1
|
Zloh M, Kutilek P, Hejda J, Fiserova I, Kubovciak J, Murakami M, Stofkova A. Visual stimulation and brain-derived neurotrophic factor (BDNF) have protective effects in experimental autoimmune uveoretinitis. Life Sci 2024; 355:122996. [PMID: 39173995 DOI: 10.1016/j.lfs.2024.122996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/26/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
AIMS To investigate the therapeutic potential of visual stimulation (VS) and BDNF in murine experimental autoimmune uveoretinitis (EAU). MAIN METHODS Mice were immunized by subcutaneous injection of interphotoreceptor retinoid-binding protein in Freund's complete adjuvant and intravenous injection of pertussis toxin, and were then exposed to high-contrast VS 12 h/day (days 1-14 post-immunization). EAU severity was assessed by examining clinical score, visual acuity, inflammatory markers, and immune cells in the retina. The transcriptome of activated retinal cells was determined by RNA-seq using RNA immunoprecipitated in complex with phosphorylated ribosomal protein S6. The retinal levels of protein products of relevant upregulated genes were quantified. The effect of BDNF on EAU was tested in unstimulated mice by its daily topical ocular administration (days 8-14 post-immunization). KEY FINDINGS VS attenuated EAU development and decreased the expression of pro-inflammatory cytokines/chemokines and numbers of immune cells in the retina (n = 10-20 eyes/group for each analysis). In activated retinal cells of control mice (n = 30 eyes/group), VS upregulated genes encoding immunomodulatory neuropeptides, of which BDNF and vasoactive intestinal peptide (VIP) also showed increased mRNA and protein levels in the retina of VS-treated EAU mice (n = 6-10 eyes/group for each analysis). In unstimulated EAU mice, BDNF treatment mimicked the protective effects of VS by modulating the inflammatory and stem cell properties of Müller cells (n = 5 eyes/group for each analysis). SIGNIFICANCE VS effectively suppresses EAU, at least through enhancing retinal levels of anti-inflammatory and neuroprotective factors, VIP and BDNF. Our findings also suggest BDNF as a promising therapeutic agent for uveitis treatment.
Collapse
Affiliation(s)
- Miloslav Zloh
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Patrik Kutilek
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Jan Hejda
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
| | - Ivana Fiserova
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan; Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan; Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| | - Andrea Stofkova
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
2
|
Yang SN, Shi Y, Berggren PO. The anterior chamber of the eye technology and its anatomical, optical, and immunological bases. Physiol Rev 2024; 104:881-929. [PMID: 38206586 PMCID: PMC11381035 DOI: 10.1152/physrev.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/30/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
The anterior chamber of the eye (ACE) is distinct in its anatomy, optics, and immunology. This guarantees that the eye perceives visual information in the context of physiology even when encountering adverse incidents like inflammation. In addition, this endows the ACE with the special nursery bed iris enriched in vasculatures and nerves. The ACE constitutes a confined space enclosing an oxygen/nutrient-rich, immune-privileged, and less stressful milieu as well as an optically transparent medium. Therefore, aside from visual perception, the ACE unexpectedly serves as an excellent transplantation site for different body parts and a unique platform for noninvasive, longitudinal, and intravital microimaging of different grafts. On the basis of these merits, the ACE technology has evolved from the prototypical through the conventional to the advanced version. Studies using this technology as a versatile biomedical research platform have led to a diverse range of basic knowledge and in-depth understanding of a variety of cells, tissues, and organs as well as artificial biomaterials, pharmaceuticals, and abiotic substances. Remarkably, the technology turns in vivo dynamic imaging of the morphological characteristics, organotypic features, developmental fates, and specific functions of intracameral grafts into reality under physiological and pathological conditions. Here we review the anatomical, optical, and immunological bases as well as technical details of the ACE technology. Moreover, we discuss major achievements obtained and potential prospective avenues for this technology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Yue Shi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Husna N, Aiba T, Fujita SI, Saito Y, Shiba D, Kudo T, Takahashi S, Furukawa S, Muratani M. Release of CD36-associated cell-free mitochondrial DNA and RNA as a hallmark of space environment response. Nat Commun 2024; 15:4814. [PMID: 38862469 PMCID: PMC11166646 DOI: 10.1038/s41467-023-41995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/20/2023] [Indexed: 06/13/2024] Open
Abstract
A detailed understanding of how spaceflight affects human health is essential for long-term space exploration. Liquid biopsies allow for minimally-invasive multi-omics assessments that can resolve the molecular heterogeneity of internal tissues. Here, we report initial results from the JAXA Cell-Free Epigenome Study, a liquid biopsy study with six astronauts who resided on the International Space Station (ISS) for more than 120 days. Analysis of plasma cell-free RNA (cfRNA) collected before, during, and after spaceflight confirms previously reported mitochondrial dysregulation in space. Screening with 361 cell surface marker antibodies identifies a mitochondrial DNA-enriched fraction associated with the scavenger receptor CD36. RNA-sequencing of the CD36 fraction reveals tissue-enriched RNA species, suggesting the plasma mitochondrial components originated from various tissues. We compare our plasma cfRNA data to mouse plasma cfRNA data from a previous JAXA mission, which had used on-board artificial gravity, and discover a link between microgravity and the observed mitochondrial responses.
