1
|
Gu Q, Ming N, Aizezi Y, Wei X, Yuan Y, Esquivel B, Wang ZY. Direct Nuclear Delivery of Proteins on Living Plant via Partial Enzymatic Cell Wall Digestion. Curr Issues Mol Biol 2024; 46:14487-14496. [PMID: 39727998 DOI: 10.3390/cimb46120870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/12/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
Nuclear protein delivery underlies an array of biotechnological and therapeutic applications. While many variations of protein delivery methods have been described, it can still be difficult or inefficient to introduce exogenous proteins into plants. A major barrier to progress is the cell wall which is primarily composed of polysaccharides and thus only permeable to small molecules. Here, we report a partial enzymatic cell wall digestion-mediated uptake method that efficiently delivers protein into the nucleus of plant cells. Such a method allowed efficient nuclear delivery of green fluorescent protein (GFP) flanked by two nuclear localization sequences (NLS) into Arabidopsis thaliana epidermal root cells without the usual need for large doses of nanoparticles or tissue cultures. We also show that switching from daylight to far-red light-grown conditions promotes effective protein penetration into deep cell layers. This study establishes that a partial enzymatic cell wall degradation could be applied to other cell organelles by changing the localization sequence, paving the way toward the rational engineering of plants.
Collapse
Affiliation(s)
- Qufei Gu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Nathan Ming
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Yalikunjiang Aizezi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Xiaoyang Wei
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Yizhong Yuan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Brian Esquivel
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Levengood H, Zhou Y, Zhang C. Advancements in plant transformation: from traditional methods to cutting-edge techniques and emerging model species. PLANT CELL REPORTS 2024; 43:273. [PMID: 39467894 DOI: 10.1007/s00299-024-03359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024]
Abstract
The ability to efficiently genetically modify plant species is crucial, driving the need for innovative technologies in plant biotechnology. Existing plant genetic transformation systems include Agrobacterium-mediated transformation, biolistics, protoplast-based methods, and nanoparticle techniques. Despite these diverse methods, many species exhibit resistance to transformation, limiting the applicability of most published methods to specific species or genotypes. Tissue culture remains a significant barrier for most species, although other barriers exist. These include the infection and regeneration stages in Agrobacterium, cell death and genomic instability in biolistics, the creation and regeneration of protoplasts for protoplast-based methods, and the difficulty of achieving stable transformation with nanoparticles. To develop species-independent transformation methods, it is essential to address these transformation bottlenecks. This review examines recent advancements in plant biotechnology, highlighting both new and existing techniques that have improved the success rates of plant transformations. Additionally, several newly emerged plant model systems that have benefited from these technological advancements are also discussed.
Collapse
Affiliation(s)
- Hannah Levengood
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Cankui Zhang
- Department of Agronomy, Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
3
|
Furuhata Y, Kimura M, Sakai A, Murakami T, Egi E, Sakuma T, Yamamoto T, Yoshizumi T, Kato Y. Direct protein delivery into intact Arabidopsis cells for genome engineering. Sci Rep 2024; 14:22568. [PMID: 39343787 PMCID: PMC11439911 DOI: 10.1038/s41598-024-72978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Intracellular delivery of biomolecules is a prerequisite for genetic techniques such as recombinant engineering and genome editing. Realizing the full potential of this technology requires the development of safe and effective methods for delivering protein tools into cells. In this study, we demonstrated the spontaneous internalization of exogenous proteins into intact cells and root tissue of whole plants of Arabidopsis thaliana. We termed this internalization phenomenon as protein Delivery Independent of Vehicles or Equipment (DIVE), which efficiently delivered genome engineering proteins including Cre recombinase and zinc-finger nucleases (ZFN) into plant cells. Using protein DIVE, we achieved less toxic protein delivery than electroporation with up to 94% efficiency in Arabidopsis cell culture and 19% genome modification in Arabidopsis plants that was maintained in regenerated tissue. This work illustrates the potential of protein DIVE for a wide range of applications, including genome engineering in plants.
Collapse
Affiliation(s)
- Yuichi Furuhata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Mitsuhiro Kimura
- Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Ayako Sakai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Tomi Murakami
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Emiko Egi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Takeshi Yoshizumi
- Faculty of Agriculture, Takasaki University of Health and Welfare, 37-1 Nakaorui-machi, Takasaki-shi, Gunma, 370-0033, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, 305-8566, Japan.
| |
Collapse
|
4
|
Zhang Y, He W, Wang L, Su W, Chen H, Li A, Chen J. Penetrating the ultra-tough yeast cell wall with finite element analysis model-aided design of microtools. iScience 2024; 27:109503. [PMID: 38591007 PMCID: PMC11000014 DOI: 10.1016/j.isci.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Microinjecting yeast cells has been challenging for decades with no significant breakthrough due to the ultra-tough cell wall and low stiffness of the traditional injector tip at the micro-scale. Penetrating this protection wall is the key step for artificially bringing foreign substance into the yeast. In this paper, a yeast cell model was built by using finite element analysis (FEA) method to analyze the penetrating process. The key parameters of the yeast cell wall in the model (the Young's modulus, the shear modulus, and the Lame constant) were calibrated according to a general nanoindentation experiment. Then by employing the calibrated model, the injection parameters were optimized to minimize the cell damage (the maximum cell deformation at the critical stress of the cell wall). Key guidelines were suggested for penetrating the cell wall during microinjection.
