1
|
Bae S, Bae S, Kim HS, Lim YJ, Kim G, Park IC, So KA, Kim TJ, Lee JH. Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway. Cancer Manag Res 2024; 16:507-525. [PMID: 38827785 PMCID: PMC11144006 DOI: 10.2147/cmar.s457221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ovarian cancer is one of women's malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance. Methods Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted. Results Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells. Conclusion Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
2
|
Singh IA, Lokhande KB, Swamy KV. Exploring the anticancer potential of fluoro flavone analogues: insights from molecular docking and dynamics studies with Aurora Kinase B. In Silico Pharmacol 2024; 12:26. [PMID: 38596365 PMCID: PMC10999403 DOI: 10.1007/s40203-024-00200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/22/2024] [Indexed: 04/11/2024] Open
Abstract
Aurora Kinase B belongs to the serine kinase family. It plays an essential role in cell division and participates in mitosis and chromatid segregation. Overexpression, polymorphism, and splicing variants in the protein lead to tumorigenesis, leading to cancer. Flavones belong to the class of flavonoids and are derived from plants and show anti-cancer activities. Fluoro flavones and their analogs are taken from the PubChem database, resulting in 3882 compounds which is 90% similar to the fluoro flavones. Lipinski's rule of five, REOS and PAINS drug-like filters were applied which resulted 2448 compounds. These compounds are docked with Aurora Kinase B using SP and XP modules of Glide software. The best binding scores for SP docking were - 9.153 kcal/mol for the compound with CID: 44298667, and XP docking was - 10.287 kcal/mol with CID: 101664315. Enrichment calculations were done using Aurora Kinase B's decoys to validate the docking result. The resulting R2 = 0.96 from enrichment calculations suggests that the docking protocol is valid. The SP and XP docking lead compounds and the Fluoro flavone were subjected to 100 ns MD simulation to probe the protein-ligand complex stability. Also, the binding free energies between the Aurora kinase B and lead compounds were computed by Prime MM/GBSA module. The result suggests that the lead compounds bind more strongly with Aurora Kinase B than the Fluoro flavone. These lead compounds can be further evaluated in vitro and in vivo and can be used as future novel drugs for the curation of cancer. Graphical abstract
Collapse
Affiliation(s)
- Ipsa A. Singh
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Present Address: Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Greater Noida, UP India
| | - K. Venkateswara Swamy
- Drug Discovery Group, MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, 412201 India
| |
Collapse
|
3
|
Zou J, Zhao L, Shi S. Generation of focused drug molecule library using recurrent neural network. J Mol Model 2023; 29:361. [PMID: 37932607 DOI: 10.1007/s00894-023-05772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
CONTEXT With the wide application of deep learning in drug research and development, de novo molecular design methods based on recurrent neural network (RNN) have strong advantages in drug molecule generation. The RNN model can be used to learn the internal chemical structure of molecules, which is similar to a natural language processing task. Although techniques for generating target-specific molecular libraries based on RNN models are mature, research related to drug design and screening continues around the clock. Research based on de novo drug design methods to generate larger quantities of valid compounds is necessary. METHODS In this study, a molecular generation model based on RNN was designed, which abandoned the traditional way of stacked RNN and introduced the Nested long short-term memory network structure. To enrich the library of focused molecules for specific targets, we fine-tuned the model using active molecules from novel coronavirus pneumonia and screened the molecules using machine learning models. Following rigorous screening, the selected molecules underwent molecular docking with the SARS-CoV-2 M-pro receptor using AutoDock2.4 to identify the top 3 potential inhibitors. Subsequently, 100-ns molecular dynamics simulations were conducted using Amber22. Molecule parameterization involved the GAFF2 force field, while the proteins were modeled using the ff19SB force field, with solvation facilitated by a truncated octahedral TIP3P solvent environment. Upon completion of molecular dynamics simulations, stability of ligand-protein complexes was assessed by analysis of RMSD, H-bonds, and MM-GBSA. Reasonable results prove that the model can complete the task of de novo drug design and has the potential to be ideal drug molecules.
Collapse
Affiliation(s)
- Jinping Zou
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China
- Institute of Mathematics and Interdisciplinary Sciences, Nanchang University, Nanchang, 330031, China
| | - Long Zhao
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China
- Institute of Mathematics and Interdisciplinary Sciences, Nanchang University, Nanchang, 330031, China
| | - Shaoping Shi
- Department of Mathematics, School of Mathematics and Computer Sciences, Nanchang University, Nanchang, 330031, China.
- Institute of Mathematics and Interdisciplinary Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Yang X, Guo J, Li W, Li C, Zhu X, Liu Y, Wu X. PPM1H is down-regulated by ATF6 and dephosphorylates p-RPS6KB1 to inhibit progression of hepatocellular carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:164-179. [PMID: 37456776 PMCID: PMC10345229 DOI: 10.1016/j.omtn.2023.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
We have shown previously that polymorphism of activating transcription factor 6 (ATF6) is associated with susceptibility to hepatocellular carcinoma (HCC). Therefore, genes down-regulated by ATF6 might play a tumor-suppressing role. In the present study, we identified that expression of protein phosphatase magnesium- or manganous-dependent 1H (PPM1H) mRNA and protein can be inhibited by ATF6 in hepatoma cells and mice with liver Atf6 knockdown. Tumor tissues from 134 HCC patients were analyzed by immunohistochemistry, and PPM1H exhibited higher expression levels in adjacent para-cancer tissues than in HCC tissues. Therefore, patients with higher expression of PPM1H had a better prognosis. PPM1H inhibited proliferation, migration, and invasion of hepatoma cells. In addition, PPM1H inhibited induced HCC nodule formation as well as tumor xenograft growth in diethylnitrosamine/CCl4-induced HCC mouse model and nude mouse tumorigenicity assay, respectively. A 3D model of PPM1H was obtained by homology multi-template modeling, and ribosomal protein S6 kinase B1 (RPS6KB1) in the bone morphogenetic protein (BMP)/transforming growth factor β (TGF-β) pathway was screened out as the potential substrate of PPM1H by Rosetta. PPM1H could directly dephosphorylate p-RPS6KB1. To conclude, we discovered RPS6KB1 as a new PPM1H dephosphorylation substrate. PPM1H exhibited a suppressive effect on HCC progression by dephosphorylating p-RPS6KB1.
