1
|
Navarro CDC, Francisco A, Costa EFD, Dalla Costa AP, Sartori MR, Bizerra PFV, Salgado AR, Figueira TR, Vercesi AE, Castilho RF. Aging-dependent mitochondrial bioenergetic impairment in the skeletal muscle of NNT-deficient mice. Exp Gerontol 2024; 193:112465. [PMID: 38795789 DOI: 10.1016/j.exger.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Overall health relies on features of skeletal muscle that generally decline with age, partly due to mechanisms associated with mitochondrial redox imbalance and bioenergetic dysfunction. Previously, aged mice genetically devoid of the mitochondrial NAD(P)+ transhydrogenase (NNT, encoded by the nicotinamide nucleotide transhydrogenase gene), an enzyme involved in mitochondrial NADPH supply, were shown to exhibit deficits in locomotor behavior. Here, by using young, middle-aged, and older NNT-deficient (Nnt-/-) mice and age-matched controls (Nnt+/+), we aimed to investigate how muscle bioenergetic function and motor performance are affected by NNT expression and aging. Mice were subjected to the wire-hang test to assess locomotor performance, while mitochondrial bioenergetics was evaluated in fiber bundles from the soleus, vastus lateralis and plantaris muscles. An age-related decrease in the average wire-hang score was observed in middle-aged and older Nnt-/- mice compared to age-matched controls. Although respiratory rates in the soleus, vastus lateralis and plantaris muscles did not significantly differ between the genotypes in young mice, the rates of oxygen consumption did decrease in the soleus and vastus lateralis muscles of middle-aged and older Nnt-/- mice. Notably, the soleus, which exhibited the highest NNT expression level, was the muscle most affected by aging, and NNT loss. Additionally, histology of the soleus fibers revealed increased numbers of centralized nuclei in older Nnt-/- mice, indicating abnormal morphology. In summary, our findings suggest that NNT expression deficiency causes locomotor impairments and muscle dysfunction during aging in mice.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Annelise Francisco
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil; Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Ericka F D Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Ana P Dalla Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Marina R Sartori
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Paulo F V Bizerra
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Andréia R Salgado
- Multidisciplinary Center for Biological Investigation on Laboratory Animals Science, University of Campinas, Campinas, SP, Brazil
| | - Tiago R Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, 14040 900 Ribeirão Preto, SP, Brazil
| | - Anibal E Vercesi
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Roger F Castilho
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Gaglianone RB, Launikonis BS. Muscle fibre mitochondrial [Ca 2+ ] dynamics during Ca 2+ waves in RYR1 gain-of-function mouse. Acta Physiol (Oxf) 2024; 240:e14098. [PMID: 38240476 DOI: 10.1111/apha.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/14/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
AIM A fraction of the Ca2+ released from the sarcoplasmic reticulum (SR) enters mitochondria to transiently increase its [Ca2+ ] ([Ca2+ ]mito ). This transient [Ca2+ ]mito increase may be important in the resynthesis of ATP and other processes. The resynthesis of ATP in the mitochondria generates heat that can lead to hypermetabolic reactions in muscle with ryanodine receptor 1 (RyR1) variants during the cyclic releasing of SR Ca2+ in the presence of a RyR1 agonist. We aimed to analyse whether the mitochondria of RYR1 variant muscle handles Ca2+ differently from healthy muscle. METHODS We used confocal microscopy to track mitochondrial and cytoplasmic Ca2+ with fluorescent dyes simultaneously during caffeine-induced Ca2+ waves in extensor digitorum longus muscle fibres from healthy mice and mice heterozygous (HET) for a malignant hyperthermia-causative RYR1 variant. RESULTS Mitochondrial Ca2+ -transient peaks trailed the peak of cytoplasmic Ca2+ transients by many seconds with [Ca2+ ]mito not increasing by more than 250 nM. A strong linear relationship between cytoplasmic Ca2+ and [Ca2+ ]mito amplitudes was observed in HET RYR1 KI fibres but not wild type (WT). CONCLUSION Our results indicate that [Ca2+ ]mito change within the nM range during SR Ca2+ release. HET fibre mitochondria are more sensitive to SR Ca2+ release flux than WT. This may indicate post-translation modification differences of the mitochondrial Ca2+ uniporter between the genotypes.