Collapse
Affiliation(s)
- Nailil Husna
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Program in Humanics, University of Tsukuba, Ibaraki, 305-8573, Japan
| | - Tatsuya Aiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Shin-Ichiro Fujita
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Neurobiology, Northwestern University, Evanston, IL, 60201, USA
| | - Yoshika Saito
- Faculty of Medicine, Kyoto University, Kyoto, 606-8303, Japan
| | - Dai Shiba
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Takashi Kudo
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoshi Furukawa
- Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
4
|
Tanaka Y, Ohki I, Murakami K, Ozawa S, Wang Y, Murakami M. The gateway reflex regulates tissue-specific autoimmune diseases. Inflamm Regen 2024; 44:12. [PMID: 38449060 PMCID: PMC10919025 DOI: 10.1186/s41232-024-00325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/24/2024] [Indexed: 03/08/2024] Open
Abstract
The dynamic interaction and movement of substances and cells between the central nervous system (CNS) and peripheral organs are meticulously controlled by a specialized vascular structure, the blood-brain barrier (BBB). Experimental and clinical research has shown that disruptions in the BBB are characteristic of various neuroinflammatory disorders, including multiple sclerosis. We have been elucidating a mechanism termed the "gateway reflex" that details the entry of immune cells, notably autoreactive T cells, into the CNS at the onset of such diseases. This process is initiated through local neural responses to a range of environmental stimuli, such as gravity, electricity, pain, stress, light, and joint inflammation. These stimuli specifically activate neural pathways to open gateways at targeted blood vessels for blood immune cell entry. The gateway reflex is pivotal in managing tissue-specific inflammatory diseases, and its improper activation is linked to disease progression. In this review, we present a comprehensive examination of the gateway reflex mechanism.
Collapse
Affiliation(s)
- Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
| | - Izuru Ohki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Ozawa
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yaze Wang
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Quantumimmunology Team, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Tanaka H, Hasebe R, Murakami K, Sugawara T, Yamasaki T, Murakami M. Gateway reflexes describe novel neuro-immune communications that establish immune cell gateways at specific vessels. Bioelectron Med 2023; 9:24. [PMID: 37936169 PMCID: PMC10631009 DOI: 10.1186/s42234-023-00126-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/27/2023] [Indexed: 11/09/2023] Open
Abstract
Neuroinflammation is an important biological process induced by complex interactions between immune cells and neuronal cells in the central nervous system (CNS). Recent research on the bidirectional communication between neuronal and immunological systems has provided evidence for how immune and inflammatory processes are regulated by nerve activation. One example is the gateway reflex, in which immune cells bypass the blood brain barrier and infiltrate the CNS to cause neuroinflammation. We have found several modes of the gateway reflex in mouse models, in which gateways for immune cells are established at specific blood vessels in the spinal cords and brain in experimental autoimmune encephalomyelitis and systemic lupus erythematosus models, at retinal blood vessels in an experimental autoimmune uveitis model, and the ankle joints in an inflammatory arthritis model. Several environmental stimulations, including physical and psychological stresses, activate neurological pathways that alter immunological responses via the gateway reflex, thus contributing to the development/suppression of autoimmune diseases. In the manuscript, we describe the discovery of the gateway reflex and recent insights on how they regulate disease development. We hypothesize that artificial manipulation of specific neural pathways can establish and/or close the gateways to control the development of autoimmune diseases.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, 060-0815, Japan.
- Division of Molecular Neuroimmunology, National Institute for Physiological Sciences, national Institute for Natural Sciences, Nishi-38, Myodaiji-cho, Okazaki, 444-8585, Japan.
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Anagawa 4-9-1, Inage-Ku, Chiba, 263-8555, Japan.
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Nishi-11, Kita-21, Kuta-Ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
6
|
Yamamoto R, Yamada S, Atsumi T, Murakami K, Hashimoto A, Naito S, Tanaka Y, Ohki I, Shinohara Y, Iwasaki N, Yoshimura A, Jiang JJ, Kamimura D, Hojyo S, Kubota SI, Hashimoto S, Murakami M. Computer model of IL-6-dependent rheumatoid arthritis in F759 mice. Int Immunol 2023; 35:403-421. [PMID: 37227084 DOI: 10.1093/intimm/dxad016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/19/2023] [Indexed: 05/26/2023] Open
Abstract
The interleukin-6 (IL-6) amplifier, which describes the simultaneous activation of signal transducer and activator of transcription 3 (STAT3) and NF-κb nuclear factor kappa B (NF-κB), in synovial fibroblasts causes the infiltration of immune cells into the joints of F759 mice. The result is a disease that resembles human rheumatoid arthritis. However, the kinetics and regulatory mechanisms of how augmented transcriptional activation by STAT3 and NF-κB leads to F759 arthritis is unknown. We here show that the STAT3-NF-κB complex is present in the cytoplasm and nucleus and accumulates around NF-κB binding sites of the IL-6 promoter region and established a computer model that shows IL-6 and IL-17 (interleukin 17) signaling promotes the formation of the STAT3-NF-κB complex followed by its binding on promoter regions of NF-κB target genes to accelerate inflammatory responses, including the production of IL-6, epiregulin, and C-C motif chemokine ligand 2 (CCL2), phenotypes consistent with in vitro experiments. The binding also promoted cell growth in the synovium and the recruitment of T helper 17 (Th17) cells and macrophages in the joints. Anti-IL-6 blocking antibody treatment inhibited inflammatory responses even at the late phase, but anti-IL-17 and anti-TNFα antibodies did not. However, anti-IL-17 antibody at the early phase showed inhibitory effects, suggesting that the IL-6 amplifier is dependent on IL-6 and IL-17 stimulation at the early phase, but only on IL-6 at the late phase. These findings demonstrate the molecular mechanism of F759 arthritis can be recapitulated in silico and identify a possible therapeutic strategy for IL-6 amplifier-dependent chronic inflammatory diseases.