Collapse
Affiliation(s)
- Xiaoshuang Yang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Jianting Guo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Li
- Department of Interventional Radiology, Affiliated Hospital of Qingdao University, Shandong 266003, P.R. China
| | - Chunrui Li
- Beijing Cloud Computing Key Technique and Application Key Laboratory, Beijing Computing Center, Beijing 100094, P.R. China
| | - Xilin Zhu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Ying Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaopan Wu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
- School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
5
|
Patel S, Hasan H, Umraliya D, Sanapalli BKR, Yele V. Marine drugs as putative inhibitors against non-structural proteins of SARS-CoV-2: an in silico study. J Mol Model 2023; 29:176. [PMID: 37171714 PMCID: PMC10176293 DOI: 10.1007/s00894-023-05574-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/26/2023] [Indexed: 05/13/2023]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19) is an unprecedented pandemic, threatening human health worldwide. The need to produce novel small-molecule inhibitors against the ongoing pandemic has resulted in the use of drugs such as chloroquine, azithromycin, dexamethasone, favipiravir, ribavirin, remdesivir and azithromycin. Moreover, the reports of the clinical trials of these drugs proved to produce detrimental effects on patients with side effects like nephrotoxicity, retinopathy, cardiotoxicity and cardiomyopathy. Recognizing the need for effective and non-harmful therapeutic candidates to combat COVID-19, we aimed to develop promising drugs against SARS-COV-2. DISCUSSION In the current investigation, high-throughput virtual screening was performed using the Comprehensive Marine Natural Products Database against five non-structural proteins: Nsp3, Nsp5, Nsp12, Nsp13 and Nsp15. Furthermore, standard precision (SP) docking, extra precision (XP) docking, binding free energy calculation and absorption, distribution, metabolism, excretion and toxicity studies were performed using the Schrӧdinger suite. The top-ranked 5 hits obtained by computational studies exhibited to possess a greater binding affinity with the selected non-structural proteins. Amongst the five hits, CMNPD5804, CMNPD20924 and CMNPD1598 hits were utilized to design a novel molecule (D) that has the capability of interacting with all the key residues in the pocket of the selected non-structural proteins. Furthermore, 200 ns of molecular dynamics simulation studies provided insight into the binding modes of D within the catalytic pocket of selected proteins. CONCLUSION Hence, it is concluded that compound D could be a promising inhibitor against these non-structural proteins. Nevertheless, there is still a need to conduct in vitro and in vivo studies to support our findings.
Collapse
Affiliation(s)
- Simran Patel
- Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Haydara Hasan
- Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Divyesh Umraliya
- Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India.
- Department of Pharmacology, School of Pharmaceutical Sciences, MB University, Tirupati, Andhra Pradesh, 517102, India.
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marwadi University, Rajkot, Gujarat, 360003, India.
| |
Collapse
|
6
|
Free Fatty Acids from Cow Urine DMSO Fraction Induce Cell Death in Breast Cancer Cells without Affecting Normal GMSCs. Biomedicines 2023; 11:biomedicines11030889. [PMID: 36979868 PMCID: PMC10046047 DOI: 10.3390/biomedicines11030889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Objective: The objective of this study was to explore the biological relevance of free fatty acids derived from cow urine DMSO fraction (CUDF) by employing in vitro and in silico approaches. Background: Metabolic heterogeneity at the intra- and intercellular levels contributes to the metabolic plasticity of cancer cells during drug-induced response. Free fatty acid (FFA) availability at intra- and intercellular levels is related to tumor heterogeneity at interpatient and xeno-heterogeneity levels. Methods: We collected fresh urine from healthy cows and subjected it to fractionation in DMSO using drying, vortexing, and centrifugation. Finally, the sterile filtrate of cow urine DMSO fraction (CUDF) was evaluated for antiproliferative and proapoptotic effects in MCF-7 and ZR-75-1 breast cancer cells using routine cell-based assays. Intracellular metabolites were studied with the help of a novel in-house vertical tube gel electrophoresis (VTGE) method to reveal the nature of CUDF components in MCF-7 cells. Identified intracellular FFAs were studied for their molecular interactions with targeted receptor histone deacetylase (HDAC) using molecular docking and molecular dynamics (MD) simulations. Results: CUDF showed a significant reduction in cell viability and cell death in MCF-7 and ZR-75-1 breast cancer cells. Interestingly, FFAs tetracosanedioic acid, 13Z-docosenoic acid (erucic acid), nervonic acid, 3-hydroxy-tetradecanoic acid, and 3-hydroxcapric acid were found inside the treated MCF-7 cancer cells. These FFAs, including tetracosanedioic acid, indicated a specific affinity to HDAC at their inhibitory sites, similar to trichostatin A, a known inhibitor. Conclusions: This study reports on FFAs derived from CUDF as potential antiproliferative and pro-cell death agents against breast cancer cells. MD simulations hinted at tetracosanedioic acid and other FFAs as inhibitors of HDAC that could explain the observed effects of FFAs in cancer cells.
Collapse
|
7
|
Ghadaksaz A, Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nejad Satari T, Amin M. Targeting the EGFR in cancer cells by fusion protein consisting of arazyme and third loop of TGF-alpha: an in silico study. J Biomol Struct Dyn 2022; 40:11744-11757. [PMID: 34379041 DOI: 10.1080/07391102.2021.1963318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The anticancer effects of arazyme, a bacterial metalloprotease, have been revealed in previous studies. Because of the overexpression of epidermal growth factor receptor (EGFR) in tumor cells, targeting this receptor is one of the approaches to cancer therapy. In the present study, we designed fusion protein by using a non-mitogenic binding sequence of TGFα, arazyme, and a suitable linker. The I-TASSER and Robetta web servers were employed to predict the territory structures of the Arazyme-linker-TGFαL3, and TGFαL3-linker-Arazyme. Then, models were validated by using PROCHECK, ERRAT, ProSA, and MolProbity web servers. After docking to EGFR, Arazyme-linker-TGFαL3 showed a higher binding affinity and was selected to be optimized through 100 ns Molecular dynamic (MD) simulation. Next, the stability of ligand-bound receptor was examined utilizing MD simulation for 100 ns. Furthermore, the binding free energy calculation and free energy decomposition were carried out employing MM-PBSA and MM-GBSA methods, respectively. The root mean square deviation and fluctuation (RMSD, RMSF), the radius of gyration, H-bond, and binding free energy analysis revealed the stability of the complex during simulation time. Finally, linear and conformational epitopes of B cells, as well as MHC class I and MHC class II were predicted by using different web servers. Meanwhile, the potential B cell and T cell epitopes were identified throughout arazyme protein sequence. Collectively, this study suggests a novel chimera protein candidate prevent cancer cells potentially by inducing an immune response and inhibiting cell proliferation. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdolamir Ghadaksaz
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Taher Nejad Satari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and The Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Pandiyan S, Wang L. A comprehensive review on recent approaches for cancer drug discovery associated with artificial intelligence. Comput Biol Med 2022; 150:106140. [PMID: 36179510 DOI: 10.1016/j.compbiomed.2022.106140] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/20/2022] [Accepted: 09/18/2022] [Indexed: 11/03/2022]
Abstract
Through the revolutionization of artificial intelligence (AI) technologies in clinical research, significant improvement is observed in diagnosis of cancer. Utilization of these AI technologies, such as machine and deep learning, is imperative for the discovery of novel anticancer drugs and improves existing/ongoing cancer therapeutics. However, building a model for complicated cancers and their types remains a challenge due to lack of effective therapeutics that hinder the establishment of effective computational tools. In this review, we exploit recent approaches and state-of-the-art in implementing AI methods for anticancer drug discovery, and discussed how advances in these applications need to be considered in the current cancer therapeutics. Considering the immense potential of AI, we explore molecular docking and their interactions to recognize metabolic activities that support drug design. Finally, we highlight corresponding strategies in applying machine and deep learning methods to various types of cancer with their pros and cons.