Collapse
Affiliation(s)
- Rhayanna B Gaglianone
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
da Silva HNM, Mizobuti DS, Pereira VA, da Rocha GL, da Cruz MV, de Oliveira AG, Silveira LR, Minatel E. LED therapy plus idebenone treatment targeting calcium and mitochondrial signaling pathways in dystrophic muscle cells. Cell Stress Chaperones 2023; 28:773-785. [PMID: 37578579 PMCID: PMC10746663 DOI: 10.1007/s12192-023-01369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Intracellular calcium dysregulation, oxidative stress, and mitochondrial dysfunction are some of the main pathway contributors towards disease progression in Duchenne muscular dystrophy (DMD). This study is aimed at investigating the effects of light emitting diode therapy (LEDT) and idebenone antioxidant treatment, applied alone or together in dystrophic primary muscle cells from mdx mice, the experimental model of DMD. Mdx primary muscle cells were submitted to LEDT and idebenone treatment and evaluated for cytotoxic effects and calcium and mitochondrial signaling pathways. LEDT and idebenone treatment showed no cytotoxic effects on the dystrophic muscle cells. Regarding the calcium pathways, after LEDT and idebenone treatment, a significant reduction in intracellular calcium content, calpain-1, calsequestrin, and sarcolipin levels, was observed. In addition, a significant reduction in oxidative stress level markers, such as H2O2, and 4-HNE levels, was observed. Regarding mitochondrial signaling pathways, a significant increase in oxidative capacity (by OCR and OXPHOS levels) was observed. In addition, the PGC-1α, SIRT-1, and PPARδ levels were significantly higher in the LEDT plus idebenone treated-dystrophic muscle cells. Together, the findings suggest that LEDT and idebenone treatment, alone or in conjunction, can modulate the calcium and mitochondrial signaling pathways, such as SLN, SERCA 1, and PGC-1α, contributing towards the improvement of the dystrophic phenotype in mdx muscle cells. In addition, data from the LEDT plus idebenone treatment showed slightly better results than those of each separate treatment in terms of SLN, OXPHOS, and SIRT-1.
Collapse
Affiliation(s)
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marcos Vinícius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - André Gustavo de Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
| |
Collapse
|
4
|
Mitochondrial Apoptotic Signaling Involvement in Remodeling During Myogenesis and Skeletal Muscle Atrophy. Semin Cell Dev Biol 2023; 143:66-74. [PMID: 35241367 DOI: 10.1016/j.semcdb.2022.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/11/2023]
Abstract
Mitochondria play a major role in apoptotic signaling. In addition to its role in eliminating dysfunctional cells, mitochondrial apoptotic signaling is implicated as a key component of myogenic differentiation and skeletal muscle atrophy. For example, the activation of cysteine-aspartic proteases (caspases; CASP's) can aid in the initial remodeling stages of myogenic differentiation by cleaving protein kinases, transcription factors, and cytoskeletal proteins. Precise regulation of these signals is needed to prevent excessive cell disassemble and subsequent cell death. During skeletal muscle atrophy, the activation of CASP's and mitochondrial derived nucleases participate in myonuclear fragmentation, a potential loss of myonuclei, and cleavage of contractile structures within skeletal muscle. The B cell leukemia/lymphoma 2 (BCL2) family of proteins play a significant role in regulating myogenesis and skeletal muscle atrophy by governing the initiating steps of mitochondrial apoptotic signaling. This review discusses the role of mitochondrial apoptotic signaling in skeletal muscle remodeling during myogenic differentiation and skeletal muscle pathological states, including aging, disuse, and muscular dystrophy.