Collapse
Affiliation(s)
- Yanfei Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wende He
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Hao Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
5
|
Mori K, Tanase K, Sasaki K. Novel electroporation-based genome editing of carnation plant tissues using RNPs targeting the anthocyanidin synthase gene. PLANTA 2024; 259:84. [PMID: 38448635 DOI: 10.1007/s00425-024-04358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/02/2024] [Indexed: 03/08/2024]
Abstract
MAIN CONCLUSION A novel electroporation method for genome editing was performed using plant tissue samples by direct RNPs-introduction in carnation. Genome editing is becoming a very useful tool in plant breeding. In this study, a novel electroporation method was performed for genome editing using plant tissue samples. The objective was to create a flower color mutant using the pink-flowered carnation 'Kane Ainou 1-go'. For this purpose, a ribonucleoprotein consisting of guide RNA and clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) was introduced into the stem tissue to induce mutations in the anthocyanidin synthase (ANS) gene, which is involved in anthocyanin biosynthesis. As the ANS of 'Kane Ainou 1-go' has not been previously isolated, we initially isolated the ANS gene from 'Kane Ainou 1-go' for characterization. Southern hybridization analysis confirmed that the ANS gene was present in the genome as a two-allele gene with a pair of homologous sequences (ANS-1 and 2); these sequences were used as the target for genome editing. Genome editing was performed by introducing #2_single-guide RNA into the stem tissue using the ribonucleoprotein. This molecule was used because it exhibited the highest efficiency in an analysis of cleavage activity against the target sequence in vitro. Cleaved amplified polymorphic sequence analysis of genomic DNA extracted from 85 regenerated individuals after genome editing was performed. The results indicated that mutations in the ANS gene may have been introduced into two lines. Cloning of the ANS gene in these two lines confirmed the introduction of a single nucleotide substitution mutation for ANS-1 in both lines, and a single amino acid substitution in one line. We discussed the possibility of color change by the amino acid substitution, and also the future applications of this technology.
Collapse
Affiliation(s)
- Kenichiro Mori
- Aichi Agricultural Research Center (AARC), 1-1 Sagamine Yazako, Nagakute, Aichi, 480-1193, Japan
| | - Koji Tanase
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-0852, Japan.
| |
Collapse
|
6
|
Carrillo-Carrasco VP, Hernández-García J, Weijers D. Electroporation-based delivery of proteins in Penium margaritaceum and other zygnematophycean algae. PHYSIOLOGIA PLANTARUM 2023; 175:e14121. [PMID: 38148204 DOI: 10.1111/ppl.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
Zygnematophycean algae represent the streptophyte group identified as the closest sister clade to land plants. Their phylogenetic position and growing genomic resources make these freshwater algae attractive models for evolutionary studies in the context of plant terrestrialization. However, available genetic transformation protocols are limited and exclusively DNA-based. To expand the zygnematophycean toolkit, we developed a DNA-free method for protein delivery into intact cells using electroporation. We use confocal microscopy coupled with fluorescence lifetime imaging to assess the delivery of mNeonGreen into algal cells. We optimized the method to obtain high efficiency of delivery and cell recovery after electroporation in two strains of Penium margaritaceum and show that the experimental setup can also be used to deliver proteins in other zygnematophycean species such as Closterium peracerosum-strigosum-littorale complex and Mesotaenium endlicherianum. We discuss the possible applications of this proof-of-concept method.
Collapse
Affiliation(s)
| | | | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
7
|
Graceffa V. Intracellular protein delivery: New insights into the therapeutic applications and emerging technologies. Biochimie 2023; 213:82-99. [PMID: 37209808 DOI: 10.1016/j.biochi.2023.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
The inability to cross the plasma membranes traditionally limited the therapeutic use of recombinant proteins. However, in the last two decades, novel technologies made delivering proteins inside the cells possible. This allowed researchers to unlock intracellular targets, once considered 'undruggable', bringing a new research area to emerge. Protein transfection systems display a large potential in a plethora of applications. However, their modality of action is often unclear, and cytotoxic effects are elevated, whereas experimental conditions to increase transfection efficacy and cell viability still need to be identified. Furthermore, technical complexity often limits in vivo experimentation, while challenging industrial and clinical translation. This review highlights the applications of protein transfection technologies, and then critically discuss the current methodologies and their limitations. Physical membrane perforation systems are compared to systems exploiting cellular endocytosis. Research evidence of the existence of either extracellular vesicles (EVs) or cell-penetrating peptides (CPPs)- based systems, that circumvent the endosomal systems is critically analysed. Commercial systems, novel solid-phase reverse protein transfection systems, and engineered living intracellular bacteria-based mechanisms are finally described. This review ultimately aims at finding new methodologies and possible applications of protein transfection systems, while helping the development of an evidence-based research approach.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
8
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
9
|
Kocsisova Z, Coneva V. Strategies for delivery of CRISPR/Cas-mediated genome editing to obtain edited plants directly without transgene integration. Front Genome Ed 2023; 5:1209586. [PMID: 37545761 PMCID: PMC10398581 DOI: 10.3389/fgeed.2023.1209586] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Increased understanding of plant genetics and the development of powerful and easier-to-use gene editing tools over the past century have revolutionized humankind's ability to deliver precise genotypes in crops. Plant transformation techniques are well developed for making transgenic varieties in certain crops and model organisms, yet reagent delivery and plant regeneration remain key bottlenecks to applying the technology of gene editing to most crops. Typical plant transformation protocols to produce transgenic, genetically modified (GM) varieties rely on transgenes, chemical selection, and tissue culture. Typical protocols to make gene edited (GE) varieties also use transgenes, even though these may be undesirable in the final crop product. In some crops, the transgenes are routinely segregated away during meiosis by performing crosses, and thus only a minor concern. In other crops, particularly those propagated vegetatively, complex hybrids, or crops with long generation times, such crosses are impractical or impossible. This review highlights diverse strategies to deliver CRISPR/Cas gene editing reagents to regenerable plant cells and to recover edited plants without unwanted integration of transgenes. Some examples include delivering DNA-free gene editing reagents such as ribonucleoproteins or mRNA, relying on reagent expression from non-integrated DNA, using novel delivery mechanisms such as viruses or nanoparticles, using unconventional selection methods to avoid integration of transgenes, and/or avoiding tissue culture altogether. These methods are advancing rapidly and already enabling crop scientists to make use of the precision of CRISPR gene editing tools.