Collapse
Affiliation(s)
- Sanjeevi Pandiyan
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China; School of Information Science and Technology, Nantong University, Nantong, China; Nantong Research Institute for Advanced Communication Technologies, Nantong, China.
| |
Collapse
|
9
|
Discovery of Novel HSP27 Inhibitors as Prospective Anti-Cancer Agents Utilizing Computer-Assisted Therapeutic Discovery Approaches. Cells 2022; 11:cells11152412. [PMID: 35954254 PMCID: PMC9368632 DOI: 10.3390/cells11152412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Heat shock protein 27 (HSP27) is a protein that works as a chaperone and an antioxidant and is activated by heat shock, environmental stress, and pathophysiological stress. However, HSP27 dysregulation is a characteristic of many human cancers. HSP27 suppresses apoptosis and cytoskeletal reorganization. As a result, it is recognized as a critical therapeutic target for effective cancer therapy. Despite the effectiveness of multiple HSP27 inhibitors in pre-clinical investigations and clinical trials, no HSP27 inhibitor has progressed to the anticancer phase of the development. These difficulties have mostly been attributable to existing anticancer therapies’ inability to target oncogenic HSP27. Highly selective HSP27 inhibitors with higher effective-ness and low toxicity led to the development of combination techniques that include computer-aided assisted therapeutic discovery and design. This study emphasizes the most recent results and roles of HSP27 in cancer and the potential for utilizing an anticancer chemical database to uncover novel compounds to inhibit HSP27.
Collapse
|
10
|
Molecular Interaction Studies and Phytochemical Characterization of Mentha pulegium L. Constituents with Multiple Biological Utilities as Antioxidant, Antimicrobial, Anticancer and Anti-Hemolytic Agents. Molecules 2022; 27:molecules27154824. [PMID: 35956775 PMCID: PMC9370026 DOI: 10.3390/molecules27154824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple biological functions of Mentha pulegium extract were evaluated in the current work. Phytochemical components of the M. pulegium extract were detected by Gas Chromatography-Mass Spectrometry (GC-MS) and High-performance liquid chromatography (HPLC). Moreover, M. pulegium extract was estimated for antioxidant potential by 2,2-Diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging, antimicrobial activity by well diffusion, and anticoagulant activity via prothrombin time (PT) and activated partial thromboplastin time (APTT). GC-MS analysis detected compounds including cholesterol margarate, stigmast-5-en-3-ol, 19-nor-4-androstenediol, androstan-17-one, pulegone-1,2-epoxide, isochiapin B, dotriacontane, hexadecanoic acid and neophytadiene. Chrysoeriol (15.36 µg/mL) was followed by kaempferol (11.14 µg/mL) and 7-OH flavone (10.14 µg/mL), catechin (4.11 µg/mL), hisperdin (3.05 µg/mL), and luteolin (2.36 µg/mL) were detected by HPLC as flavonoids, in addition to ferulic (13.19 µg/mL), cinnamic (12.69 µg/mL), caffeic (11.45 µg/mL), pyrogallol (9.36 µg/mL), p-coumaric (5.06 µg/mL) and salicylic (4.17 µg/mL) as phenolics. Antioxidant activity was detected with IC50 18 µg/mL, hemolysis inhibition was recorded as 79.8% at 1000 μg/mL, and PT and APTT were at 21.5 s and 49.5 s, respectively, at 50 μg/mL of M. pulegium extract. The acute toxicity of M. pulegium extract was recorded against PC3 (IC50 97.99 µg/mL) and MCF7 (IC50 80.21 µg/mL). Antimicrobial activity of M. pulegium extract was documented against Bacillus subtilis, Escherichia coli, Pseudomonasaureus, Candida albicans, Pseudomonas aeruginosa, but not against black fungus Mucor circinelloides. Molecular docking was applied using MOE (Molecular Operating Environment) to explain the biological activity of neophytadiene, luteolin, chrysoeriol and kaempferol. These compounds could be suitable for the development of novel pharmacological agents for treatment of cancer and bacterial infections.
Collapse
|
11
|
Lokhande K, Nawani N, K. Venkateswara S, Pawar S. Biflavonoids from Rhus succedanea as probable natural inhibitors against SARS-CoV-2: a molecular docking and molecular dynamics approach. J Biomol Struct Dyn 2022; 40:4376-4388. [PMID: 33300454 PMCID: PMC7738212 DOI: 10.1080/07391102.2020.1858165] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has quickly become a worldwide pandemic and generated panic threats for both the human population and the global economy. The unavailability of effective vaccines or drugs has enforced researchers to hunt for a potential drug to combat this virus. Plant-derived phytocompounds are of applicable interest in the search for novel drugs. Bioflavonoids from Rhus succedanea are already reported to exert antiviral activity against RNA viruses. SARS-CoV-2 Mpro protease plays a vital role in viral replication and therefore can be considered as a promising target for drug development. A computational approach has been employed to search for promising potent bioflavonoids from Rhus succedanea against SARS-CoV-2 Mpro protease. Binding affinities and binding modes between the biflavonoids and Mpro enzyme suggest that all six biflavonoids exhibit possible interaction with the Mpro catalytic site (-19.47 to -27.04 kcal/mol). However, Amentoflavone (-27.04 kcal/mol) and Agathisflavone (-25.87 kcal/mol) interact strongly with the catalytic residues. Molecular dynamic simulations (100 ns) further revealed that these two biflavonoids complexes with the Mpro enzyme are highly stable and are of less conformational fluctuations. Also, the hydrophobic and hydrophilic surface mapping on the Mpro structure as well as biflavonoids were utilized for the further lead optimization process. Altogether, our findings showed that these natural biflavonoids can be utilized as promising SARS-CoV-2 Mpro inhibitors and thus, the computational approach provides an initial footstep towards experimental studies in in vitro and in vivo, which is necessary for the therapeutic development of novel and safe drugs to control SARS-CoV-2. Communicated by Ramaswamy H. SarmaResearch highlightsRhus succedanea biflavonoids have antiviral activity.The molecular interactions and molecular dynamics displayed that all six biflavonoids bound with a good affinity to the same catalytic site of Mpro.The compound Amentoflavone has a strong binding affinity (-27.0441 kcal/mol) towards Mpro.The binding site properties of SARS-CoV-2-Mpro can be utilized in a novel discovery and lead optimization of the SARS-CoV-2-Mpro inhibitor.