Collapse
Affiliation(s)
- Reiji Yamamoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Yamada
- Faculty of Information Science and Engineering, Okayama University of Science, Okayama, Japan
| | - Toru Atsumi
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kaoru Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ari Hashimoto
- Department of Molecular Biology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Seiichiro Naito
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Izuru Ohki
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Yuta Shinohara
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, School of Medicine, Keio University, Tokyo, Japan
| | - Jing-Jing Jiang
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoneuroimmunology, Institute of Genetic Medicine, Hokkaido University, Sapporo, Japan
- Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0020, Japan
| |
Collapse
|
7
|
Teoh YB, Jiang JJ, Yamasaki T, Nagata N, Sugawara T, Hasebe R, Ohta H, Sasaki N, Yokoyama N, Nakamura K, Kagawa Y, Takiguchi M, Murakami M. An inflammatory bowel disease-associated SNP increases local thyroglobulin expression to develop inflammation in miniature dachshunds. Front Vet Sci 2023; 10:1192888. [PMID: 37519997 PMCID: PMC10375717 DOI: 10.3389/fvets.2023.1192888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory colorectal polyp (ICRP) in miniature dachshunds (MDs) is a chronic inflammatory bowel disease (IBD) characterized by granulomatous inflammation that consists of neutrophil infiltration and goblet cell hyperplasia in the colon. Recently, we identified five MD-associated single-nucleotide polymorphisms (SNPs), namely PLG, TCOF1, TG, COL9A2, and COL4A4, by whole-exome sequencing. Here, we investigated whether TG c.4567C>T (p.R1523W) is associated with the ICRP pathology. We found that the frequency of the T/T SNP risk allele was significantly increased in MDs with ICRP. In vitro experiments showed that TG expression in non-immune cells was increased by inducing the IL-6 amplifier with IL-6 and TNF-α. On the other hand, a deficiency of TG suppressed the IL-6 amplifier. Moreover, recombinant TG treatment enhanced the activation of the IL-6 amplifier, suggesting that TG is both a positive regulator and a target of the IL-6 amplifier. We also found that TG expression together with two NF-κB targets, IL6 and CCL2, was increased in colon samples isolated from MDs with the T/T risk allele compared to those with the C/C non-risk allele, but serum TG was not increased. Cumulatively, these results suggest that the T/T SNP is an expression quantitative trait locus (eQTL) of TG mRNA in the colon, and local TG expression triggered by this SNP increases the risk of ICRP in MDs via the IL-6 amplifier. Therefore, TG c.4567C>T is a diagnostic target for ICRP in MDs, and TG-mediated IL-6 amplifier activation in the colon is a possible therapeutic target for ICRP.
Collapse
Affiliation(s)
- Yong Bin Teoh
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Yamasaki
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Nagata
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiki Sugawara
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Small Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Noboru Sasaki
- Veterinary Teaching Hospital, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Yokoyama
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kensuke Nakamura
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoneuroimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Kida H, Jiang JJ, Matsui Y, Takahashi I, Hasebe R, Kawamura D, Endo T, Shibayama H, Kondo M, Nishio Y, Nishida K, Matsuno Y, Oikawa T, Kubota SI, Hojyo S, Iwasaki N, Hashimoto S, Tanaka Y, Murakami M. Dupuytren's contracture-associated SNPs increase SFRP4 expression in non-immune cells including fibroblasts to enhance inflammation development. Int Immunol 2023; 35:303-312. [PMID: 36719100 DOI: 10.1093/intimm/dxad004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023] Open
Abstract
Dupuytren's contracture (DC) is an inflammatory fibrosis characterized by fibroproliferative disorders of the palmar aponeurosis, for which there is no effective treatment. Although several genome-wide association studies have identified risk alleles associated with DC, the functional linkage between these alleles and the pathogenesis remains elusive. We here focused on two single nucleotide polymorphisms (SNPs) associated with DC, rs16879765 and rs17171229, in secreted frizzled related protein 4 (SFRP4). We investigated the association of SRFP4 with the IL-6 amplifier, which amplifies the production of IL-6, growth factors and chemokines in non-immune cells and aggravates inflammatory diseases via NF-κB enhancement. Knockdown of SFRP4 suppressed activation of the IL-6 amplifier in vitro and in vivo, whereas the overexpression of SFRP4 induced the activation of NF-κB-mediated transcription activity. Mechanistically, SFRP4 induced NF-κB activation by directly binding to molecules of the ubiquitination SFC complex, such as IkBα and βTrCP, followed by IkBα degradation. Furthermore, SFRP4 expression was significantly increased in fibroblasts derived from DC patients bearing the risk alleles. Consistently, fibroblasts with the risk alleles enhanced activation of the IL-6 amplifier. These findings indicate that the IL-6 amplifier is involved in the pathogenesis of DC, particularly in patients harboring the SFRP4 risk alleles. Therefore, SFRP4 is a potential therapeutic target for various inflammatory diseases and disorders, including DC.
Collapse
Affiliation(s)
- Hiroaki Kida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichiro Matsui
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Section for Clinical Education, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Takahashi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Daisuke Kawamura
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takeshi Endo
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Shibayama
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Makoto Kondo
- Department of Orthopaedic Surgery, Hokkaido Orthopedic Memorial Hospital, Sapporo, Japan
| | - Yasuhiko Nishio
- Department of Orthopaedic Surgery, Hokkaido Orthopedic Memorial Hospital, Sapporo, Japan
| | - Kinya Nishida
- Department of Orthopaedic Surgery, Teine Keijinkai Hospital, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Tsukasa Oikawa
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shimpei I Kubota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Group of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Chiba, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
9
|
Akabane K, Murakami K, Murakami M. Gateway reflexes are neural circuits that establish the gateway of immune cells to regulate tissue specific inflammation. Expert Opin Ther Targets 2023; 27:469-477. [PMID: 37318003 DOI: 10.1080/14728222.2023.2225215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
INTRODUCTION Tissue-specific inflammatory diseases are regulated by several mechanisms. The gateway reflex and IL-6 amplifier are two mechanisms involved in diseases that depend on the inflammatory cytokine IL-6. The gateway reflex activates specific neural pathways that cause autoreactive CD4+ T cells to pass through gateways in blood vessels toward specific tissues in tissue-specific inflammatory diseases. These gateways are mediated by the IL-6 amplifier, which describes enhanced NF-κB activation in nonimmune cells including endothelial cells at specific sites. In total, we have reported six gateway reflexes defined by their triggering stimulus: gravity, pain, electric stimulation, stress, light, and joint inflammation. AREAS COVERED This review summarizes the gateway reflex and IL-6 amplifier for the development of tissue-specific inflammatory diseases. EXPERT OPINION We expect that the IL-6 amplifier and gateway reflex will lead to novel therapeutic and diagnostic methods for inflammatory diseases, particularly tissue-specific ones.
