitrogen species in the liquid and gas phases. We believe that this work is of great interest when using electrical discharge plasma on liquid interfaces in food, agricultural, and medical industries.
Collapse
Affiliation(s)
- Sawita Suwannarat
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Bangkok 10900, Thailand
| | - Chayaporn Thammaniphit
- Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Bangkok 10900, Thailand
| | - Siwapon Srisonphan
- Department of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Ladyaow, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
12
|
Plant Growth Promoting Rhizobacteria, Arbuscular Mycorrhizal Fungi and Their Synergistic Interactions to Counteract the Negative Effects of Saline Soil on Agriculture: Key Macromolecules and Mechanisms. Microorganisms 2021; 9:microorganisms9071491. [PMID: 34361927 PMCID: PMC8307984 DOI: 10.3390/microorganisms9071491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Soil saltiness is a noteworthy issue as it results in loss of profitability and development of agrarian harvests and decline in soil health. Microorganisms associated with plants contribute to their growth promotion and salinity tolerance by employing a multitude of macromolecules and pathways. Plant growth promoting rhizobacteria (PGPR) have an immediate impact on improving profitability based on higher crop yield. Some PGPR produce 1-aminocyclopropane-1-carboxylic (ACC) deaminase (EC 4.1.99.4), which controls ethylene production by diverting ACC into α-ketobutyrate and ammonia. ACC deaminase enhances germination rate and growth parameters of root and shoot in different harvests with and without salt stress. Arbuscular mycorrhizal fungi (AMF) show a symbiotic relationship with plants, which helps in efficient uptake of mineral nutrients and water by the plants and also provide protection to the plants against pathogens and various abiotic stresses. The dual inoculation of PGPR and AMF enhances nutrient uptake and productivity of several crops compared to a single inoculation in both normal and stressed environments. Positively interacting PGPR + AMF combination is an efficient and cost-effective recipe for improving plant tolerance against salinity stress, which can be an extremely useful approach for sustainable agriculture.
Collapse
|
13
|
Bacterial inoculant-assisted phytoremediation of heavy metal-contaminated soil: Inoculant development and the inoculation effects. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00804-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Dong XY, Yuan X, Wang RJ. Interaction of air cold plasma with Saccharomyces cerevisiae in the multi-scale microenvironment for improved ethanol yield. BIORESOURCE TECHNOLOGY 2021; 323:124621. [PMID: 33412497 DOI: 10.1016/j.biortech.2020.124621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
In this study, the long-acting mechanism of reactive species was investigated for enhanced ethanol production of Saccharomyces cerevisiae. The results indicated that short-lifetime active species from gas phase plasma dissolved into various liquid microenvironments with different media (water, buffer, medium, and cells), forming different types and amounts of reactive species in multi-scale microenvironments, such as extracellular reactive nitrogen species, endocellular reactive oxygen and nitrogen species. The sustained elevation of cytoplasm calcium concentration with treatment time depended on the activated calcium channels of Cch1p/Mid1p in cell membrane and Yvc1p in vacuole membrane by these species. Accordingly, the Ca2+ increase promoted the H+-ATPase expression. Consequently, 75.6% ATP hydrolysis induced about 5 fold NADH increase compared with the control. Ultimately, the bioethanol yield increased by 34.2% compared to the control. These results promote the development of atmospheric cold plasma as a promising bio-process enhancement technology for improved target product yields of microbes in fermentation industry.
Collapse
Affiliation(s)
- Xiao-Yu Dong
- School of Life Science and Biotechnology, Dalian University, 10 Xuefu St, Jinpu New District, Dalian 116622, People's Republic of China.