Collapse
|
5
|
Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Penkina DK, Vedernikov AA, Belosludtsev KN. The Effect of Uridine on the State of Skeletal Muscles and the Functioning of Mitochondria in Duchenne Dystrophy. Int J Mol Sci 2022; 23:ijms231810660. [PMID: 36142572 PMCID: PMC9500747 DOI: 10.3390/ijms231810660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 12/16/2022] Open
Abstract
Duchenne muscular dystrophy is caused by the loss of functional dystrophin that secondarily causes systemic metabolic impairment in skeletal muscles and cardiomyocytes. The nutraceutical approach is considered as a possible complementary therapy for this pathology. In this work, we have studied the effect of pyrimidine nucleoside uridine (30 mg/kg/day for 28 days, i.p.), which plays an important role in cellular metabolism, on the development of DMD in the skeletal muscles of dystrophin deficient mdx mice, as well as its effect on the mitochondrial dysfunction that accompanies this pathology. We found that chronic uridine administration reduced fibrosis in the skeletal muscles of mdx mice, but it had no effect on the intensity of degeneration/regeneration cycles and inflammation, pseudohypetrophy, and muscle strength of the animals. Analysis of TEM micrographs showed that uridine also had no effect on the impaired mitochondrial ultrastructure of mdx mouse skeletal muscle. The administration of uridine was found to lead to an increase in the expression of the Drp1 and Parkin genes, which may indicate an increase in the intensity of organelle fission and the normalization of mitophagy. Uridine had little effect on OXPHOS dysfunction in mdx mouse mitochondria, and moreover, it was suppressed in the mitochondria of wild type animals. At the same time, uridine restored the transport of potassium ions and reduced the production of reactive oxygen species; however, this had no effect on the impaired calcium retention capacity of mdx mouse mitochondria. The obtained results demonstrate that the used dose of uridine only partially prevents mitochondrial dysfunction in skeletal muscles during Duchenne dystrophy, though it mitigates the development of destructive processes in skeletal muscles.
Collapse
Affiliation(s)
- Mikhail V. Dubinin
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Correspondence: ; Tel.: +7-987-701-0437
| | - Vlada S. Starinets
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Natalia V. Belosludtseva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Irina B. Mikheeva
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| | - Yuliya A. Chelyadnikova
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Daria K. Penkina
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Alexander A. Vedernikov
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Konstantin N. Belosludtsev
- Department of Biochemistry, Cell Biology and Microbiology, Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
- Laboratory of Mitochondrial Transport, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia
| |
Collapse
|
6
|
Bellissimo CA, Garibotti MC, Perry CGR. Mitochondrial Stress Responses in Duchenne muscular dystrophy: Metabolic Dysfunction or Adaptive Reprogramming? Am J Physiol Cell Physiol 2022; 323:C718-C730. [PMID: 35816642 DOI: 10.1152/ajpcell.00249.2022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial stress may be a secondary contributor to muscle weakness in inherited muscular dystrophies. Duchenne muscular dystrophy has received the majority of attention whereby most discoveries suggest mitochondrial ATP synthesis may be reduced. However, not all studies support this finding. Furthermore, some studies have reported increased mitochondrial reactive oxygen species and propensity for permeability transition pore formation as an inducer of apoptosis, although divergent findings have also been described. A closer examination of the literature suggests the degree and direction of mitochondrial stress responses may depend on the progression of the disease, the muscle type examined, the mouse model employed with regards to pre-clinical research, the precise metabolic pathways in consideration, and in some cases the in vitro technique used to assess a given mitochondrial bioenergetic function. One intent of this review is to provide careful considerations for future experimental designs to resolve the heterogeneous nature of mitochondrial stress during the progression of Duchenne muscular dystrophy. Such considerations have implications for other muscular dystrophies as well which are addressed briefly herein. A renewed perspective of the term 'mitochondrial dysfunction' is presented whereby stress responses might be re-explored in future investigations as direct contributors to myopathy vs an adaptive 'reprogramming' intended to maintain homeostasis in the face of disease stressors themselves. In so doing, the prospective development of mitochondrial enhancement therapies can be driven by advances in perspectives as much as experimental approaches when resolving the precise relationships between mitochondrial remodelling and muscle weakness in Duchenne and, indeed, other muscular dystrophies.