Collapse
Affiliation(s)
- Kiran Lokhande
- Dr. D. Y. Patil Vidyapeeth, Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Neelu Nawani
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| | - Swamy K. Venkateswara
- Bioinformatics Research Group, MIT School of Bioengineering Sciences & Research, MIT-ADT University, Pune, Maharashtra, India
| | - Sarika Pawar
- Dr. D. Y. Patil Vidyapeeth, Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, India
| |
Collapse
|
12
|
Zhang K, Wang K, Zhang C, Teng X, Li D, Chen M. Exploring the potential mechanism of emetine against coronavirus disease 2019 combined with lung adenocarcinoma: bioinformatics and molecular simulation analyses. BMC Cancer 2022; 22:687. [PMID: 35733175 PMCID: PMC9214478 DOI: 10.1186/s12885-022-09763-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Patients with lung adenocarcinoma (LUAD) may be more predisposed to coronavirus disease 2019 (COVID-19) and have a poorer prognosis. Currently, there is still a lack of effective anti-LUAD/COVID-19 drugs. Thus, this study aimed to screen for an effective anti-LUAD/COVID-19 drug and explore the potential mechanisms. METHODS Firstly, we performed differentially expressed gene (DEG) analysis on LUAD transcriptome profiling data in The Cancer Genome Atlas (TCGA), where intersections with COVID-19-related genes were screened out. Then, we conducted Cox proportional hazards analyses on these LUAD/COVID-19 DEGs to construct a risk score. Next, LUAD/COVID-19 DEGs were uploaded on Connectivity Map to obtain drugs for anti-LUAD/COVID-19. Finally, we used network pharmacology, molecular docking, and molecular dynamics (MD) simulation to explore the drug's therapeutic targets and potential mechanisms for anti-LUAD/COVID-19. RESULTS We identified 230 LUAD/COVID-19 DEGs and constructed a risk score containing 7 genes (BTK, CCL20, FURIN, LDHA, TRPA1, ZIC5, and SDK1) that could classify LUAD patients into two risk groups. Then, we screened emetine as an effective drug for anti-LUAD/COVID-19. Network pharmacology analyses identified 6 potential targets (IL6, DPP4, MIF, PRF1, SERPING1, and SLC6A4) for emetine in anti-LUAD/COVID-19. Molecular docking and MD simulation analyses showed that emetine exhibited excellent binding capacities to DDP4 and the main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CONCLUSIONS This study found that emetine may inhibit the entry and replication of SARS-CoV-2 and enhance tumor immunity by bounding to DDP4 and Mpro.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Chaoguo Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Xiuli Teng
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Dan Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
13
|
Deguelin Attenuates Non-Small-Cell Lung Cancer Cell Metastasis by Upregulating PTEN/KLF4/EMT Signaling Pathway. DISEASE MARKERS 2022; 2022:4090346. [PMID: 35637651 PMCID: PMC9148257 DOI: 10.1155/2022/4090346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer and a major cause of cancer mortality worldwide. Deguelin plays a vital inhibitory role in NSCLC initiation and development. However, the downstream mechanism of deguelin-suppressed metastasis of NSCLC cells is still not completely understood. Interestingly, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and Krüppel-like factor 4 (KLF4) also contribute to inhibition of metastasis in NSCLC cells. Here, we demonstrated that deguelin significantly upregulated PTEN and KLF4 expressions and PTEN positively upregulated KLF4 expression in NSCLC cells including A549 and PC9 cells. Moreover, overexpressions of PTEN and KLF4 inhibited the migration and invasion of NSCLC cells, an effect similar to that of deguelin. Furthermore, overexpressions of PTEN and KLF4 could suppress the epithelial-mesenchymal transition (EMT), an effect also similar to that of deguelin. Additionally, deguelin displayed a significant antitumor ability by upregulating PTEN and KLF4 expressions in mice model with NSCLC cells. Together, these results indicated that deguelin could be a potential therapeutic agent through upregulating PTEN and KLF4 expressions for NSCLC therapy.
Collapse
|
14
|
In silico molecular docking and dynamic simulation of eugenol compounds against breast cancer. J Mol Model 2021; 28:17. [PMID: 34962586 DOI: 10.1007/s00894-021-05010-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Breast cancer is one of the most severe problems, and it is the primary cause of cancer-related death in females worldwide. The adverse effects and therapeutic resistance development are among the most potent clinical issues for potent medications for breast cancer treatment. The eugenol molecules have a significant affinity for breast cancer receptors. The aim of the study has been on the eugenol compounds, which has potent actions on Erα, PR, EGFR, CDK2, mTOR, ERBB2, c-Src, HSP90, and chemokines receptors inhibition. Initially, the drug-likeness property was examined to evaluate the anti-breast cancer activity by applying Lipinski's rule of five on 120 eugenol molecules. Further, structure-based virtual screening was performed via molecular docking, as protein-like interactions play a vital role in drug development. The 3D structure of the receptors has been acquired from the protein data bank and is docked with 87 3D PubChem and ZINC structures of eugenol compounds, and five FDA-approved anti-cancer drugs using AutoDock Vina. Then, the compounds were subjected to three replica molecular dynamic simulations run of 100 ns per system. The results were evaluated using root mean square deviation (RMSD), root mean square fluctuation (RMSF), and protein-ligand interactions to indicate protein-ligand complex stability. The results confirm that Eugenol cinnamaldehyde has the best docking score for breast cancer, followed by Aspirin eugenol ester and 4-Allyl-2-methoxyphenyl cinnamate. From the results obtained from in silico studies, we propose that the selected eugenols can be further investigated and evaluated for further lead optimization and drug development.
Collapse
|
15
|
Dasgupta S, Bandyopadhyay M. Molecular docking of SARS-COV-2 Spike epitope sequences identifies heterodimeric peptide-protein complex formation with human Zo-1, TLR8 and brain specific glial proteins. Med Hypotheses 2021; 157:110706. [PMID: 34673372 PMCID: PMC8511551 DOI: 10.1016/j.mehy.2021.110706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022]
Abstract
SARS-COV-2 infection causes severe respiratory tract illness leading to asphyxia and death. The onset of infection is associated with loss of smell, blurred vision, headache with bronchopulmonary symptoms. The clinical observations of neurological abnormalities lead us to address the question, does the virus enter into brain and what is the underlying mechanism of brain infection? The working hypothesis is, SARS-COV-2 Spike epitopes modify blood brain barrier and infect glial cells to induce brain inflammation in genetically diverse human population. The hypothesis is tested by determining binding or interacting ability of virus Spike epitope peptides M1Lys60 and Ala240Glu300 with human toll-like receptor 8 (TLR 8), brain targeted Vascular Cell adhesion Molecules (VCAM1) proteins, Zonula Occludens (ZO), glial cell specific protein NDRG2 and Apo- S100B. The molecular dynamic experiments are performed, and root mean square deviation (RMSD) values are determined for interactions between the Spike peptides and selected proteins. The observations demonstrate formation of heterodimeric complex between the epitope peptides and selected protein structures. The viral epitopes have ability to bind with HLA-DRB1 15:01, 07:01 or 03.01 alleles thus found immunogenic in nature. The observations altogether suggest entry of these Spike protein epitopes into human brain causes inflammation.