Collapse
Affiliation(s)
- Keiichiroh Akabane
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kaoru Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
- Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- Institute for Vaccine Research and Development(HU-IVRed), Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Hasebe R, Murakami K, Harada M, Halaka N, Nakagawa H, Kawano F, Ohira Y, Kawamoto T, Yull FE, Blackwell TS, Nio-Kobayashi J, Iwanaga T, Watanabe M, Watanabe N, Hotta H, Yamashita T, Kamimura D, Tanaka Y, Murakami M. ATP spreads inflammation to other limbs through crosstalk between sensory neurons and interneurons. J Exp Med 2022; 219:213221. [PMID: 35579694 DOI: 10.1084/jem.20212019] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/26/2022] [Accepted: 03/16/2022] [Indexed: 11/04/2022] Open
Abstract
Neural circuits between lesions are one mechanism through which local inflammation spreads to remote positions. Here, we show the inflammatory signal on one side of the joint is spread to the other side via sensory neuron-interneuron crosstalk, with ATP at the core. Surgical ablation or pharmacological inhibition of this neural pathway prevented inflammation development on the other side. Mechanistic analysis showed that ATP serves as both a neurotransmitter and an inflammation enhancer, thus acting as an intermediary between the local inflammation and neural pathway that induces inflammation on the other side. These results suggest blockade of this neural pathway, which is named the remote inflammation gateway reflex, may have therapeutic value for inflammatory diseases, particularly those, such as rheumatoid arthritis, in which inflammation spreads to remote positions.
Collapse
Affiliation(s)
- Rie Hasebe
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Kaoru Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Harada
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Nada Halaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Nakagawa
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Fuminori Kawano
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yoshinobu Ohira
- Department of Health and Sports Sciences, Graduate School of Medicine, and Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Department of Dental Medicine, Tsurumi University, Yokohama, Japan
| | - Fiona E Yull
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | | | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshihiko Iwanaga
- Laboratory of Histology and Cytology, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshihide Yamashita
- Department of Molecular Neurosciences, Graduate School of Frontier Biosciences, Graduate School of Medicine, and World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan.,Group of Quantumimmunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
11
|
Matsuyama S, Tanaka Y, Hasebe R, Hojyo S, Murakami M. Gateway Reflex and Mechanotransduction. Front Immunol 2022; 12:780451. [PMID: 35003096 PMCID: PMC8728022 DOI: 10.3389/fimmu.2021.780451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The gateway reflex explains how autoreactive CD4+ T cells cause inflammation in tissues that have blood-barriers, such as the central nervous system and retina. It depends on neural activations in response to specific external stimuli, such as gravity, pain, stress, and light, which lead to the secretion of noradrenaline at specific vessels in the tissues. Noradrenaline activates NFkB at these vessels, followed by an increase of chemokine expression as well as a reduction of tight junction molecules to accumulate autoreactive CD4+ T cells, which breach blood-barriers. Transient receptor potential vanilloid 1 (TRPV1) molecules on sensory neurons are critical for the gateway reflex, indicating the importance of mechano-sensing. In this review, we overview the gateway reflex with a special interest in mechanosensory transduction (mechanotransduction).
Collapse
Affiliation(s)
- Shiina Matsuyama
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Rie Hasebe
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology (QST), Chiba, Japan.,Division of Neurommunology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
12
|
Stofkova A, Zloh M, Andreanska D, Fiserova I, Kubovciak J, Hejda J, Kutilek P, Murakami M. Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex. Int J Mol Sci 2021; 23:ijms23010453. [PMID: 35008877 PMCID: PMC8745287 DOI: 10.3390/ijms23010453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodeling of retinal neural activity, which influences the blood–retinal barrier and the development of retinal inflammation. We evaluated this hypothesis using Gnat1rd17 mice, a model of night blindness with late-onset rod-cone dystrophy, and experimental autoimmune uveoretinitis (EAU). Retinal remodeling and its effect on EAU development were investigated by transcriptome profiling, target identification, and functional validation. We showed that Gnat1rd17 mice primarily underwent alterations in their retinal dopaminergic system, triggering the development of an exacerbated EAU, which was counteracted by dopamine replacement with L-DOPA administered either systemically or locally. Remarkably, dopamine acted on retinal endothelial cells to inhibit NF-κB and STAT3 activity and the expression of downstream target genes such as chemokines involved in T cell recruitment. These results suggest that rod-mediated dopamine release functions in a gateway reflex manner in the homeostatic control of immune cell entry into the retina, and the loss of retinal dopaminergic activity in conditions associated with rod dysfunction increases the susceptibility to autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Correspondence: ; Tel.: +420-224-902-718
| | - Miloslav Zloh
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Dominika Andreanska
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Ivana Fiserova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Jan Hejda
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Patrik Kutilek
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan;
| |
Collapse
|
13
|
Kamimura D, Tanaka Y, Hasebe R, Murakami M. Bidirectional communication between neural and immune systems. Int Immunol 2021; 32:693-701. [PMID: 31875424 DOI: 10.1093/intimm/dxz083] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
The immune and nervous systems share many features, including receptor and ligand expression, enabling efficient communication between the two. Accumulating evidence suggests that the communication is bidirectional, with the neural system regulating immune cell functions and vice versa. Steroid hormones from the hypothalamus-pituitary-adrenal gland axis are examples of systemic regulators for this communication. Neural reflexes describe regional regulation mechanisms that are a historically new concept that helps to explain how the neural and body systems including immune system communicate. Several recently identified neural reflexes, including the inflammatory reflex and gateway reflex, significantly impact the activation status of the immune system and are associated with inflammatory diseases and disorders. Either pro-inflammatory or anti-inflammatory effects can be elicited by these neural reflexes. On the other hand, the activities of immune cells during inflammation, for example the secretion of inflammatory mediators, can affect the functions of neuronal systems via neural reflexes and modulate biological outputs via specific neural pathways. In this review article, we discuss recent advances in the understanding of bidirectional neuro-immune interactions, with a particular focus on neural reflexes.