Collapse
|
10
|
He X, Xiong S, Sun Y, Zhong M, Xiao N, Zhou Z, Wang T, Tang Y, Xie J. Recent Progress of Rational Modified Nanocarriers for Cytosolic Protein Delivery. Pharmaceutics 2023; 15:1610. [PMID: 37376059 DOI: 10.3390/pharmaceutics15061610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Therapeutic proteins garnered significant attention in the field of disease treatment. In comparison to small molecule drugs, protein therapies offer distinct advantages, including high potency, specificity, low toxicity, and reduced carcinogenicity, even at minimal concentrations. However, the full potential of protein therapy is limited by inherent challenges such as large molecular size, delicate tertiary structure, and poor membrane penetration, resulting in inefficient intracellular delivery into target cells. To address these challenges and enhance the clinical applications of protein therapies, various protein-loaded nanocarriers with tailored modifications were developed, including liposomes, exosomes, polymeric nanoparticles, and nanomotors. Despite these advancements, many of these strategies encounter significant issues such as entrapment within endosomes, leading to low therapeutic efficiency. In this review, we extensively discussed diverse strategies for the rational design of nanocarriers, aiming to overcome these limitations. Additionally, we presented a forward-looking viewpoint on the innovative generation of delivery systems specifically tailored for protein-based therapies. Our intention was to offer theoretical and technical support for the development and enhancement of nanocarriers capable of facilitating cytosolic protein delivery.
Collapse
Affiliation(s)
- Xiao He
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Su Xiong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen 518036, China
| | - Min Zhong
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Nianting Xiao
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ziwei Zhou
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Ting Wang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Yaqin Tang
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Xie
- Chongqing Key Laboratory of Medicinal Chemistry and Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
11
|
Furuhata Y, Egi E, Murakami T, Kato Y. A Method for Electroporation of Cre Recombinase Protein into Intact Nicotiana tabacum Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:1631. [PMID: 37111855 PMCID: PMC10145609 DOI: 10.3390/plants12081631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The Cre/lox recombination system has become a powerful technology for gene function analysis in a broad spectrum of cell types and organisms. In our previous report, Cre protein had been successfully delivered into intact Arabidopsis thaliana cells using electroporation. To expand the feasibility of the method of protein electroporation to other plant cells, here we attempt the protein electroporation into tobacco-derived BY-2 cells, one of the most frequently used plant cell lines for industrial production. In this study, we successfully deliver Cre protein into BY-2 cells with intact cell walls by electroporation with low toxicity. Targeted loxP sequences in the BY-2 genome are recombined significantly. These results provide useful information for genome engineering in diverse plant cells possessing various types of cell walls.
Collapse
|
12
|
Bai S, Han X, Feng D. Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1139744. [PMID: 36890896 PMCID: PMC9987563 DOI: 10.3389/fpls.2023.1139744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
High concentrations of heavy metals in the environment will cause serious harm to ecosystems and human health. It is urgent to develop effective methods to control soil heavy metal pollution. Phytoremediation has advantages and potential for soil heavy metal pollution control. However, the current hyperaccumulators have the disadvantages of poor environmental adaptability, single enrichment species and small biomass. Based on the concept of modularity, synthetic biology makes it possible to design a wide range of organisms. In this paper, a comprehensive strategy of "microbial biosensor detection - phytoremediation - heavy metal recovery" for soil heavy metal pollution control was proposed, and the required steps were modified by using synthetic biology methods. This paper summarizes the new experimental methods that promote the discovery of synthetic biological elements and the construction of circuits, and combs the methods of producing transgenic plants to facilitate the transformation of constructed synthetic biological vectors. Finally, the problems that should be paid more attention to in the remediation of soil heavy metal pollution based on synthetic biology were discussed.