| | - Xing Yuan
- School of Life Science and Biotechnology, Dalian University, 10 Xuefu St, Jinpu New District, Dalian 116622, People's Republic of China
| | - Ren-Jun Wang
- School of Life Science and Biotechnology, Dalian University, 10 Xuefu St, Jinpu New District, Dalian 116622, People's Republic of China
| |
Collapse
|
15
|
Ribeiro IDA, Volpiano CG, Vargas LK, Granada CE, Lisboa BB, Passaglia LMP. Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review. FRONTIERS IN PLANT SCIENCE 2020; 11:590774. [PMID: 33362817 PMCID: PMC7759553 DOI: 10.3389/fpls.2020.590774] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/26/2020] [Indexed: 05/19/2023]
Abstract
Rock powders are low-cost potential sources of most of the nutrients required by higher plants for growth and development. However, slow dissolution rates of minerals represent an obstacle to the widespread use of rock powders in agriculture. Rhizosphere processes and biological weathering may further enhance mineral dissolution since the interaction between minerals, plants, and bacteria results in the release of macro- and micronutrients into the soil solution. Plants are important agents in this process acting directly in the mineral dissolution or sustaining a wide diversity of weathering microorganisms in the root environment. Meanwhile, root microorganisms promote mineral dissolution by producing complexing ligands (siderophores and organic acids), affecting the pH (via organic or inorganic acid production), or performing redox reactions. Besides that, a wide variety of rhizosphere bacteria and fungi could also promote plant development directly, synergistically contributing to the weathering activity performed by plants. The inoculation of weathering bacteria in soil or plants, especially combined with the use of crushed rocks, can increase soil fertility and improve crop production. This approach is more sustainable than conventional fertilization practices, which may contribute to reducing climate change linked to agricultural activity. Besides, it could decrease the dependency of developing countries on imported fertilizers, thus improving local development.
Collapse
Affiliation(s)
- Igor Daniel Alves Ribeiro
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciano Kayser Vargas
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | | - Bruno Brito Lisboa
- Laboratório de Microbiologia Agrícola, Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | |
Collapse
|
16
|
Pylak M, Oszust K, Frąc M. Searching for New Beneficial Bacterial Isolates of Wild Raspberries for Biocontrol of Phytopathogens-Antagonistic Properties and Functional Characterization. Int J Mol Sci 2020; 21:ijms21249361. [PMID: 33302568 PMCID: PMC7763744 DOI: 10.3390/ijms21249361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
The threat caused by plants fungal and fungal-like pathogens is a serious problem in the organic farming of soft fruits. The European Commission regulations prohibit some commercially available chemical plant protection products, and instead recommend the use of natural methods for improving the microbial soil status and thus increasing resistance to biotic stresses caused by phytopathogens. The solution to this problem may be biopreparations based on, e.g., bacteria, especially those isolated from native local environments. To select proper bacterial candidates for biopreparation, research was provided to preliminarily ensure that those isolates are able not only to inhibit the growth of pathogens, but also to be metabolically effective. In the presented research sixty-five isolates were acquired and identified. Potentially pathogenic isolates were excluded from further research, and beneficial bacterial isolates were tested against the following plant pathogens: Botrytis spp., Colletotrichum spp., Phytophthora spp., and Verticillium spp. The eight most effective antagonists belonging to Arthrobacter, Bacillus, Pseudomonas, and Rhodococcus genera were subjected to metabolic and enzymatic analyses and a resistance to chemical stress survey, indicating to their potential as components of biopreparations for agroecology.
Collapse
|
17
|
Ramos AC, Melo J, de Souza SB, Bertolazi AA, Silva RA, Rodrigues WP, Campostrini E, Olivares FL, Eutrópio FJ, Cruz C, Dias T. Inoculation with the endophytic bacterium Herbaspirillum seropedicae promotes growth, nutrient uptake and photosynthetic efficiency in rice. PLANTA 2020; 252:87. [PMID: 33057912 DOI: 10.1007/s00425-020-03496-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Higher vacuolar proton pump activity may increase plant energy and nutrient use efficiency and provide the nexus between plant inoculation with Herbaspirillum seropedicae and growth promotion. Global change and growing human population are exhausting arable land and resources, including water and fertilizers. We present inoculation with the endophytic plant-growth promoting bacterium (PGPB) Herbaspirillum seropedicae as a strategy for promoting growth, nutrient uptake and photosynthetic efficiency in rice (Oryza sativa L.). Because plant nutrient acquisition is coordinated with photosynthesis and the plant carbon status, we hypothesize that inoculation with H. seropedicae will stimulate proton (H+) pumps, increasing plant growth nutrient uptake and photosynthetic efficiency at low nutrient levels. Plants were inoculated and grown in pots with sterile soil for 90 days. Herbaspirillum seropedicae endophytic colonization was successful and, as hypothesized, inoculation (1) stimulated root vacuolar H+ pumps (vacuolar H+-ATPase and vacuolar H+-PPase), and (2) increased plant growth, nutrient contents and photosynthetic efficiency. The results showed that inoculation with the endophytic bacterium H. seropedicae can promote plant growth, nutrient uptake and photosynthetic efficiency, which will likely result in a more efficient use of resources (nutrients and water) and higher production of nutrient-rich food at reduced economic and environmental costs.