Collapse
Affiliation(s)
- Daisuke Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Murakami K, Tanaka Y, Murakami M. The gateway reflex: breaking through the blood barriers. Int Immunol 2021; 33:743-748. [PMID: 34505147 DOI: 10.1093/intimm/dxab064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/09/2021] [Indexed: 12/20/2022] Open
Abstract
We have been studying inflammatory diseases, with a special focus on IL-6, and discovered two concepts related to inflammation development. One is the gateway reflex, which is induced by the activation of specific neural circuits followed by establishing gateways for autoreactive CD4 + T cells to pass through blood barriers toward the central nervous system (CNS) and retina during tissue-specific inflammatory diseases. We found that the formation of these gateways is dependent on the IL-6 amplifier, which is machinery for enhanced NF-κB activation in endothelial cells at specific sites. We have found five gateway reflexes in total. Here, we introduce the gateway reflex and the IL-6 amplifier.
Collapse
Affiliation(s)
- Kaoru Murakami
- Division of Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Nishi 7, Kita 15 jo, Kita-ku, Sapporo 060-0808, Hokkaido, Japan
| | - Yuki Tanaka
- Division of Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Nishi 7, Kita 15 jo, Kita-ku, Sapporo 060-0808, Hokkaido, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| | - Masaaki Murakami
- Division of Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Nishi 7, Kita 15 jo, Kita-ku, Sapporo 060-0808, Hokkaido, Japan.,Group of Quantum Immunology, Institute for Quantum Life Science, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba 263-8555, Japan
| |
Collapse
|
15
|
Shimoyama S, Nakagawa I, Jiang JJ, Matsumoto I, Chiorini JA, Hasegawa Y, Ohara O, Hasebe R, Ota M, Uchida M, Kamimura D, Hojyo S, Tanaka Y, Atsumi T, Murakami M. Sjögren's syndrome-associated SNPs increase GTF2I expression in salivary gland cells to enhance inflammation development. Int Immunol 2021; 33:423-434. [PMID: 34036345 DOI: 10.1093/intimm/dxab025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by inflammation with lymphoid infiltration and destruction of the salivary glands. Although many genome-wide association studies have revealed disease-associated risk alleles, the functions of the majority of these alleles are unclear. Here, we show previously unrecognized roles of GTF2I molecules by using two SS-associated single nucleotide polymorphisms (SNPs), rs73366469 and rs117026326 (GTF2I SNPs). We found that the risk alleles of GTF2I SNPs increased GTF2I expression and enhanced nuclear factor-kappa B (NF-κB) activation in human salivary gland cells via the NF-κB p65 subunit. Indeed, the knockdown of GTF2I suppressed inflammatory responses in mouse endothelial cells and in vivo. Conversely, the over-expression of GTF2I enhanced NF-κB reporter activity depending on its p65-binding N-terminal leucine zipper domain. GTF2I is highly expressed in the human salivary gland cells of SS patients expressing the risk alleles. Consistently, the risk alleles of GTF2I SNPs were strongly associated with activation of the IL-6 amplifier, which is hyperactivation machinery of the NF-κB pathway, and lymphoid infiltration in the salivary glands of SS patients. These results demonstrated that GTF2I expression in salivary glands is increased in the presence of the risk alleles of GTF2I SNPs, resulting in activation of the NF-κB pathway in salivary gland cells. They also suggest that GTF2I could be a new therapeutic target for SS.
Collapse
Affiliation(s)
- Shuhei Shimoyama
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo 0600815, Japan
| | - Ikuma Nakagawa
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan.,Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo 0600815, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian 710069, China
| | - Isao Matsumoto
- Division of Clinical Immunology, Major of Advanced Biological Applications, Graduate School Comprehensive Human Science, University of Tsukuba, Tsukuba 3050006, Japan
| | - John A Chiorini
- AAV Biology Section, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 2920818, Japan
| | - Osamu Ohara
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 2920818, Japan
| | - Rie Hasebe
- Biomedical Animal Research Laboratory, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Mitsutoshi Ota
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Mona Uchida
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Shintaro Hojyo
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University Graduate School of Medicine, Sapporo 0600815, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 0600815, Japan
| |
Collapse
|
16
|
Uchida M, Yamamoto R, Matsuyama S, Murakami K, Hasebe R, Hojyo S, Tanaka Y, Murakami M. Gateway reflexes, neuronal circuits that regulate the gateways for autoreactive T cells in organs that have blood barriers. Int Immunol 2021; 34:59-65. [PMID: 33978730 DOI: 10.1093/intimm/dxab022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
Gateway reflexes are neural circuits that maintain homeostasis of the immune system. They form gateways for autoreactive T cells to infiltrate the central nervous system in a noradrenaline-dependent manner despite the blood-brain barrier. This mechanism is critical not only for maintaining organ homeostasis but also for inflammatory disease development. Gateway reflexes can be regulated by environmental or artificial stimuli including electrical stimulation, suggesting that the infiltration of immune cells can be controlled by bioelectronic medicine. In this review, we describe the discovery of gateway reflexes and their future directions with special focus on bioelectronic medicine.