Collapse
Affiliation(s)
- Shiyan Bai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Huang W, Sakuma S, Tottori N, Sugano SS, Yamanishi Y. Viscosity-aided electromechanical poration of cells for transfecting molecules. LAB ON A CHIP 2022; 22:4276-4291. [PMID: 36263697 DOI: 10.1039/d2lc00628f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell poration technologies offer opportunities not only to understand the activities of biological molecules but also to investigate genetic manipulation possibilities. Unfortunately, transferring large molecules that can carry huge genomic information is challenging. Here, we demonstrate electromechanical poration using a core-shell-structured microbubble generator, consisting of a fine microelectrode covered with a dielectric material. By introducing a microcavity at its tip, we could concentrate the electrical field with the application of electric pulses and generate microbubbles for electromechanical stimulation of cells. Specifically, the technology enables transfection with molecules that are thousands of kDa even into osteoblasts and Chlamydomonas, which are generally considered to be difficult to inject. Notably, we found that the transfection efficiency can be enhanced by adjusting the viscosity of the cell suspension, which was presumably achieved by remodeling of the membrane cytoskeleton. The applicability of the approach to a variety of cell types opens up numerous emerging gene engineering applications.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shinya Sakuma
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Naotomo Tottori
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| | - Shigeo S Sugano
- Bioproduction Research Institute, The National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan.
| | - Yoko Yamanishi
- Department of Mechanical Engineering, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
14
|
Rustgi S, Naveed S, Windham J, Zhang H, Demirer GS. Plant biomacromolecule delivery methods in the 21st century. Front Genome Ed 2022; 4:1011934. [PMID: 36311974 PMCID: PMC9614364 DOI: 10.3389/fgeed.2022.1011934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The 21st century witnessed a boom in plant genomics and gene characterization studies through RNA interference and site-directed mutagenesis. Specifically, the last 15 years marked a rapid increase in discovering and implementing different genome editing techniques. Methods to deliver gene editing reagents have also attempted to keep pace with the discovery and implementation of gene editing tools in plants. As a result, various transient/stable, quick/lengthy, expensive (requiring specialized equipment)/inexpensive, and versatile/specific (species, developmental stage, or tissue) methods were developed. A brief account of these methods with emphasis on recent developments is provided in this review article. Additionally, the strengths and limitations of each method are listed to allow the reader to select the most appropriate method for their specific studies. Finally, a perspective for future developments and needs in this research area is presented.
Collapse
Affiliation(s)
- Sachin Rustgi
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Salman Naveed
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Jonathan Windham
- Department of Plant and Environmental Sciences, School of Health Research, Clemson University Pee Dee Research and Education Center, Florence, SC, United States
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Gözde S. Demirer
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
15
|
Cell-penetrating peptide for targeted macromolecule delivery into plant chloroplasts. Appl Microbiol Biotechnol 2022; 106:5249-5259. [PMID: 35821432 DOI: 10.1007/s00253-022-12053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/30/2022]
Abstract
Reports on chloroplast-targeted protein delivery using cell-penetrating peptides are scarce. In this study, a novel peptide-based macromolecule delivery strategy targeting chloroplasts was successfully developed in wheat mesophyll protoplasts. A peptide derived from the signal sequence of the chloroplast-targeted protein of ferredoxin-thioredoxin reductase catalytic chain of Spinacia oleracea with UniProtKB Id-P41348 exhibits properties of cellular internalization. DNase I was efficiently delivered into the chloroplast using 10 μM cTP with an efficiency of more than 90%. This cell-penetrating peptide-mediated approach offers various advantages over the existing chloroplast targeting methods, such as non-invasiveness, biocompatibility, low-toxicity, and target-specific delivery. The present study shows that peptide-based strategies hold tremendous potential in the field of chloroplast biotechnology. KEY POINTS: • Screening of database of chloroplast targeting peptides in order to develop an efficient cell-penetrating peptide termed as cTP. • cTP efficiently crosses the cell barrier and demonstrated chloroplast-localization. • cTP can be incorporated as a promising strategy for delivering macromolecules for crop improvement.
Collapse
|
16
|
Viswan A, Yamagishi A, Hoshi M, Furuhata Y, Kato Y, Makimoto N, Takeshita T, Kobayashi T, Iwata F, Kimura M, Yoshizumi T, Nakamura C. Microneedle Array-Assisted, Direct Delivery of Genome-Editing Proteins Into Plant Tissue. FRONTIERS IN PLANT SCIENCE 2022; 13:878059. [PMID: 35812975 PMCID: PMC9263851 DOI: 10.3389/fpls.2022.878059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Genome editing in plants employing recombinant DNA often results in the incorporation of foreign DNA into the host genome. The direct delivery of genome-editing proteins into plant tissues is desired to prevent undesirable genetic alterations. However, in most currently available methods, the point of entry of the genome-editing proteins cannot be controlled and time-consuming processes are required to select the successfully transferred samples. To overcome these limitations, we considered a novel microneedle array (MNA)-based delivery system, in which the needles are horizontally aligned from the substrate surface, giving it a comb-like configuration. We aimed to deliver genome-editing proteins directly into the inner layers of leaf tissues; palisade, the spongy and subepidermal L2 layers of the shoot apical meristem (SAM) which include cells that can differentiate into germlines. The array with needles 2 μm wide and 60 μm long was effective in inserting into Arabidopsis thaliana leaves and Glycine max (L.) Merr. (soybeans) SAM without the needles buckling or breaking. The setup was initially tested for the delivery of Cre recombinase into the leaves of the reporter plant A. thaliana by quantifying the GUS (β-glucuronidase) expression that occurred by the recombination of the loxP sites. We observed GUS expression at every insertion. Additionally, direct delivery of Cas9 ribonucleoprotein (RNP) targeting the PDS11/18 gene in soybean SAM showed an 11 bp deletion in the Cas9 RNP target site. Therefore, this method effectively delivered genome-editing proteins into plant tissues with precise control over the point of entry.