Collapse
Affiliation(s)
- Subhajit Dasgupta
- Regenerative Neuro Immune Research Institute of South Carolina, Charleston, United States; NeuroDrug Research LLC, Charleston, SC, United States.
| | - Mausumi Bandyopadhyay
- Department of Natural Sciences, Biology Division, Trident Technical College, North Charleston, SC, United States
| |
Collapse
|
16
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
17
|
Lokhande KB, Ghosh P, Nagar S, Venkateswara Swamy K. Novel B, C-ring truncated deguelin derivatives reveals as potential inhibitors of cyclin D1 and cyclin E using molecular docking and molecular dynamic simulation. Mol Divers 2021; 26:2295-2309. [PMID: 34626304 DOI: 10.1007/s11030-021-10334-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/01/2021] [Indexed: 11/30/2022]
Abstract
The overexpression of cyclin D1 and cyclin E due to their oncogenic potential and amplification has been associated with a higher mortality rate in many cancers. The deguelin is a natural compound, has shown promising anti-cancer activity by directly binding cyclin D1 and cyclin E and thus suppressing its function. The C7a atomic position of deguelin structure contains a proton that generates stabilized radical, as a result, decomposed deguelin reduces its structural stability and significantly decreases its biological activity. To design deguelin derivatives with the reduced potential side effect, series of B, C-ring truncated derivatives were investigated as cyclin D1 and cyclin E inhibitors. R-group-based enumeration was implemented in the deguelin scaffold using the R-group enumeration module of Schrödinger. Drug-Like filters like, REOS and PAINs series were applied to the enumerated compound library to remove compounds containing reactive functional groups. Further, screened compounds were docked within the ligand-binding cavity of cyclin D1 and cyclin E crystal structure, using Glide SP and XP protocol to obtain docking poses. Enrichment calculations were done using SchrÖdinger software, with 1000 decoy compounds (from DUD.E database) and 60 compounds (XP best poses) along with deguelin, to validate the docking protocol. The receiver operating characteristic (ROC) curve indicates R2 = 0.94 for cyclin D1 and R2 = 0.79 for cyclin E, suggesting that the docking protocol is valid. Besides, we explored molecular dynamics simulation to probe the binding stability of deguelin and its derivatives within the binding cavity of cyclin D1 and cyclin E structures which are associated with the cyclin D1 and cyclin E inhibitory mechanism.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Shuchi Nagar
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Pune, 411033, India. .,Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Science & Research, MIT Art, Design and Technology University, Pune, 412201, India.
| |
Collapse
|
18
|
In silico modeling and molecular docking insights of kaempferitrin for colon cancer-related molecular targets. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Vetrivel A, Natchimuthu S, Subramanian V, Murugesan R. High-Throughput Virtual Screening for a New Class of Antagonist Targeting LasR of Pseudomonas aeruginosa. ACS OMEGA 2021; 6:18314-18324. [PMID: 34308062 PMCID: PMC8296597 DOI: 10.1021/acsomega.1c02191] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/16/2021] [Indexed: 05/28/2023]
Abstract
Pseudomonas aeruginosa, an opportunistic human pathogen, causes fatal effects in patients with cystic fibrosis and immunocompromised individuals and leads to around 1000 deaths annually. The quorum sensing mechanism of P. aeruginosa plays a major role in promoting biofilm formation and expression of virulent genes. Hence, quorum sensing inhibition is a promising novel approach to treat these bacterial infections as these organisms show a wide range of antibiotic resistance. Among the interconnected quorum sensing network of P. aeruginosa, targeting the las system is of increased interest as its principal receptor protein LasR is the earliest activated gene. It is also shown to be involved in the regulation of other virulence-associated genes. In this study, we have applied high-throughput virtual screening, an in silico computational method to identify a new class of LasR inhibitors that could serve as potent antagonists to treat P. aeruginosa-associated infections. Three-tire structure-based virtual screening was performed on the Schrödinger small molecule database, which resulted in 12 top hit compounds with docking scores lesser than -11.0 kcal/mol. Three of these best-scored compounds CACPD2011a-0001928786 (C1), CACPD2011a-0001927437 (C2), and CACPD2011a-0000896051 (C3) were further analyzed. The binding free energies of these compounds in complex with the target protein LasR (3IX4) were evaluated, and the pharmacokinetic properties were determined. The stability of the docked complexes was assessed by running a molecular dynamics simulation for 100 ns. Molecular dynamics simulation analysis revealed that all three compounds were found to be in stable contact with the protein over the entire simulation period. The antagonistic effect of these compounds was validated using the LasR reporter gene assay in the presence of acyl homoserine lactone. Significant reduction in the β-galactosidase enzyme activity was achieved at 100 nM concentration for all three compounds pursued. Hence, the present study provides strong evidence that these three compounds could serve as quorum sensing inhibitors of P. aeruginosa LasR protein and can be a probable candidate to treat Pseudomonas-associated infections.
Collapse
Affiliation(s)
- Aishwarya Vetrivel
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| | - Santhi Natchimuthu
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| | | | - Rajeswari Murugesan
- Department
of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for
Women, Coimbatore 641043, Tamil Nadu, India
| |
Collapse
|
20
|
Pandey K, Lokhande KB, Swamy KV, Nagar S, Dake M. In Silico Exploration of Phytoconstituents From Phyllanthus emblica and Aegle marmelos as Potential Therapeutics Against SARS-CoV-2 RdRp. Bioinform Biol Insights 2021; 15:11779322211027403. [PMID: 34248355 PMCID: PMC8236766 DOI: 10.1177/11779322211027403] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/04/2021] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) worldwide has increased the importance of computational tools to design a drug or vaccine in reduced time with minimum risk. Earlier studies have emphasized the important role of RNA-dependent RNA polymerase (RdRp) in SARS-CoV-2 replication as a potential drug target. In our study, comprehensive computational approaches were applied to identify potential compounds targeting RdRp of SARS-CoV-2. To study the binding affinity and stability of the phytocompounds from Phyllanthus emblica and Aegel marmelos within the defined binding site of SARS-CoV-2 RdRp, they were subjected to molecular docking, 100 ns molecular dynamics (MD) simulation followed by post-simulation analysis. Furthermore, to assess the importance of features involved in the strong binding affinity, molecular field-based similarity analysis was performed. Based on comparative molecular docking and simulation studies of the selected phytocompounds with SARS-CoV-2 RdRp revealed that EBDGp possesses a stronger binding affinity (-23.32 kcal/mol) and stability than other phytocompounds and reference compound, Remdesivir (-19.36 kcal/mol). Molecular field-based similarity profiling has supported our study in the validation of the importance of the presence of hydroxyl groups in EBDGp, involved in increasing its binding affinity toward SARS-CoV-2 RdRp. Molecular docking and dynamic simulation results confirmed that EBDGp has better inhibitory potential than Remdesivir and can be an effective novel drug for SARS-CoV-2 RdRp. Furthermore, binding free energy calculations confirmed the higher stability of the SARS-CoV-2 RdRp-EBDGp complex. These results suggest that the EBDGp compound may emerge as a promising drug against SARS-CoV-2 and hence requires further experimental validation.