Collapse
Affiliation(s)
- Catherine A Bellissimo
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Madison C Garibotti
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
7
|
Sikorska M, Dutkiewicz M, Zegrocka-Stendel O, Kowalewska M, Grabowska I, Koziak K. Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153791. [PMID: 34666284 DOI: 10.1016/j.phymed.2021.153791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Recent advancements in understanding β-escin action provide basis for new therapeutic claims for the drug. β-escin-evoked attenuation of NF-κB-dependent signaling, increase in MMP-14 and decrease in COUP-TFII content and a rise in cholesterol biosynthesis could be beneficial in alleviating muscle-damaging processes. PURPOSE The aim of this study was to investigate the effect of β-escin on skeletal muscle regeneration. METHODS Rat model of cardiotoxin-induced injury of fast-twich extensor digitorum longus (EDL) and slow-twich soleus (SOL) muscles and C2C12 myoblast cells were used in the study. We evaluated muscles obtained on day 3 and 14 post-injury by histological analyses of muscle fibers, connective tissue, and mononuclear infiltrate, by immunolocalization of macrophages and by qPCR to quantify the expression of muscle regeneration-related genes. Mechanism of drug action was investigated in vitro by assessing cell viability, NF-κB activation, MMP-2 and MMP-9 secretion, and ALDH activity. RESULTS In rat model, β-escin rescues regenerating muscles from atrophy. The drug reduces inflammatory infiltration, increases the number of muscle fibers and decreases fibrosis. β-escin reduces macrophage infiltration into injured muscles and promotes their M2 polarization. It also alters transcription of muscle regeneration-related genes: Myf5, Myh2, Myh3, Myh8, Myod1, Pax3 and Pax7, and Pcna. In C2C12 myoblasts in vitro, β-escin inhibits TNF-α-induced activation of NF-κB, reduces secretion of MMP-9 and increases ALDH activity. CONCLUSIONS The data reveal beneficial role of β-escin in muscle regeneration, particularly in poorly regenerating slow-twitch muscles. The findings provide rationale for further studies on β-escin repositioning into conditions associated with muscle damage such as strenuous exercise, drug-induced myotoxicity or age-related disuse atrophy.
Collapse
Affiliation(s)
- Maria Sikorska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Małgorzata Dutkiewicz
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Oliwia Zegrocka-Stendel
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland
| | - Magdalena Kowalewska
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland; Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, ul. Roentgena 5, 02-781 Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, ul. Miecznikowa 1, 02-096 Warsaw, Poland
| | - Katarzyna Koziak
- Department of Biochemistry and Nutrition, Centre for Preclinical Research and Technology, Medical University of Warsaw, ul. Banacha 1b, 02-097 Warsaw, Poland.
| |
Collapse
|
8
|
Niba ETE, Awano H, Lee T, Takeshima Y, Shinohara M, Nishio H, Matsuo M. Dystrophin Dp71 Subisoforms Localize to the Mitochondria of Human Cells. Life (Basel) 2021; 11:life11090978. [PMID: 34575126 PMCID: PMC8468555 DOI: 10.3390/life11090978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disease caused by deficiency in dystrophin, a protein product encoded by the DMD gene. Mitochondrial dysfunction is now attracting much attention as a central player in DMD pathology. However, dystrophin has never been explored in human mitochondria. Here, we analyzed dystrophin in cDNAs and mitochondrial fractions of human cells. Mitochondrial fraction was obtained using a magnetic-associated cell sorting (MACS) technology. Dystrophin was analyzed by reverse transcription (RT)-PCR and western blotting using an antibody against the dystrophin C-terminal. In isolated mitochondrial fraction from HEK293 cells, dystrophin was revealed as a band corresponding to Dp71b and Dp71ab subisoforms. Additionally, in mitochondria from HeLa, SH-SY5Y, CCL-136 and HepG2 cells, signals for Dp71b and Dp71ab were revealed as well. Concomitantly, dystrophin mRNAs encoding Dp71b and Dp71ab were disclosed by RT-PCR in these cells. Primary cultured myocytes from three dystrophinopathy patients showed various levels of mitochondrial Dp71 expression. Coherently, levels of mRNA were different in all cells reflecting the protein content, which indicated predominant accumulation of Dp71. Dystrophin was demonstrated to be localized to human mitochondrial fraction, specifically as Dp71 subisoforms. Myocytes derived from dystrophinopathy patients manifested different levels of mitochondrial Dp71, with higher expression revealed in myocytes from Becker muscular dystrophy (BMD) patient-derived myocytes.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
- Correspondence: ; Tel.: +81-78-382-5543
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 663-8501, Japan; (T.L.); (Y.T.)