Collapse
Affiliation(s)
- Anchu Viswan
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ayana Yamagishi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Masamichi Hoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuichi Furuhata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Natsumi Makimoto
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Toshihiro Takeshita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takeshi Kobayashi
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Futoshi Iwata
- Graduate School of Medical Photonics, Shizuoka University, Hamamatsu, Japan
| | - Mitsuhiro Kimura
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Takeshi Yoshizumi
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Chikashi Nakamura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
17
|
Liu L, Zhang J, Teng T, Yang Y, Zhang W, Wu W, Li G, Zheng X. Electroporation of His-Cre fusion protein triggers a specific recombinase-mediated cassette exchange in HEK 293T cells. Protein Expr Purif 2022; 198:106128. [PMID: 35667585 DOI: 10.1016/j.pep.2022.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
Cre recombinase is a widely-used genetic manipulation of genomic DNA. However, the conventional transfection of the DNA vectors expressing the Cre recombinase or viral transduction method yields low transfection efficiencies or insertion mutagenesis. The present paper evaluated whether the direct protein delivery of Cre recombinase through electroporation can induce the Cre-mediated recombination in the HEK 293T cells. Here, the small ubiquitin-related modifier (SUMO) -tagged His-Cre fusion protein was expressed in a soluble pattern in the Eschrichria coli (E.coli) cells, purified using affinity chromatography, and finally electroporated into the HEK 293T cells. These cells were previously transfected with three different Cre reporter vectors. The electroporation of the HEK 293T cells revealed either the activation of EGFP expression, or a decrease in RFP expression, and a concomitant increase in EGFP expression, indicating a desired recombinase-mediated cassette exchange (RMCE) event (conversion of RFP to EGFP), and a biological activity of the purified SUMO-His-Cre protein, which is expected to serve in the Easi-CRISPR-LoxP-mediated genome editing to generate transgenic animal models.
Collapse
Affiliation(s)
- Lingkang Liu
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China
| | - Jiashun Zhang
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China
| | - Ting Teng
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China
| | - Yang Yang
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China
| | - Wanyu Zhang
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China
| | - Wende Wu
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China
| | - Gonghe Li
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China
| | - Xibang Zheng
- Department of Animal Medicine, College of Animal Science and Technology, Guangxi University, No. 100 Daxue Road, Nanning, 530004, Guangxi, PR China.
| |
Collapse
|
18
|
Yasukawa T, Oda AH, Nakamura T, Masuo N, Tamura M, Yamasaki Y, Imura M, Yamada T, Ohta K. TAQing2.0 for genome reorganization of asexual industrial yeasts by direct protein transfection. Commun Biol 2022; 5:144. [PMID: 35177796 PMCID: PMC8854394 DOI: 10.1038/s42003-022-03093-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
Genomic rearrangements often generate phenotypic diversification. We previously reported the TAQing system where genomic rearrangements are induced via conditional activation of a restriction endonuclease in yeast and plant cells to produce mutants with marked phenotypic changes. Here we developed the TAQing2.0 system based on the direct delivery of endonucleases into the cell nucleus by cell-penetrating peptides. Using the optimized procedure, we introduce a heat-reactivatable endonuclease TaqI into an asexual industrial yeast (torula yeast), followed by a transient heat activation of TaqI. TAQing2.0 leads to generation of mutants with altered flocculation and morphological phenotypes, which exhibit changes in chromosomal size. Genome resequencing suggested that torula yeast is triploid with six chromosomes and the mutants have multiple rearrangements including translocations having the TaqI recognition sequence at the break points. Thus, TAQing2.0 is expected as a useful method to obtain various mutants with altered phenotypes without introducing foreign DNA into asexual industrial microorganisms. The TAQing system is upgraded and optimised as the foreign-DNA-free genome engineering technology, TAQing2.0. Genomic rearrangements are randomly induced by introducing the TaqI restriction endonuclease into non-sporulating industrial yeast with cell-penetrating peptides, leading to generation of mutants with altered phenotypes.