Collapse
Affiliation(s)
- Khushboo Pandey
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
- Bioinformatics and Drug Discovery Group, MIT School of Bioengineering Sciences & Research, MIT Art, Design and Technology University, Pune, India
| | - Shuchi Nagar
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Manjusha Dake
- Protein Biochemistry Laboratory, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
21
|
Mir MA, Mehraj U, Sheikh BA. Recent Advances in Chemotherapeutic Implications of Deguelin: A Plant-Derived Retinoid. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2210315510666200128125950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deguelin, a plant retinoid has emerged to be a promising therapeutic agent in the treatment
of different cancers. Recent studies demonstrate that deguelin has potential as an angiogenesis
antagonist in malignant and endothelial cells by specifically targeting HGF-c-Met and VEGFVEGFR
pathways. It is reported to have profound therapeutic effects in pancreatic cancer by inactivation
of the hedgehog (Hh) signalling pathway and suppresses the expression of matrix metalloproteinases
such as MMP-2 and MMP-9. The basic underlying mechanisms for deguelin mediated anti-
NSCLC effects were uncovered through its induction of elevated intracellular Reactive Oxygen Species
(ROS) levels and suppression of the PI3K /Akt-HK2 signalling pathway. Deguelin induces cell
apoptosis by targeting various pathways most notably regulating the expression of galectin-1 and
binding directly to anti-apoptotic Bcl-2 (B-cell lymphoma 2), Bcl-xl (B-cell lymphoma-extralarge)
and Mcl-1 (Myeloid Cell Leukemia Sequence 1) in the hydrophobic grooves thereby liberating BAD
and BAX from binding with these proteins. These results derived from the effect of Deguelin on various
cancer cell lines have further elucidated its role as a novel anti-tumorigenic agent targeting angiogenesis,
apoptosis, cell proliferation and migration for cancer chemoprevention. In this review, an
attempt has been made to highlight the potential therapeutic effects of Deguelin in destroying the
cancer cells by inhibiting various tumour promoting pathways and its uses as a therapeutic agent
alone or in combination.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
22
|
Hudson ML, Samudrala R. Multiscale Virtual Screening Optimization for Shotgun Drug Repurposing Using the CANDO Platform. Molecules 2021; 26:2581. [PMID: 33925237 PMCID: PMC8125683 DOI: 10.3390/molecules26092581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/02/2022] Open
Abstract
Drug repurposing, the practice of utilizing existing drugs for novel clinical indications, has tremendous potential for improving human health outcomes and increasing therapeutic development efficiency. The goal of multi-disease multitarget drug repurposing, also known as shotgun drug repurposing, is to develop platforms that assess the therapeutic potential of each existing drug for every clinical indication. Our Computational Analysis of Novel Drug Opportunities (CANDO) platform for shotgun multitarget repurposing implements several pipelines for the large-scale modeling and simulation of interactions between comprehensive libraries of drugs/compounds and protein structures. In these pipelines, each drug is described by an interaction signature that is compared to all other signatures that are subsequently sorted and ranked based on similarity. Pipelines within the platform are benchmarked based on their ability to recover known drugs for all indications in our library, and predictions are generated based on the hypothesis that (novel) drugs with similar signatures may be repurposed for the same indication(s). The drug-protein interactions used to create the drug-proteome signatures may be determined by any screening or docking method, but the primary approach used thus far has been BANDOCK, our in-house bioanalytical or similarity docking protocol. In this study, we calculated drug-proteome interaction signatures using the publicly available molecular docking method Autodock Vina and created hybrid decision tree pipelines that combined our original bio- and chem-informatic approach with the goal of assessing and benchmarking their drug repurposing capabilities and performance. The hybrid decision tree pipeline outperformed the two docking-based pipelines from which it was synthesized, yielding an average indication accuracy of 13.3% at the top10 cutoff (the most stringent), relative to 10.9% and 7.1% for its constituent pipelines, and a random control accuracy of 2.2%. We demonstrate that docking-based virtual screening pipelines have unique performance characteristics and that the CANDO shotgun repurposing paradigm is not dependent on a specific docking method. Our results also provide further evidence that multiple CANDO pipelines can be synthesized to enhance drug repurposing predictive capability relative to their constituent pipelines. Overall, this study indicates that pipelines consisting of varied docking-based signature generation methods can capture unique and useful signals for accurate comparison of drug-proteome interaction signatures, leading to improvements in the benchmarking and predictive performance of the CANDO shotgun drug repurposing platform.
Collapse
Affiliation(s)
| | - Ram Samudrala
- Department of Biomedical Informatics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| |
Collapse
|
23
|
Pandey RK, Dikhit MR, Lokhande KB, Pandey K, Das P, Bimal S. An immunoprophylactic evaluation of Ld-ODC derived HLA-A0201 restricted peptides against visceral leishmaniasis. J Biomol Struct Dyn 2021; 40:6086-6096. [PMID: 33602055 DOI: 10.1080/07391102.2021.1876773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Five (5) HLA-A 0201 restricted epitopes of ornithine decarboxylase derived from Leishmania donovani (Ld-ODC) were examined by reverse vaccinology to develop prophylactics against visceral leishmaniasis (VL). These consensus epitopes comprising (P1: RLMPSAHAI, P2: LLDQYQIHL, P3: GLYHSFNCI, P4: AVLEVLSAL and P5: RLPASPAAL) were observed and presented by diverse HLA alleles screened by immune-informatics tools. These epitopes were also observed for strong stability for appropriate immune response in in silico screening and molecular dynamics. Top five selected epitopes filtered from population coverage analysis and TAP binding affinity were identified and evaluated against treated cases of VL subjects. Experiments were run individually with synthetic peptides or as the cocktail of peptides. A major population of CD8+ T cells were predominantly IFN-γ producers but not the IL-10 cytokines and shown with granzyme-B activity. Therefore, it can be concluded that the screened HLA-A0201 restricted epitope hotspots derived from Leishmania ODC can trigger CD8+ T cells, which can skew other immune cells functions toward protection. However, a detailed analysis can explore its potentiality as a vaccine candidate.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Raj Kishor Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research, Hajipur, India.,Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Manas Ranjan Dikhit
- Department of Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Kiran Bharat Lokhande
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Pradeep Das
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Sanjiva Bimal
- Division of Immunology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| |
Collapse
|
24
|
Thakur A, Patwa J, Pant S, Sharma A, Flora SJS. Interaction study of monoisoamyl dimercaptosuccinic acid with bovine serum albumin using biophysical and molecular docking approaches. Sci Rep 2021; 11:4068. [PMID: 33603022 PMCID: PMC7892868 DOI: 10.1038/s41598-021-83534-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA), a lipophilic chelator has been evaluated for its potential use as an antidote in arsenic poisoning. The pharmacokinetics and pharmacodynamics properties of a drug could be understood via study its mechanism of interaction with bovine serum albumin protein (BSA). Therefore, the interaction between MiADMSA with BSA was investigated using various spectroscopic techniques and computational methods. Linear quenching of BSA intrinsic fluorescence intensity with the increasing concentration of MiADMSA was observed in the fluorescence study. Furthermore, synchronous results revealed that MiADMSA slightly changed the conformation of BSA. The binding constant value of the BSA-MiADMSA complex was found 1.60 × 104 M-1 at 298 K. The value of thermodynamic parameters ΔG, ΔH, and ΔS described that the process is spontaneous, endothermic, and hydrophobic forces are involved in the interaction of MiADMSA with BSA. Competitive site marker experiments showed that MiADMSA binds to site-II of BSA. Conformational changes of BSA with the interaction of MiADMSA were apparent by CD, UV-Visible, FT-IR, and 3D fluorescence spectroscopy. To strengthen the experimental findings we have also performed a theoretical study on the BSA-MiADMSA complex. Two sites were identified with docking score of - 6.642 kcal/mol at site IIa and - 3.80 kcal/mol for site IIb via molecular docking study. Molecular dynamics simulation study inferred the stability of the BSA-MiADMSA complex which was analyzed in a long simulation run. The experimental and computational studies have shown the effective binding of MiADMSA with BSA which is essential for the transportation and elimination of a drug from the body.