Collapse
Affiliation(s)
- Alessandro C Ramos
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Sávio B de Souza
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Amanda A Bertolazi
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Renderson A Silva
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Weverton P Rodrigues
- Plant Physiology Lab, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Eliemar Campostrini
- Plant Physiology Lab, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Fábio L Olivares
- Cell Tissue and Biology Lab, Universidade Estadual do Norte Fluminense (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Frederico J Eutrópio
- Environmental Microbiology and Biotechnology Lab, Universidade Vila Velha (UVV), Vila Velha, ES, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Dias
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
18
|
Dias T, Pimentel V, Cogo AJD, Costa R, Bertolazi AA, Miranda C, de Souza SB, Melo J, Carolino M, Varma A, Eutrópio F, Olivares FL, Ramos AC, Cruz C. The Free-Living Stage Growth Conditions of the Endophytic Fungus Serendipita indica May Regulate Its Potential as Plant Growth Promoting Microbe. Front Microbiol 2020; 11:562238. [PMID: 33072023 PMCID: PMC7536269 DOI: 10.3389/fmicb.2020.562238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023] Open
Abstract
Serendipita indica (former Piriformospora indica) is a non-obligate endophytic fungus and generally a plant growth and defence promoter with high potential to be used in agriculture. However, S. indica may switch from biotrophy to saprotrophy losing its plant growth promoting traits. Our aim was to understand if the free-living stage growth conditions (namely C availability) regulate S. indica’s phenotype, and its potential as plant-growth-promoting-microbe (PGPM). We grew S. indica in its free-living stage under increasing C availabilities (2–20 g L–1 of glucose or sucrose). We first characterised the effect of C availability during free-living stage growth on fungal phenotype: colonies growth and physiology (plasma membrane proton pumps, stable isotopic signatures, and potential extracellular decomposing enzymes). The effect of the C availability during the free-living stage of the PGPM was evaluated on wheat. We observed that C availability during the free-living stage regulated S. indica’s growth, ultrastructure and physiology, resulting in two distinct colony phenotypes: compact and explorer. The compact phenotype developed at low C, used peptone as the major C and N source, and displayed higher decomposing potential for C providing substrates; while the explorer phenotype developed at high C, used glucose and sucrose as major C sources and casein and yeast extract as major N sources, and displayed higher decomposing potential for N and P providing substrates. The C availability, or the C/N ratio, during the free-living stage left a legacy to the symbiosis stage, regulating S. indica’s potential to promote plant growth: wheat growth promotion by the explorer phenotype was ± 40% higher than that by the compact phenotype. Our study highlights the importance of considering microbial ecology in designing PGPM/biofertilizers. Further studies are needed to test the phenotypes under more extreme conditions, and to understand if the in vitro acquired characteristics persist under field conditions.
Collapse
Affiliation(s)
- Teresa Dias
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Vívian Pimentel
- Laboratory of Physiology and Biochemistry of Microorganisms, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | | | - Raquel Costa
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Amanda Azevedo Bertolazi
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Camila Miranda
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Sávio Bastos de Souza
- Plant Physiology Lab, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Juliana Melo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Carolino
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| | | | - Fábio Lopes Olivares
- Cell Tissue and Biology Lab, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Brazil
| | - Alessandro Coutinho Ramos
- Laboratory of Environmental Microbiology and Biotechnology, Universidade Vila Velha, Vila Velha, Brazil
| | - Cristina Cruz
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
19
|
Tamošiūnė I, Gelvonauskienė D, Haimi P, Mildažienė V, Koga K, Shiratani M, Baniulis D. Cold Plasma Treatment of Sunflower Seeds Modulates Plant-Associated Microbiome and Stimulates Root and Lateral Organ Growth. FRONTIERS IN PLANT SCIENCE 2020; 11:568924. [PMID: 32983218 PMCID: PMC7485318 DOI: 10.3389/fpls.2020.568924] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/17/2020] [Indexed: 05/05/2023]
Abstract
Cold atmospheric pressure (CP) plasma irradiation of seeds has been shown to promote plant growth, but the molecular basis of this phenomenon is poorly understood. In our study, optimum irradiation of common sunflower seeds using a dielectric barrier discharge CP device stimulated growth of sunflower lateral organs and roots by 9-14% compared to the control. Metagenomic analysis revealed that the structure of plant-associated bacterial assembly was greatly modified upon CP treatment and could be attributed to the antimicrobial effect of CP-generated reactive species. The treatment resulted in the domination of spore forming Mycobacterium sp. in the above-ground tissues of the seedlings. While the overall bacterial diversity in the roots was barely affected, the CP-induced shift in microbial composition is the likely basis for the observed seedling root growth stimulation and the long-term effect on lateral organ growth and could be mediated by increase in water uptake and/or direct root signaling. Low amplitude protein abundance differences were detected in the roots of the emerging seedlings that are characteristic to low intensity stress stimuli response and could be linked to the changes in plant-associated microbiome upon CP treatment.