Collapse
Affiliation(s)
- Taishi Yasukawa
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Arisa H Oda
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takahiro Nakamura
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yuriko Yamasaki
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Makoto Imura
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F., 1-1-3 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Takatomi Yamada
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts & Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan. .,The Universal Biology Institute of The University of Tokyo, Hongo 7-3-1, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology Strategies for Plant Genetic Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106945. [PMID: 34699644 DOI: 10.1002/adma.202106945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Plant genetic engineering is essential for improving crop yield, quality, and resistance to abiotic/biotic stresses for sustainable agriculture. Agrobacterium-, biolistic bombardment-, electroporation-, and poly(ethylene glycol) (PEG)-mediated genetic-transformation systems are extensively used in plant genetic engineering. However, these systems have limitations, including species dependency, destruction of plant tissues, low transformation efficiency, and high cost. Recently, nanotechnology-based gene-delivery methods have been developed for plant genetic transformation. This nanostrategy shows excellent transformation efficiency, good biocompatibility, adequate protection of exogenous nucleic acids, and the potential for plant regeneration. However, the nanomaterial-mediated gene-delivery system in plants is still in its infancy, and there are many challenges for its broad applications. Herein, the conventional genetic transformation techniques used in plants are briefly discussed. After that, the progress in the development of nanomaterial-based gene-delivery systems is considered. CRISPR-Cas-mediated genome editing and its combined applications with plant nanotechnology are also discussed. The conceptual innovations, methods, and practical applications of nanomaterial-mediated genetic transformation summarized herein will be beneficial for promoting plant genetic engineering in modern agriculture.
Collapse
Affiliation(s)
- Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xiaojun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
20
|
Tanaka Y, Nanasato Y, Omura K, Endoh K, Kawano T, Iwasaki T. Direct protein delivery into intact plant cells using polyhistidine peptides. Biosci Biotechnol Biochem 2021; 85:1405-1414. [PMID: 33791772 DOI: 10.1093/bbb/zbab055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
Polyhistidine peptides (PHPs), sequences comprising only histidine residues (>His8), are effective cell-penetrating peptides for plant cells. Using PHP-fusion proteins, we aimed to deliver proteins into cultured plant cells from Nicotiana tabacum, Oryza sativa, and Cryptomeria japonica. Co-cultivation of cultured cells with fusion proteins combining maltose-binding protein (MBP), red fluorescent protein (RFP), and various PHPs (MBP-RFP-His8-His20) in one polypeptide showed the cellular uptake of fusion proteins in all plant cell lines. Maximum intracellular fluorescence was shown in MBP-RFP-His20. Further, adenylate cyclase (CyaA), a synthase of cyclic adenosine monophosphate (cAMP) activated by cytosolic calmodulin, was used as a reporter for protein delivery in living cells. A fusion protein combining MBP, RFP, CyaA, and His20 (MBP-RFP-CyaA-His20) was delivered into plant cells and increased intracellular fluorescence and cAMP production in all cell lines. The present study demonstrates that PHPs are effective carriers of proteins into the intracellular space of various cultured plant cells.
Collapse
Affiliation(s)
- Yoshino Tanaka
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Yoshihiko Nanasato
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, Japan
| | - Kousei Omura
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Keita Endoh
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, Japan
| | - Tsuyoshi Kawano
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| | - Takashi Iwasaki
- Department of Agriculture, Graduate School of Sustainability Science, Tottori University, Tottori, Japan
| |
Collapse
|
21
|
Wang JW, Cunningham FJ, Goh NS, Boozarpour NN, Pham M, Landry MP. Nanoparticles for protein delivery in planta. CURRENT OPINION IN PLANT BIOLOGY 2021; 60:102052. [PMID: 33984712 PMCID: PMC10461801 DOI: 10.1016/j.pbi.2021.102052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 05/08/2023]
Abstract
Delivery of proteins into walled plant cells remains a challenge with few tractable solutions. Recent advances in biomacromolecule delivery using nanotechnology may evince methods to be exploited for protein delivery. While protein delivery remains no small feat, even in mammalian systems, the ability for nanoparticles to penetrate the cell wall and be decorated with a plethora of functional moieties makes them ideal protein vehicles in plants. As advances in protein biotechnology accelerate, so does the need for commensurate delivery systems. However, the road to nanoparticle-mediated protein delivery is fraught with challenges in regard to cell wall penetration, intracellular delivery, endosomal escape, and nanoparticle chemistry and design. The dearth of literature surrounding protein delivery in walled plant cells hints at the challenge of this problem but also indicates vast opportunity for innovations in plant-tailored nanotechnology.
Collapse
Affiliation(s)
- Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Navid N Boozarpour
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Matthew Pham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; Innovative Genomics Institute (IGI), Berkeley, CA, 94720, USA; California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, 94720, USA; Chan-Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
22
|
Hata T, Mukae K, Satoh S, Matsuo M, Obokata J. Preculture in an enriched nutrient medium greatly enhances the Agrobacterium-mediated transformation efficiency in Arabidopsis T87 cultured cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:179-182. [PMID: 34177340 PMCID: PMC8215453 DOI: 10.5511/plantbiotechnology.20.1211b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/11/2020] [Indexed: 05/27/2023]
Abstract
The Arabidopsis T87 cell line has been widely used in both basic and biotechnological plant sciences. Agrobacterium-mediated transformation of this cell line was reported to be highly efficient when precultured in Gamborg's B5 medium for a few days. However, because we could not obtain the expected efficiency in our laboratory, we further examined the preculture conditions of Arabidopsis T87 cells in the Agrobacterium-mediated transformation. As a result, we found that preculture in an excess amount of Murashige and Skoog (MS) macronutrients before cultivation in the B5 medium enhanced the transformation efficiency up to 100-fold, based on the transformed callus number on selective gellan gum plates. In this study, transformants were labeled with green fluorescent protein (GFP), and we found multiple fluorescent spots on individual transgenic calli. Therefore, the actual number of transgenic clones seems much more than that of transgenic calli. In our MS macronutrient-rich culture condition, T87 cells tended to aggregate and formed bigger cell clumps, a change that might be related to the enhancement of transformation efficiency. Based on these results, we report an improved protocol of Agrobacterium-mediated transformation of Arabidopsis T87 cells with high efficiency.