Collapse
Affiliation(s)
- Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, UP, 226002, India
| | - Jayant Patwa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, UP, 226002, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, UP, 226002, India.
| | - S J S Flora
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, UP, 226002, India.
| |
Collapse
|
25
|
Umar HI, Siraj B, Ajayi A, Jimoh TO, Chukwuemeka PO. Molecular docking studies of some selected gallic acid derivatives against five non-structural proteins of novel coronavirus. J Genet Eng Biotechnol 2021; 19:16. [PMID: 33492492 PMCID: PMC7829640 DOI: 10.1186/s43141-021-00120-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The World Health Organization has recently declared a new coronavirus disease (COVID-19) a pandemic and a global health emergency. The pressure to produce drugs and vaccines against the ongoing pandemic has resulted in the use of some drugs such as azithromycin, chloroquine (sulfate and phosphate), hydroxychloroquine, dexamethasone, favipiravir, remdesivir, ribavirin, ivermectin, and lopinavir/ritonavir. However, reports from some of the clinical trials with these drugs have proved detrimental on some COVID-19 infected patients with side effects more of which cardiomyopathy, cardiotoxicity, nephrotoxicity, macular retinopathy, and hepatotoxicity have been recently reported. Realizing the need for potent and harmless therapeutic compounds to combat COVID-19, we attempted in this study to find promising therapeutic compounds against the imminent threat of this virus. In this current study, 16 derivatives of gallic acid were docked against five selected non-structural proteins of SARS-COV-2 known to be a good target for finding small molecule inhibitors against the virus, namely, nsp3, nsp5, nsp12, nsp13, and nsp14. All the protein crystal structures and 3D structures of the small molecules (16 gallic acid derivatives and 3 control drugs) were retrieved from the Protein database (PDB) and PubChem server respectively. The compounds with lower binding energy than the control drugs were selected and subjected to pharmacokinetics screening using AdmetSAR server. RESULTS 4-O-(6-galloylglucoside) gave binding energy values of - 8.4, - 6.8, - 8.9, - 9.1, and - 7.5 kcal/mol against Mpro, nsp3, nsp12, nsp13, and nsp15 respectively. Based on the ADMET profile, 4-O-(6-galloylglucoside) was found to be metabolized by the liver and has a very high plasma protein binding. CONCLUSION The result of this study revealed that 4-O-(6-galloylglucoside) could be a promising inhibitor against these SAR-Cov-2 proteins. However, there is still a need for further molecular dynamic simulation, in vivo and in vitro studies to support these findings.
Collapse
Affiliation(s)
- Haruna Isiyaku Umar
- Department of Biochemistry, School of Sciences, Federal University of Technology, Along Owo-Ilesha Express Way, P.M.B. 704, Akure, Ondo State Nigeria
- Ioncure Tech Pvt. Ltd., Delhi, 110085 India
| | - Bushra Siraj
- Ioncure Tech Pvt. Ltd., Delhi, 110085 India
- Dr. Zafar H. Zaidi Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Adeola Ajayi
- Department of Biochemistry, School of Sciences, Federal University of Technology, Along Owo-Ilesha Express Way, P.M.B. 704, Akure, Ondo State Nigeria
| | - Tajudeen O. Jimoh
- Faculty of Pharmaceutical Sciences, Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Habib Medical School, Islamic University in Uganda, P. O. Box 7689, Kampala, Uganda
| | - Prosper Obed Chukwuemeka
- Department of Biotechnology, School of sciences, Federal University of Technology, Akure, Ondo State Nigeria
| |
Collapse
|
26
|
Labib MM, Amin MK, Alzohairy AM, Elashtokhy MMA, Samir O, Hassanein SE. Inhibition analysis of aflatoxin by in silico targeting the thioesterase domain of polyketide synthase enzyme in Aspergillus ssp. J Biomol Struct Dyn 2020; 40:4328-4340. [PMID: 33308034 DOI: 10.1080/07391102.2020.1856186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The spread of fungal growth causes enormous economic, agricultural, and health problems for humans, such as Aspergillus sp., which produce aflatoxins. Thus, the inhibition of aflatoxin production became a precious target. In this research, the thioesterase (TE) domain from Polyketide synthase enzyme was selected to employ the in silico docking, using AutoDock Vina, against 623 natural compounds from the South African natural compound database (SANCDB), to identify potential inhibitors that can selectively inhibit thioesterase domain. The top ten inhibitors components were pinocembrin, typhaphthalide, p-coumaroylputrescine, dilemmaone A, 9-angelylplatynecine, 2,4,6-octatrienal, 4,8-dichloro-3,7-dimethyl-, (2e,4z,6e)-, lilacinobiose, 1,3,7-octatriene, 5,6-dichloro-2-(dichloromethyl)-6-methyl-, [r*,s*-(e)]-(-)- (9ci), lilacinobiose, 1,3,7-octatriene, 5,6-dichloro-2-(dichloromethyl)-6-methyl-, [r*,s*-(e)]-(-)- (9ci), 1,3,7-octatriene, 1,5,6-trichloro-2-(dichloromethyl)-6-methyl-, [r*,s*-(z,e)] and 9-angelylhastanecine and that depending on the lowest binding energy, the best chemical interactions and the best drug-likeness. The results of those components gave successful inhibition with the thioesterase domain. So, they can be used for inhibition and controlling aflatoxin contamination of agriculture crop yields, specially, pinocembrin which gave promising results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mai M Labib
- Agriculture Genetic Engineering Research Institute (AGERI), Cairo, Egypt
| | - M K Amin
- Faculty of Agriculture Department of Genetics, Zagazig University, Zagazig, Egypt
| | - A M Alzohairy
- Faculty of Agriculture Department of Genetics, Zagazig University, Zagazig, Egypt
| | - M M A Elashtokhy
- Faculty of Agriculture Department of Genetics, Zagazig University, Zagazig, Egypt
| | - O Samir
- Children's Cancer Hospital Foundation, Cairo, Egypt
| | - S E Hassanein
- Agriculture Genetic Engineering Research Institute (AGERI), Cairo, Egypt.,Misr University for Science and Technology (MUST), Al Jizah, Egypt
| |
Collapse
|
27
|
Heng MP, Sim KS, Tan KW. Nickel and zinc complexes of testosterone N4-substituted thiosemicarbazone: Selective cytotoxicity towards human colorectal carcinoma cell line HCT 116 and their cell death mechanisms. J Inorg Biochem 2020; 208:111097. [PMID: 32438269 DOI: 10.1016/j.jinorgbio.2020.111097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Two new Schiff base ligands (TE and TF) were prepared from conjugation of testosterone with 4-(4-ethylphenyl)-3-thiosemicarbazide and 4-(4-fluorophenyl)-3-thiosemicarbazide, respectively. Their nickel (NE and NF) and zinc (ZE and ZF) complexes were reported. X-ray crystallography revealed a distorted square planar geometry was adopted by NE. The compounds demonstrated excellent selectivity towards the colorectal carcinoma cell line HCT 116 despite their weak preferences towards the prostate cancer cell lines (PC-3 and LNCaP). Against HCT 116, all these compounds were able to arrest cell cycle at G0/G1 phase and induce apoptosis via mitochondria-dependent (TE, NE, and TF) and extrinsic apoptotic pathway (ZE, NF, and ZF). Moreover, only ZE was able to act as topoisomease I poison and halt its enzymatic reactions although all compounds presented excellent affinity towards DNA.