| | - Masakazu Shinohara
- Department of Community Medicine and Social Healthcare Science, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Hisahide Nishio
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan;
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan;
| |
Collapse
|
9
|
Hardee JP, Caldow MK, Chan ASM, Plenderleith SK, Trieu J, Koopman R, Lynch GS. Dystrophin deficiency disrupts muscle clock expression and mitochondrial quality control in mdx mice. Am J Physiol Cell Physiol 2021; 321:C288-C296. [PMID: 34191629 DOI: 10.1152/ajpcell.00188.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Impaired oxidative capacity and mitochondrial function contribute to the dystrophic pathology in muscles of patients with Duchenne muscular dystrophy (DMD) and in relevant mouse models of the disease. Emerging evidence suggests an association between disrupted core clock expression and mitochondrial quality control, but this has not been established in muscles lacking dystrophin. We examined the diurnal regulation of muscle core clock and mitochondrial quality control expression in dystrophin-deficient C57BL/10ScSn-Dmdmdx (mdx) mice, an established model of DMD. Male C57BL/10 (BL/10; n = 18) and mdx mice (n = 18) were examined every 4 h beginning at the dark cycle. Throughout the entire light-dark cycle, extensor digitorum longus (EDL) muscles from mdx mice had decreased core clock mRNA expression (Arntl, Cry1, Cry2, Nr1d2; P < 0.05) and disrupted mitochondrial quality control mRNA expression related to biogenesis (decreased; Ppargc1a, Esrra; P < 0.05), fission (increased; Dnm1l; P < 0.01), fusion (decreased; Opa1, Mfn1; P < 0.05), and autophagy/mitophagy (decreased: Bnip3; P < 0.05; increased: Becn1; P < 0.05). Cosinor analysis revealed a decrease in the rhythmicity parameters mesor and amplitude for Arntl, Cry1, Cry2, Per2, and Nr1d1 (P < 0.001) in mdx mice. Diurnal oscillations in Esrra, Sirt1, Map1lc3b, and Sqstm1 were absent in mdx mice, along with decreased mesor and amplitude of Ppargc1a mRNA expression (P < 0.01). The expression of proteins involved in mitochondrial biogenesis (decreased: PPARGC1A, P < 0.05) and autophagy/mitophagy (increased: MAP1LC3BII, SQSTM1, BNIP3; P < 0.05) were also dysregulated in tibialis anterior muscles of mdx mice. These findings suggest that dystrophin deficiency in mdx mice impairs the regulation of the core clock and mitochondrial quality control, with relevance to DMD and related disorders.
Collapse
Affiliation(s)
- Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Marissa K Caldow
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Audrey S M Chan
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stuart K Plenderleith
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jennifer Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - René Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
10
|
Skeletal Muscle Mitochondria Dysfunction in Genetic Neuromuscular Disorders with Cardiac Phenotype. Int J Mol Sci 2021; 22:ijms22147349. [PMID: 34298968 PMCID: PMC8307986 DOI: 10.3390/ijms22147349] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is considered the major contributor to skeletal muscle wasting in different conditions. Genetically determined neuromuscular disorders occur as a result of mutations in the structural proteins of striated muscle cells and therefore are often combined with cardiac phenotype, which most often manifests as a cardiomyopathy. The specific roles played by mitochondria and mitochondrial energetic metabolism in skeletal muscle under muscle-wasting conditions in cardiomyopathies have not yet been investigated in detail, and this aspect of genetic muscle diseases remains poorly characterized. This review will highlight dysregulation of mitochondrial representation and bioenergetics in specific skeletal muscle disorders caused by mutations that disrupt the structural and functional integrity of muscle cells.