Collapse
Affiliation(s)
- Takayuki Hata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka 573-0101, Japan
| | - Kazuki Mukae
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Soichrou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto 606-8522, Japan
| | - Mitsuhiro Matsuo
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka 573-0101, Japan
| | - Junichi Obokata
- Faculty of Agriculture, Setsunan University, Hirakata-shi, Osaka 573-0101, Japan
| |
Collapse
|
23
|
Pacheco-Lugo LA, Sáenz-García JL, Díaz-Olmos Y, Netto-Costa R, Brant RSC, DaRocha WD. CREditing: a tool for gene tuning in Trypanosoma cruzi. Int J Parasitol 2020; 50:1067-1077. [PMID: 32858036 DOI: 10.1016/j.ijpara.2020.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/30/2022]
Abstract
The genetic manipulation of Trypanosoma cruzi continues to be a challenge, mainly due to the lack of available and efficient molecular tools. The CRE-lox recombination system is a site-specific recombinase technology, widely used method of achieving conditional targeted deletions, inversions, insertions, gene activation, translocation, and other modifications in chromosomal or episomal DNA. In the present study, the CRE-lox system was adapted to expand the current genetic toolbox for this hard-to-manipulate parasite. For this, evaluations of whether direct protein delivery of CRE recombinase through electroporation could improve CRE-mediated recombination in T. cruzi were performed. CRE recombinase was fused to the C-terminus of T. cruzi histone H2B, which carries the nuclear localization signal and is expressed in the prokaryotic system. The fusion protein was affinity purified and directly introduced into epimastigotes and tissue culture-derived trypomastigotes. This enabled the control of gene expression as demonstrated by turning on a tandem dimer fluorescent protein reporter gene that had been previously transfected into parasites, achieving CRE-mediated recombination in up to 85% of parasites. This system was further tested for its ability to turn off gene expression, remove selectable markers integrated into the genome, and conditionally knock down the nitroreductase gene, which is involved in drug resistance. Additionally, CREditing also enabled the control of gene expression in tissue culture trypomastigotes, which are more difficult to transfect than epimastigotes. The considerable advances in genomic manipulation of T. cruzi shown in this study can be used by others to aid in the greater understanding of this parasite through gain- or loss-of-function approaches.
Collapse
Affiliation(s)
- Lisandro A Pacheco-Lugo
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil; Facultad de Ciencias Básicas Biomédicas, Universidad Simón Bolívar, Barranquilla, Colombia
| | - José L Sáenz-García
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Yirys Díaz-Olmos
- Instituto Carlos Chagas, Fiocruz-Paraná, Paraná, Brazil; Facultad de Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | | | - Rodrigo S C Brant
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil
| | - Wanderson D DaRocha
- Laboratório de Genômica Funcional de Parasitos (GFP), Universidade Federal de Paraná, Paraná, Brazil.
| |
Collapse
|
24
|
Ozyigit II. Gene transfer to plants by electroporation: methods and applications. Mol Biol Rep 2020; 47:3195-3210. [PMID: 32242300 DOI: 10.1007/s11033-020-05343-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/22/2020] [Indexed: 01/09/2023]
Abstract
Developing gene transfer technologies enables the genetic manipulation of the living organisms more efficiently. The methods used for gene transfer fall into two main categories; natural and artificial transformation. The natural methods include the conjugation, transposition, bacterial transformation as well as phage and retroviral transductions, contain the physical methods whereas the artificial methods can physically alter and transfer genes from one to another organisms' cell using, for instance, biolistic transformation, micro- and macroinjection, and protoplast fusion etc. The artificial gene transformation can also be conducted through chemical methods which include calcium phosphate-mediated, polyethylene glycol-mediated, DEAE-Dextran, and liposome-mediated transfers. Electrical methods are also artificial ways to transfer genes that can be done by electroporation and electrofusion. Comparatively, among all the above-mentioned methods, electroporation is being widely used owing to its high efficiency and broader applicability. Electroporation is an electrical transformation method by which transient electropores are produced in the cell membranes. Based on the applications, process can be either reversible where electropores in membrane are resealable and cells preserve the vitality or irreversible where membrane is not able to reseal, and cell eventually dies. This problem can be minimized by developing numerical models to iteratively optimize the field homogeneity considering the cell size, shape, number, and electrode positions supplemented by real-time measurements. In modern biotechnology, numerical methods have been used in electrotransformation, electroporation-based inactivation, electroextraction, and electroporative biomass drying. Moreover, current applications of electroporation also point to some other uncovered potentials for various exploitations in future.