Collapse
Affiliation(s)
- Mona Uchida
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Reiji Yamamoto
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Shiina Matsuyama
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Kaoru Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Rie Hasebe
- Infectious Cancer, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University
| |
Collapse
|
17
|
Nakai A, Leach S, Suzuki K. Control of immune cell trafficking through inter-organ communication. Int Immunol 2021; 33:327-335. [PMID: 33751050 DOI: 10.1093/intimm/dxab009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
Cell migration is a cardinal feature of the immune system. Immune cell trafficking is orchestrated principally by chemokines and adhesion molecules, which guide the cells to the right place and at the right time to efficiently induce immune responses. Recent studies have demonstrated that signals from other organ systems influence the expression of and responsiveness to these guidance cues and consequentially immune cell migration. Neuronal inputs control entry and exit of immune cells to and from lymphoid and non-lymphoid tissues. The circadian clock helps establish diurnal variations in immune cell distribution among tissues. Nutritional status also alters immune cell homing to the bone marrow. In this review, we summarize the current knowledge about inter-organ control of immune cell trafficking and discuss the physiological and pathological significance of these mechanisms.
Collapse
Affiliation(s)
- Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Sarah Leach
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan.,Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Gao R, Peng X, Perry C, Sun H, Ntokou A, Ryu C, Gomez JL, Reeves BC, Walia A, Kaminski N, Neumark N, Ishikawa G, Black KE, Hariri LP, Moore MW, Gulati M, Homer RJ, Greif DM, Eltzschig HK, Herzog EL. Macrophage-derived netrin-1 drives adrenergic nerve-associated lung fibrosis. J Clin Invest 2021; 131:136542. [PMID: 33393489 PMCID: PMC7773383 DOI: 10.1172/jci136542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Fibrosis is a macrophage-driven process of uncontrolled extracellular matrix accumulation. Neuronal guidance proteins such as netrin-1 promote inflammatory scarring. We found that macrophage-derived netrin-1 stimulates fibrosis through its neuronal guidance functions. In mice, fibrosis due to inhaled bleomycin engendered netrin-1-expressing macrophages and fibroblasts, remodeled adrenergic nerves, and augmented noradrenaline. Cell-specific knockout mice showed that collagen accumulation, fibrotic histology, and nerve-associated endpoints required netrin-1 of macrophage but not fibroblast origin. Adrenergic denervation; haploinsufficiency of netrin-1's receptor, deleted in colorectal carcinoma; and therapeutic α1 adrenoreceptor antagonism improved collagen content and histology. An idiopathic pulmonary fibrosis (IPF) lung microarray data set showed increased netrin-1 expression. IPF lung tissues were enriched for netrin-1+ macrophages and noradrenaline. A longitudinal IPF cohort showed improved survival in patients prescribed α1 adrenoreceptor blockade. This work showed that macrophages stimulate lung fibrosis via netrin-1-driven adrenergic processes and introduced α1 blockers as a potentially new fibrotic therapy.
Collapse
Affiliation(s)
- Ruijuan Gao
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueyan Peng
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carrighan Perry
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Huanxing Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Aglaia Ntokou
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jose L. Gomez
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin C. Reeves
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Anjali Walia
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nir Neumark
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Genta Ishikawa
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Lida P. Hariri
- Division of Pulmonary and Critical Care Medicine, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Meagan W. Moore
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mridu Gulati
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Robert J. Homer
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, and
| | - Daniel M. Greif
- Section of Cardiology, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, University of Texas at Houston Medical School, Houston, Texas, USA
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Pathology, and
| |
Collapse
|
19
|
Malan L, Hamer M, von Känel R, Kotliar K, van Wyk RD, Lambert GW, Vilser W, Ziemssen T, Schlaich MP, Smith W, Magnusson M, Wentzel A, Myburgh CE, Steyn HS, Malan NT. Delayed retinal vein recovery responses indicate both non-adaptation to stress as well as increased risk for stroke: the SABPA study. Cardiovasc J Afr 2021; 32:5-16. [PMID: 33104153 PMCID: PMC8756074 DOI: 10.5830/cvja-2020-031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 08/07/2020] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Low or high sympatho-adrenal-medullary axis (SAM) and hypothalamic-pituitary-adrenal axis (HPA) dysregulation reflect chronic stress. Retinal vessel dynamics may relate to SAM, HPA activity and stroke risk. Our objectives were therefore to assess the relationships between retinal vessel, SAM and HPA responses, and to determine stroke risk. METHODS A prospective bi-ethnic gender cohort (n = 275, 45 ± 9 years) was included. Urine/serum/saliva samples for SAM [norepinephrine:creatinine ratio (u-NE)] and HPA [adrenocorticotrophic hormone (ACTH), cortisol] were obtained at baseline, three-year follow up and upon flicker light-induced provocation. Diastolic ocular perfusion pressure was measured as a marker of hypo-perfusion. Retinal arterial narrowing and venous widening calibres were quantified from digital images in the mydriatic eye. A validated stress and stroke risk score was applied. RESULTS An interaction term was fitted for venous dilation in u-NE tertiles (p ≤ 0.05) and not in u-NE median/quartiles/quintiles. Independent of race or gender, tertile 1 (low u-NE) had a 112% increase in u-NE, decreases in cortisol, and no changes in ACTH over three years (positive feedback). Tertile 3 (high u-NE) contradictorily had decreases in u-NE and cortisol, and increases in ACTH (negative feedback). In tertile 1, reduced arterial dilation, and faster arterial vasoconstriction and narrowing were related to higher SAM activity and hypo-perfusion (p ≤ 0.05), whereas delayed venous dilation, recovery and widening were related to cortisol hypo-secretion (p ≤ 0.05). In tertile 1, delayed venous recovery responses predicted stress and stroke risk [odds ratio 4.8 (1.2-19.6); p = 0.03]. These associations were not found in u-NE tertiles 2 and 3. CONCLUSIONS In response to low norepinephrine, a reflex increase in SAM activity occurred, enhancing arterial vasoconstriction and hypo-perfusion. Concomitant HPA dysregulation attenuated retinal vein vasoactivity and tone, reflecting delayed vein recovery responses and non-adaptation to stress. These constrained vein recovery responses are indicative of increased chronic stress and stroke risk.