Collapse
Affiliation(s)
- Inga Tamošiūnė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| | - Dalia Gelvonauskienė
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| | - Perttu Haimi
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| | - Vida Mildažienė
- Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Tokyo, Japan
| | - Masaharu Shiratani
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, Babtai, Lithuania
| |
Collapse
|
20
|
Singh DP, Singh V, Shukla R, Sahu P, Prabha R, Gupta A, Sarma BK, Gupta VK. Stage-dependent concomitant microbial fortification improves soil nutrient status, plant growth, antioxidative defense system and gene expression in rice. Microbiol Res 2020; 239:126538. [PMID: 32717536 DOI: 10.1016/j.micres.2020.126538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Stage-dependent concomitant fortification of rice (Oryza sativa L.) varieties PB1612 and CO51 with microbial inoculants Trichoderma asperellum and Pseudomonas fluorescens as seed coating, seedling root inoculation and soil application enhanced growth, activated antioxidant enzymes and modulated defence-related genes in plants. Microbial inoculants improved shoot height, tiller numbers, fresh weight and dry biomass. Co-inoculation was more impactful in enhancing plant growth and development as compared to single inoculation. Single and co-inoculation improved organic carbon (OC) and N, P and K content in the soil substantially. Mean values between control and co-inoculation varied significantly for OC in PB1612 (p0.001) and CO51 (p0.019) and phosphorus content in PB1612 (p0.044) and CO51 (p0.021). Microbial inoculation enhanced soil nutrients and increased their bioavailability for the plants. Total polyphenolics, flavonoids and protein content increased in the leaves following microbial inoculation. Enhanced non-enzymatic antioxidant parameters (ABTS, DPPH, Fe-ion reducing power and Fe-ion chelation) was found in microbe inoculated rice reflecting high free radical scavenging activity in polyphenolics-rich leaf extracts. Increased enzyme activity of superoxide dismutase (SOD), glutathione reductase (GR), phenylalanine ammonia-lyase (PAL), peroxidase (PO), glutathione peroxidase (GPX), ascorbate peroxidase (APX) and catalase (CAT) showed improved ROS scavenging in rice plants having co-inoculation. Over-expression of PAL, cCuZn-SOD and CAT genes in microbial inoculated rice plants was recorded. The study concludes that plant stage-wise concomitant fortification by microbial inoculants could play multi-pronged manifestations at physiological, biochemical and molecular level in rice to positively influence growth, development and defense attributes in plants.
Collapse
Affiliation(s)
- Dhananjaya Pratap Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; ICAR-Indian Institute of Vegetable Research, Jakhini, Varanasi 221305, India.