Collapse
Affiliation(s)
- Ibrahim Ilker Ozyigit
- Department of Biology, Faculty of Science and Arts, Marmara University, Goztepe, 34722, Istanbul, Turkey. .,Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan.
| |
Collapse
|
25
|
Furuhata Y, Sakai A, Murakami T, Nagasaki A, Kato Y. Bioluminescent imaging of Arabidopsis thaliana using an enhanced Nano-lantern luminescence reporter system. PLoS One 2020; 15:e0227477. [PMID: 31899919 PMCID: PMC6941820 DOI: 10.1371/journal.pone.0227477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022] Open
Abstract
Bioluminescent detection has become a powerful method that is used extensively in numerous areas in life science research. Given that fluorescence detection in plant cells is difficult owing to the autofluorescence of chlorophyll, the use of a luciferin-luciferase system should be effective in plant biology. However, the suitable optical window for a luminescence system in plants remains unexplored. In this study, we sought to determine the optical window and optimal luciferase reporter system for terrestrial plant analyses using Arabidopsis thaliana as a model organism. We compared six different luciferase systems and found the green enhanced Nano-lantern (GeNL)-furimazine combination to be the optimal luciferase reporter. Spectral measurements of GeNL-furimazine showed that its luminescence peak falls within the range of optical transparency for chlorophyll and, therefore, enables greater penetration through a layer of cultured A. thaliana cells. Moreover, A. thaliana plants expressing GeNL with furimazine emitted strong luminescence, which could be detected even with the naked eye. Thus, the GeNL-furimazine combination should facilitate biological analyses of genes and cellular functions in A. thaliana and all other terrestrial plants.
Collapse
Affiliation(s)
- Yuichi Furuhata
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Ayako Sakai
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Tomi Murakami
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akira Nagasaki
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshio Kato
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
26
|
Alex A, Piano V, Polley S, Stuiver M, Voss S, Ciossani G, Overlack K, Voss B, Wohlgemuth S, Petrovic A, Wu Y, Selenko P, Musacchio A, Maffini S. Electroporated recombinant proteins as tools for in vivo functional complementation, imaging and chemical biology. eLife 2019; 8:48287. [PMID: 31310234 PMCID: PMC6656429 DOI: 10.7554/elife.48287] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023] Open
Abstract
Delivery of native or chemically modified recombinant proteins into mammalian cells shows promise for functional investigations and various technological applications, but concerns that sub-cellular localization and functional integrity of delivered proteins may be affected remain high. Here, we surveyed batch electroporation as a delivery tool for single polypeptides and multi-subunit protein assemblies of the kinetochore, a spatially confined and well-studied subcellular structure. After electroporation into human cells, recombinant fluorescent Ndc80 and Mis12 multi-subunit complexes exhibited native localization, physically interacted with endogenous binding partners, and functionally complemented depleted endogenous counterparts to promote mitotic checkpoint signaling and chromosome segregation. Farnesylation is required for kinetochore localization of the Dynein adaptor Spindly. In cells with chronically inhibited farnesyl transferase activity, in vitro farnesylation and electroporation of recombinant Spindly faithfully resulted in robust kinetochore localization. Our data show that electroporation is well-suited to deliver synthetic and chemically modified versions of functional proteins, and, therefore, constitutes a promising tool for applications in chemical and synthetic biology.
Collapse
Affiliation(s)
- Amal Alex
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Valentina Piano
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Soumitra Polley
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marchel Stuiver
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany
| | - Stephanie Voss
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany
| | - Giuseppe Ciossani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Katharina Overlack
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Voss
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Yaowen Wu
- Chemical Genomics Centre, Max Planck Society, Dortmund, Germany.,Department of Chemistry, Umeå University, Umeå, Sweden
| | - Philipp Selenko
- In-Cell NMR Laboratory, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Berlin, Germany.,Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.,Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| |
Collapse
|
27
|
Jansing J, Schiermeyer A, Schillberg S, Fischer R, Bortesi L. Genome Editing in Agriculture: Technical and Practical Considerations. Int J Mol Sci 2019; 20:E2888. [PMID: 31200517 PMCID: PMC6627516 DOI: 10.3390/ijms20122888] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 01/31/2023] Open
Abstract
The advent of precise genome-editing tools has revolutionized the way we create new plant varieties. Three groups of tools are now available, classified according to their mechanism of action: Programmable sequence-specific nucleases, base-editing enzymes, and oligonucleotides. The corresponding techniques not only lead to different outcomes, but also have implications for the public acceptance and regulatory approval of genome-edited plants. Despite the high efficiency and precision of the tools, there are still major bottlenecks in the generation of new and improved varieties, including the efficient delivery of the genome-editing reagents, the selection of desired events, and the regeneration of intact plants. In this review, we evaluate current delivery and regeneration methods, discuss their suitability for important crop species, and consider the practical aspects of applying the different genome-editing techniques in agriculture.
Collapse
Affiliation(s)
- Julia Jansing
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Andreas Schiermeyer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany.
| | - Rainer Fischer
- Indiana Biosciences Research Institute (IBRI), 1345 W. 16th St. Suite 300, Indianapolis, IN 46202, USA.
| | - Luisa Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|