Collapse
Affiliation(s)
- Leoné Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.
| | - Mark Hamer
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, United Kingdom
| | - Roland von Känel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zurich 8091, Switzerland
| | - Konstantin Kotliar
- Department of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Jülich, Germany
| | | | - Gavin W Lambert
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn; Baker Heart & Diabetes Institute, Melbourne, Australia
| | | | - Tjalf Ziemssen
- Autonomic and Neuroendocrinological Laboratory Dresden, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Markus P Schlaich
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University Western Australia, Perth, Australia
| | - Wayne Smith
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa; Medical Research Council Research Unit: Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Martin Magnusson
- Department of Clinical Sciences, Malmö, Lund University; Wallenberg Centre for Molecular Medicine, Malmö, Lund University; Department of Cardiology, Malmö, Skåne University Hospital, Sweden
| | - Annemarie Wentzel
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Carlien E Myburgh
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Hendrik S Steyn
- Statistical Consultation Services, North-West University, Potchefstroom, South Africa
| | - Nico T Malan
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| |
Collapse
|
20
|
Higuchi H, Kamimura D, Jiang JJ, Atsumi T, Iwami D, Hotta K, Harada H, Takada Y, Kanno-Okada H, Hatanaka KC, Tanaka Y, Shinohara N, Murakami M. Orosomucoid 1 is involved in the development of chronic allograft rejection after kidney transplantation. Int Immunol 2020; 32:335-346. [PMID: 31930291 DOI: 10.1093/intimm/dxaa003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Chronic allograft rejection is the most common cause of long-term allograft failure. One reason is that current diagnostics and therapeutics for chronic allograft rejection are very limited. We here show that enhanced NFκB signaling in kidney grafts contributes to chronic active antibody-mediated rejection (CAAMR), which is a major pathology of chronic kidney allograft rejections. Moreover, we found that urinary orosomucoid 1 (ORM1) is a candidate marker molecule and therapeutic target for CAAMR. Indeed, urinary ORM1 concentration was significantly higher in kidney transplant recipients pathologically diagnosed with CAAMR than in kidney transplant recipients with normal histology, calcineurin inhibitor toxicity, or interstitial fibrosis and tubular atrophy. Additionally, we found that kidney biopsy samples with CAAMR expressed more ORM1 and had higher NFκB and STAT3 activation in tubular cells than samples from non-CAAMR samples. Consistently, ORM1 production was induced after cytokine-mediated NFκB and STAT3 activation in primary kidney tubular cells. The loss- and gain-of-function of ORM1 suppressed and promoted NFκB activation, respectively. Finally, ORM1-enhanced NFκB-mediated inflammation development in vivo. These results suggest that an enhanced NFκB-dependent pathway following NFκB and STAT3 activation in the grafts is involved in the development of chronic allograft rejection after kidney transplantation and that ORM1 is a non-invasive candidate biomarker and possible therapeutic target for chronic kidney allograft rejection.
Collapse
Affiliation(s)
- Haruka Higuchi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Toru Atsumi
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daiki Iwami
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Harada
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Yusuke Takada
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiromi Kanno-Okada
- Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Kanako C Hatanaka
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Yuki Tanaka
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Dere D, Zlomuzica A, Dere E. Channels to consciousness: a possible role of gap junctions in consciousness. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. [PMID: 32853172 DOI: 10.1515/revneuro-2020-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
The neurophysiological basis of consciousness is still unknown and one of the most challenging questions in the field of neuroscience and related disciplines. We propose that consciousness is characterized by the maintenance of mental representations of internal and external stimuli for the execution of cognitive operations. Consciousness cannot exist without working memory, and it is likely that consciousness and working memory share the same neural substrates. Here, we present a novel psychological and neurophysiological framework that explains the role of consciousness for cognition, adaptive behavior, and everyday life. A hypothetical architecture of consciousness is presented that is organized as a system of operation and storage units named platforms that are controlled by a consciousness center (central executive/online platform). Platforms maintain mental representations or contents, are entrusted with different executive functions, and operate at different levels of consciousness. The model includes conscious-mode central executive/online and mental time travel platforms and semiconscious steady-state and preconscious standby platforms. Mental representations or contents are represented by neural circuits and their support cells (astrocytes, oligodendrocytes, etc.) and become conscious when neural circuits reverberate, that is, fire sequentially and continuously with relative synchronicity. Reverberatory activity in neural circuits may be initiated and maintained by pacemaker cells/neural circuit pulsars, enhanced electronic coupling via gap junctions, and unapposed hemichannel opening. The central executive/online platform controls which mental representations or contents should become conscious by recruiting pacemaker cells/neural network pulsars, the opening of hemichannels, and promoting enhanced neural circuit coupling via gap junctions.