Collapse
|
11
|
Rovira Gonzalez YI, Moyer AL, LeTexier NJ, Bratti AD, Feng S, Peña V, Sun C, Pulcastro H, Liu T, Iyer SR, Lovering RM, O'Rourke B, Wagner KR. Mss51 deletion increases endurance and ameliorates histopathology in the mdx mouse model of Duchenne muscular dystrophy. FASEB J 2021; 35:e21276. [PMID: 33423297 DOI: 10.1096/fj.202002106rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
Mitochondrial derangement is an important contributor to the pathophysiology of muscular dystrophies and may be among the earliest cellular deficits. We have previously shown that disruption of Mss51, a mammalian skeletal muscle protein that localizes to the mitochondria, results in enhanced muscle oxygen consumption rate, increased endurance capacity, and improved limb muscle strength in mice with wildtype background. Here, we investigate whether Mss51 deletion in the mdx murine model of Duchenne muscular dystrophy (mdx-Mss51 KO) counteracts the muscle pathology and mitochondrial irregularities observed in mdx mice. We found that mdx-Mss51 KO mice had increased myofiber oxygen consumption rates and an amelioration of muscle histopathology compared to mdx counterparts. This corresponded with greater treadmill endurance and less percent fatigue in muscle physiology, but no improvement in forelimb grip strength or limb muscle force production. These findings suggest that although Mss51 deletion ameliorates the skeletal muscle mitochondrial respiration defects in mdx and improves fatigue resistance in vivo, the lack of improvement in force production suggests that this target alone may be insufficient for a therapeutic effect.
Collapse
Affiliation(s)
- Yazmin I Rovira Gonzalez
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Adam L Moyer
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Cellular and Molecular Medicine Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Nicolas J LeTexier
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - August D Bratti
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Siyuan Feng
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Vanessa Peña
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Congshan Sun
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hannah Pulcastro
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA.,Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Uchimura T, Asano T, Nakata T, Hotta A, Sakurai H. A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. CELL REPORTS MEDICINE 2021; 2:100298. [PMID: 34195678 PMCID: PMC8233665 DOI: 10.1016/j.xcrm.2021.100298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/28/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a muscle degenerating disease caused by dystrophin deficiency, for which therapeutic options are limited. To facilitate drug development, it is desirable to develop in vitro disease models that enable the evaluation of DMD declines in contractile performance. Here, we show MYOD1-induced differentiation of hiPSCs into functional skeletal myotubes in vitro with collagen gel and electrical field stimulation (EFS). Long-term EFS training (0.5 Hz, 20 V, 2 ms, continuous for 2 weeks) mimicking muscle overuse recapitulates declines in contractile performance in dystrophic myotubes. A screening of clinically relevant drugs using this model detects three compounds that ameliorate this decline. Furthermore, we validate the feasibility of adapting the model to a 96-well culture system using optogenetic technology for large-scale screening. Our results support a disease model using patient-derived iPSCs that allows for the recapitulation of the contractile pathogenesis of DMD and a screening strategy for drug development.
Collapse
Affiliation(s)
- Tomoya Uchimura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.,Takeda-CiRA Joint Program, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshifumi Asano
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,The Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takao Nakata
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,The Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.,Takeda-CiRA Joint Program, Fujisawa, Kanagawa 251-8555, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.,Takeda-CiRA Joint Program, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
13
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Targeting Nrf2 for the treatment of Duchenne Muscular Dystrophy. Redox Biol 2021; 38:101803. [PMID: 33246292 PMCID: PMC7695875 DOI: 10.1016/j.redox.2020.101803] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/15/2020] [Indexed: 12/15/2022] Open
Abstract
Imbalances in redox homeostasis can result in oxidative stress, which is implicated in various pathological conditions including the fatal neuromuscular disease Duchenne Muscular Dystrophy (DMD). DMD is a complicated disease, with many druggable targets at the cellular and molecular level including calcium-mediated muscle degeneration; mitochondrial dysfunction; oxidative stress; inflammation; insufficient muscle regeneration and dysregulated protein and organelle maintenance. Previous investigative therapeutics tended to isolate and focus on just one of these targets and, consequently, therapeutic activity has been limited. Nuclear erythroid 2-related factor 2 (Nrf2) is a transcription factor that upregulates many cytoprotective gene products in response to oxidants and other toxic stressors. Unlike other strategies, targeted Nrf2 activation has the potential to simultaneously modulate separate pathological features of DMD to amplify therapeutic benefits. Here, we review the literature providing theoretical context for targeting Nrf2 as a disease modifying treatment against DMD.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia.
| | - Cara A Timpani
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| | - Judy B de Haan
- Oxidative Stress Laboratory, Basic Science Domain, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Australia.