| | - Vivek Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India
| | - Renu Shukla
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India
| | - Pramod Sahu
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India
| | - Ratna Prabha
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India; ICAR-Indian Agricultural Statistical Research Institute, New Delhi, 110012, India
| | - Amrita Gupta
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan 275103, India
| | - Birinchi K Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vijai K Gupta
- AgroBioSciences and Chemical & Biochemical Sciences Department, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir 43150, Morocco
| |
Collapse
|
21
|
Zuluaga MYA, Lima Milani KM, Azeredo Gonçalves LS, Martinez de Oliveira AL. Diversity and plant growth-promoting functions of diazotrophic/N-scavenging bacteria isolated from the soils and rhizospheres of two species of Solanum. PLoS One 2020; 15:e0227422. [PMID: 31923250 PMCID: PMC6953851 DOI: 10.1371/journal.pone.0227422] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
Studies of the interactions between plants and their microbiome have been conducted worldwide in the search for growth-promoting representative strains for use as biological inputs for agriculture, aiming to achieve more sustainable agriculture practices. With a focus on the isolation of plant growth-promoting (PGP) bacteria with ability to alleviate N stress, representative strains that were found at population densities greater than 104 cells g-1 and that could grow in N-free semisolid media were isolated from soils under different management conditions and from the roots of tomato (Solanum lycopersicum) and lulo (Solanum quitoense) plants that were grown in those soils. A total of 101 bacterial strains were obtained, after which they were phylogenetically categorized and characterized for their basic PGP mechanisms. All strains belonged to the Proteobacteria phylum in the classes Alphaproteobacteria (61% of isolates), Betaproteobacteria (19% of isolates) and Gammaproteobacteria (20% of isolates), with distribution encompassing nine genera, with the predominant genus being Rhizobium (58.4% of isolates). Strains isolated from conventional horticulture (CH) soil composed three bacterial genera, suggesting a lower diversity for the diazotrophs/N scavenger bacterial community than that observed for soils under organic management (ORG) or secondary forest coverture (SF). Conversely, diazotrophs/N scavenger strains from tomato plants grown in CH soil comprised a higher number of bacterial genera than did strains isolated from tomato plants grown in ORG or SF soils. Furthermore, strains isolated from tomato were phylogenetically more diverse than those from lulo. BOX-PCR fingerprinting of all strains revealed a high genetic diversity for several clonal representatives (four Rhizobium species and one Pseudomonas species). Considering the potential PGP mechanisms, 49 strains (48.5% of the total) produced IAA (2.96–193.97 μg IAA mg protein-1), 72 strains (71.3%) solubilized FePO4 (0.40–56.00 mg l-1), 44 strains (43.5%) solubilized AlPO4 (0.62–17.05 mg l-1), and 44 strains produced siderophores (1.06–3.23). Further, 91 isolates (90.1% of total) showed at least one PGP trait, and 68 isolates (67.3%) showed multiple PGP traits. Greenhouse trials using the bacterial collection to inoculate tomato or lulo plants revealed increases in plant biomass (roots, shoots or both plant tissues) elicited by 65 strains (54.5% of the bacterial collection), of which 36 were obtained from the tomato rhizosphere, 15 were obtained from the lulo rhizosphere, and 14 originated from samples of soil that lacked plants. In addition, 18 strains showed positive inoculation effects on both Solanum species, of which 12 were classified as Rhizobium spp. by partial 16S rRNA gene sequencing. Overall, the strategy adopted allowed us to identify the variability in the composition of culturable diazotroph/N-scavenger representatives from soils under different management conditions by using two Solanum species as trap plants. The present results suggest the ability of tomato and lulo plants to enrich their belowground microbiomes with rhizobia representatives and the potential of selected rhizobial strains to promote the growth of Solanum crops under limiting N supply.
Collapse
Affiliation(s)
| | - Karina Maria Lima Milani
- Departamento de Bioquímica e Biotecnologia, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | | | | |
Collapse
|
22
|
Veerana M, Lim JS, Choi EH, Park G. Aspergillus oryzae spore germination is enhanced by non-thermal atmospheric pressure plasma. Sci Rep 2019; 9:11184. [PMID: 31371801 PMCID: PMC6673704 DOI: 10.1038/s41598-019-47705-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Poor and unstable culture growth following isolation presents a technical barrier to the efficient application of beneficial microorganisms in the food industry. Non-thermal atmospheric pressure plasma is an effective tool that could overcome this barrier. The objective of this study was to investigate the potential of plasma to enhance spore germination, the initial step in fungal colonization, using Aspergillus oryzae, a beneficial filamentous fungus used in the fermentation industry. Treating fungal spores in background solutions of phosphate buffered saline (PBS) and potato dextrose broth (PDB) with micro dielectric barrier discharge plasma using nitrogen gas for 2 and 5 min, respectively, significantly increased the germination percentage. Spore swelling, the first step in germination, was accelerated following plasma treatment, indicating that plasma may be involved in loosening the spore surface. Plasma treatment depolarized spore membranes, elevated intracellular Ca2+ levels, and activated mpkA, a MAP kinase, and the transcription of several germination-associated genes. Our results suggest that plasma enhances fungal spore germination by stimulating spore swelling, depolarizing the cell membrane, and activating calcium and MAPK signaling.
Collapse
Affiliation(s)
- Mayura Veerana
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Korea.,Department of Plasma Bioscience and Display, Kwangwoon University, Seoul, 01897, Korea
| | - Jun-Sup Lim
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Eun-Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Korea.,Department of Plasma Bioscience and Display, Kwangwoon University, Seoul, 01897, Korea.,Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Korea. .,Department of Plasma Bioscience and Display, Kwangwoon University, Seoul, 01897, Korea. .,Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|