Collapse
Affiliation(s)
- Mok Piew Heng
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kong Wai Tan
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia..
| |
Collapse
|
28
|
Hong M, Almutairi MM, Li S, Li J. Wogonin inhibits cell cycle progression by activating the glycogen synthase kinase-3 beta in hepatocellular carcinoma. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153174. [PMID: 31991293 DOI: 10.1016/j.phymed.2020.153174] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Wogonin has been reported to exhibit various biological activities such as anti-inflammation, anti-microbial, and anti-tumor. Previous studies have demonstrated that wogonin could down-regulate Cyclin D1 activity on multiple cancers. However, the related mechanisms have not been fully elucidated so far. PURPOSE The aim of the current study was to explore whether wogonin can suppress hepatocellular carcinoma (HCC) progression and the mechanism of wogonin in inhibiting Cyclin D1 expression. METHODS Herein, we assessed the anti-tumor activity of wogonin against hepatocellular carcinoma (HCC) by MTT assay, clonogenic assay, cell cycle analysis and orthotopic xenograft mouse models. Western blot, immunofluoscence assay, co-immunoprecipitation assay, docking program, surface plasmon resonance, site-directed mutagenesis assay and immunohistochemical assay were performed for exploring the underlying mechanisms of wogonin-induced growth inhibition in HCC. RESULTS Our results showed that non-toxic dosage of wogonin (10, 20 µM) could inhibit cells proliferation and suppress cells cycle progression in MHCC97L and HepG2 cell. Moreover, the findings from the western blot and immunofluoscence assay confirmed the inhibition action of wogonin (10, 20 µM) on Cyclin D1 expression in MHCC97L cells, and wogonin (10, 20 µM) pre-treatment was capable of promoting Cyclin D1 ubiquitination and degradation in MHCC97L cell. In addition, wogonin promoted phosphorylation of Cyclin D1 on threonine-286 site, the mutation of threonine-286 to alanine-286A blocked Cyclin D1 proteolysis induced by wogonin. Wogonin-promoted Cyclin D1 phosphorylation and subsequent proteolysis may associate with the activation of GSK3beta in cancer cells. The phosphorylated form of GSK3beta (active form) expression was significantly increased after wogonin (20 µM) exposure. Molecular docking study and Biacore SPR analysis of GSK3beta mutant further validated the high-affinity wogonin binding site on GSK3beta. Moreover, in vivo studies further confirmed that phospho-GSK3beta Tyr216 was over-expressed in HCC specimens after wogonin treatment while the amount of Cyclin D1 was significantly decreased. CONCLUSION In summary, our data reveal a novel molecular mechanism by which wogonin induces HCC cells cycle arrest and suppresses tumor proliferation.
Collapse
Affiliation(s)
- Ming Hong
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Mohammed M Almutairi
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States
| | - Siying Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States
| | - Jinke Li
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States.
| |
Collapse
|
29
|
Pourshojaei Y, Abiri A, Eskandari K, Haghighijoo Z, Edraki N, Asadipour A. Phenoxyethyl Piperidine/Morpholine Derivatives as PAS and CAS Inhibitors of Cholinesterases: Insights for Future Drug Design. Sci Rep 2019; 9:19855. [PMID: 31882733 PMCID: PMC6934599 DOI: 10.1038/s41598-019-56463-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Acetylcholinesterase (AChE) catalyzes the conversion of Aβ peptide to its aggregated form and the peripheral anionic site (PAS) of AChE is mainly involved in this phenomenon. Also catalytic active site (CAS) of donepezil stimulates the break-down of acetylcholine (ACh) and depletion of ACh in cholinergic synapses are well established in brains of patients with AD. In this study, a set of compounds bearing phenoxyethyl amines were synthesized and their inhibitory activity toward electric eel AChE (eeAChE) and equine butyrylcholinesterase (eqBuChE) were evaluated. Molecular dynamics (MD) was employed to record the binding interactions of best compounds against human cholinesterases (hAChE and hBuChE) as well as donepezil as reference drug. In vitro results revealed that compound 5c is capable of inhibiting eeAChE activity at IC50 of 0.50 µM while no inhibitory activity was found for eqBuChE for up to 100 µM concentrations. Compound 5c, also due to its facile synthesis, small structure and high selectivity for eeAChE would be very interesting candidate in forthcoming studies. The main interacting parts of compound 5c and compound 7c (most potent eeAChE and eqBuChE inhibitors respectively) with receptors which confer selectivity for AChE and BuChE inhibition were identified, discussed, and compared with donepezil’s interactions. Also during MD simulation it was discovered for the first time that binding of substrates like donepezil to dual CAS and PAS or solely CAS region might have a suppressive impact on 4-α-helical bundles near the tryptophan amphiphilic tetramerization (WAT) domain of AChE and residues which are far away from AChE active site. The results proposed that residues involved in donepezil interactions (Trp86 and Phe295) which are located in CAS and mid-gorge are the mediator of conformational changes in whole protein structure.
Collapse
Affiliation(s)
- Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Zahra Haghighijoo
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
30
|
Phytochemical Analysis of Tephrosia vogelii across East Africa Reveals Three Chemotypes that Influence Its Use as a Pesticidal Plant. PLANTS 2019; 8:plants8120597. [PMID: 31842487 PMCID: PMC6963982 DOI: 10.3390/plants8120597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Tephrosia vogelii is a plant species chemically characterized by the presence of entomotoxic rotenoids and used widely across Africa as a botanical pesticide. Phytochemical analysis was conducted to establish the presence and abundance of the bioactive principles in this species across three countries in East Africa: Tanzania, Kenya, and Malawi. Analysis of methanolic extracts of foliar parts of T. vogelii revealed the occurrence of two distinct chemotypes that were separated by the presence of rotenoids in one, and flavanones and flavones that are not bioactive against insects on the other. Specifically, chemotype 1 contained deguelin as the major rotenoid along with tephrosin, and rotenone as a minor component, while these compounds were absent from chemotype 2, which contained previously reported flavanones and flavones including obovatin-3-O-methylether. Chemotype 3 contained a combination of the chemical profiles of both chemotype 1 and 2 suggesting a chemical hybrid. Plant samples identified as chemotype 1 showed chemical consistency across seasons and altitudes, except in the wet season where a significant difference was observed for samples in Tanzania. Since farmers are unable to determine the chemical content of material available care must be taken in promoting this species for pest management without first establishing efficacy. While phytochemical analysis serves as an important tool for quality control of pesticidal plants, where analytical facilities are not available simple bioassays could be developed to enable extension staff and farmers to determine the efficacy of their plants and ensure only effective materials are adopted.
Collapse
|