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia; Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia; Australian Institute for Musculoskeletal Science, Victoria University, St Albans, Victoria, Australia.
| |
Collapse
|
14
|
Hardee JP, Martins KJB, Miotto PM, Ryall JG, Gehrig SM, Reljic B, Naim T, Chung JD, Trieu J, Swiderski K, Philp AM, Philp A, Watt MJ, Stroud DA, Koopman R, Steinberg GR, Lynch GS. Metabolic remodeling of dystrophic skeletal muscle reveals biological roles for dystrophin and utrophin in adaptation and plasticity. Mol Metab 2020; 45:101157. [PMID: 33359740 PMCID: PMC7811171 DOI: 10.1016/j.molmet.2020.101157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives Preferential damage to fast, glycolytic myofibers is common in many muscle-wasting diseases, including Duchenne muscular dystrophy (DMD). Promoting an oxidative phenotype could protect muscles from damage and ameliorate the dystrophic pathology with therapeutic relevance, but developing efficacious strategies requires understanding currently unknown biological roles for dystrophin and utrophin in dystrophic muscle adaptation and plasticity. Methods Combining whole transcriptome RNA sequencing and mitochondrial proteomics with assessments of metabolic and contractile function, we investigated the roles of dystrophin and utrophin in fast-to-slow muscle remodeling with low-frequency electrical stimulation (LFS, 10 Hz, 12 h/d, 7 d/wk, 28 d) in mdx (dystrophin null) and dko (dystrophin/utrophin null) mice, two established preclinical models of DMD. Results Novel biological roles in adaptation were demonstrated by impaired transcriptional activation of estrogen-related receptor alpha-responsive genes supporting oxidative phosphorylation in dystrophic muscles. Further, utrophin expression in dystrophic muscles was required for LFS-induced remodeling of mitochondrial respiratory chain complexes, enhanced fiber respiration, and conferred protection from eccentric contraction-mediated damage. Conclusions These findings reveal novel roles for dystrophin and utrophin during LFS-induced metabolic remodeling of dystrophic muscle and highlight the therapeutic potential of LFS to ameliorate the dystrophic pathology and protect from contraction-induced injury with important implications for DMD and related muscle disorders. Transcriptional remodeling to chronic low-frequency electrical stimulation (LFS) is impaired in dystrophic muscles. Loss of dystrophin and utrophin in dystrophic muscles disrupts remodeling of mitochondrial complexes I-III to chronic LFS. Loss of dystrophin and utrophin in dystrophic muscles abrogates improvements in fiber respiration after chronic LFS. Loss of dystrophin and utrophin in dystrophic muscles compromises protection from contraction-induced injury after chronic LFS.
Collapse
Affiliation(s)
- Justin P Hardee
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Karen J B Martins
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Paula M Miotto
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - James G Ryall
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Stefan M Gehrig
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, The Bio21 Institute, The University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Timur Naim
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jin D Chung
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jen Trieu
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Kristy Swiderski
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Ashleigh M Philp
- Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia; St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Sydney, 2010, New South Wales, Australia
| | - Andrew Philp
- Garvan Institute of Medical Research, Sydney, New South Wales, 2010, Australia; St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Sydney, 2010, New South Wales, Australia
| | - Matthew J Watt
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The Bio21 Institute, The University of Melbourne, Melbourne, 3010, Victoria, Australia
| | - Rene Koopman
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, the Department of Biochemistry and Biomedical Sciences and the Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
15
|
Moore TM, Lin AJ, Strumwasser AR, Cory K, Whitney K, Ho T, Ho T, Lee JL, Rucker DH, Nguyen CQ, Yackly A, Mahata SK, Wanagat J, Stiles L, Turcotte LP, Crosbie RH, Zhou Z. Mitochondrial Dysfunction Is an Early Consequence of Partial or Complete Dystrophin Loss in mdx Mice. Front Physiol 2020; 11:690. [PMID: 32636760 PMCID: PMC7317021 DOI: 10.3389/fphys.2020.00690] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by rapid wasting of skeletal muscle. Mitochondrial dysfunction is a well-known pathological feature of DMD. However, whether mitochondrial dysfunction occurs before muscle fiber damage in DMD pathology is not well known. Furthermore, the impact upon heterozygous female mdx carriers (mdx/+), who display dystrophin mosaicism, has received little attention. We hypothesized that dystrophin deletion leads to mitochondrial dysfunction, and that this may occur before myofiber necrosis. As a secondary complication to mitochondrial dysfunction, we also hypothesized metabolic abnormalities prior to the onset of muscle damage. In this study, we detected aberrant mitochondrial morphology, reduced cristae number, and large mitochondrial vacuoles from both male and female mdx mice prior to the onset of muscle damage. Furthermore, we systematically characterized mitochondria during disease progression starting before the onset of muscle damage, noting additional changes in mitochondrial DNA copy number and regulators of mitochondrial size. We further detected mild metabolic and mitochondrial impairments in female mdx carrier mice that were exacerbated with high-fat diet feeding. Lastly, inhibition of the strong autophagic program observed in adolescent mdx male mice via administration of the autophagy inhibitor leupeptin did not improve skeletal muscle pathology. These results are in line with previous data and suggest that before the onset of myofiber necrosis, mitochondrial and metabolic abnormalities are present within the mdx mouse.
Collapse
Affiliation(s)
- Timothy M. Moore
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amanda J. Lin
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin Cory
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kate Whitney
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Theodore Ho
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Timothy Ho
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph L. Lee
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel H. Rucker
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christina Q. Nguyen
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aidan Yackly
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Linsey Stiles
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lorraine P. Turcotte
- Department of Biological Sciences, Dana & David Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, United States
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhenqi Zhou
- Division of Endocrinology, Diabetes, and Hypertension, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Gaglianone RB, Bloise FF, Ortiga-Carvalho TM, Quirico-Santos T, Costa ML, Mermelstein C. Comparative study of calcium and calcium-related enzymes with differentiation markers in different ages and muscle types in mdx mice. Histol Histopathol 2019; 35:203-216. [PMID: 31274171 DOI: 10.14670/hh-18-145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sarcolemma instability and increased calcium influx in muscle fibers are characteristics of the Duchenne muscular dystrophy. Excessive calcium activates calcium-dependent enzymes, such as calpains (CAPN) and matrix metalloproteases (MMP). Here, we analyzed calcium deposits, the activity of CAPN and MMP and the expression of Myh, SERCA and myogenic regulatory factors in different skeletal muscles during myonecrosis (4-weeks) and regeneration (12-weeks) phases of the mdx muscular pathology. Alizarin red staining was used to assess calcium deposits, casein and gelatin zymography were performed to evaluate CAPN and MMP activity, and qPCR was used to evaluate the expression of Myh, Capn, Atp2a1 and Atp2a2, Myod1 and Myog. We observed the following characteristics in mdx muscles: (i) calcium deposits almost exclusively in mdx muscles, (ii) lower CAPN1 activity in mdx muscles, (iii) higher CAPN2 activity in mdx muscles (only at 12 wks), (iv) autolyzed CAPN activity exclusively in mdx muscles, (v) lower expression of Capn1 and higher expression of Capn2 in mdx muscles; (vi) lower expression of Atp2a1 and Atp2a2 in mdx muscles, (vii) higher MMP (pre pro MMP2, pro MMP2, MMP2 and MMP9) activity in mdx muscles, (viii) MMP2 activity exclusively in mdx muscles at 12 wks, (ix) MMP9 activity exclusively in mdx muscles, (x) higher expression of Myog in mdx muscles at 12 wks, and (xi) lower expression of Myh (Myh7, Myh2, Myh1, Myh4) in mdx muscles, particularly Myh7 and Myh2. The collection of our results provides valuable information for a better characterization of mdx pathology phenotype.
Collapse
Affiliation(s)
- Rhayanna B Gaglianone
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Biology Institute, Fluminense Federal University, Niterói, RJ, Brazil
| | - Flavia Fonseca Bloise
- Carlos Chagas Filho Biophysical Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Manoel Luis Costa
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Claudia Mermelstein
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|