Collapse
Affiliation(s)
- Dorothea Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| | - Armin Zlomuzica
- Faculty of Psychology, Behavioral and Clinical Neuroscience, University of Bochum, Massenbergstraße 9-13, D-44787 Bochum, Germany
| | - Ekrem Dere
- Département UMR 8256 Adaptation Biologique et Vieillissement, Sorbonne Université, Institut de Biologie Paris-Seine, (IBPS), UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris Cedex, France
| |
Collapse
|
22
|
Takada Y, Kamimura D, Jiang JJ, Higuchi H, Iwami D, Hotta K, Tanaka Y, Ota M, Higuchi M, Nishio S, Atsumi T, Shinohara N, Matsuno Y, Tsuji T, Tanabe T, Sasaki H, Iwahara N, Murakami M. Increased urinary exosomal SYT17 levels in chronic active antibody-mediated rejection after kidney transplantation via the IL-6 amplifier. Int Immunol 2020; 32:653-662. [PMID: 32369831 DOI: 10.1093/intimm/dxaa032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/28/2020] [Indexed: 12/18/2022] Open
Abstract
Chronic active antibody-mediated rejection (CAAMR) is a particular problem in kidney transplantation (KTx), and ~25% of grafts are lost by CAAMR. Further, the pathogenesis remains unclear, and there is no effective cure or marker. We previously found that a hyper NFκB-activating mechanism in non-immune cells, called the IL-6 amplifier, is induced by the co-activation of NFκB and STAT3, and that this activation can develop various chronic inflammatory diseases. Here, we show that synaptotagmin-17 (SYT17) is increased in an exosomal fraction of the urine from CAAMR patients, and that this increase is associated with activation of the IL-6 amplifier. Immunohistochemistry showed that SYT17 protein expression was increased in renal tubule cells of the CAAMR group. While SYT17 protein was not detectable in whole-urine samples by western blotting, urinary exosomal SYT17 levels were significantly elevated in the CAAMR group compared to three other histology groups (normal, interstitial fibrosis and tubular atrophy, and calcineurin inhibitors toxicity) after KTx. On the other hand, current clinical laboratory data could not differentiate the CAAMR group from these groups. These data suggest that urinary exosomal SYT17 is a potential diagnostic marker for CAAMR.
Collapse
Affiliation(s)
- Yusuke Takada
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daisuke Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jing-Jing Jiang
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Institute of Preventive Genomic Medicine, School of Life Sciences, Northwest University, Xian, China
| | - Haruka Higuchi
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Daiki Iwami
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kiyohiko Hotta
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsutoshi Ota
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Madoka Higuchi
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Saori Nishio
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Matsuno
- Department of Surgical Pathology, Hokkaido University Hospital, Sapporo, Japan
| | - Takahiro Tsuji
- Department of Pathology, Sapporo City General Hospital, Sapporo, Japan
| | - Tatsu Tanabe
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Hajime Sasaki
- Department of Kidney Transplant Surgery, Sapporo City General Hospital, Sapporo, Japan
| | - Naoya Iwahara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
23
|
Abstract
The systemic regulation of immune reactions by the nervous system is well studied and depends on the release of hormones. Some regional regulations of immune reactions, on the other hand, depend on specific neural pathways. Better understanding of these regulations will expand therapeutic applications for neuroimmune and organ-to-organ functional interactions. Here, we discuss one regional neuroimmune interaction, the gateway reflex, which converts specific neural inputs into local inflammatory outputs in the CNS. Neurotransmitters released by the inputs stimulate specific blood vessels to express chemokines, which serve as a gateway for immune cells to extravasate into the target organ such as the brain or spinal cord. Several types of gateway reflexes have been reported, and each controls distinct CNS blood vessels to form gateways that elicit local inflammation, particularly in the presence of autoreactive immune cells. For example, neural stimulation by gravity creates the initial entry point to the CNS by CNS-reactive pathogenic CD4+ T cells at the dorsal vessels of fifth lumbar spinal cord, while pain opens the gateway at the ventral side of blood vessels in the spinal cord. In addition, it was recently found that local inflammation by the gateway reflex in the brain triggers the activation of otherwise resting neural circuits to dysregulate organ functions in the periphery including the upper gastrointestinal tract and heart. Therefore, the gateway reflex represents a novel bidirectional neuroimmune interaction that regulates organ functions and could be a promising target for bioelectric medicine.
Collapse
Affiliation(s)
- D Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - M Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
24
|
Stofkova A, Murakami M. Neural activity regulates autoimmune diseases through the gateway reflex. Bioelectron Med 2019; 5:14. [PMID: 32232103 PMCID: PMC7098223 DOI: 10.1186/s42234-019-0030-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
The brain, spinal cord and retina are protected from blood-borne compounds by the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB) and blood-retina barrier (BRB) respectively, which create a physical interface that tightly controls molecular and cellular transport. The mechanical and functional integrity of these unique structures between blood vessels and nervous tissues is critical for maintaining organ homeostasis. To preserve the stability of these barriers, interplay between constituent barrier cells, such as vascular endothelial cells, pericytes, glial cells and neurons, is required. When any of these cells are defective, the barrier can fail, allowing blood-borne compounds to encroach neural tissues and cause neuropathologies. Autoimmune diseases of the central nervous system (CNS) and retina are characterized by barrier disruption and the infiltration of activated immune cells. Here we review our recent findings on the role of neural activity in the regulation of these barriers at the vascular endothelial cell level in the promotion of or protection against the development of autoimmune diseases. We suggest nervous system reflexes, which we named gateway reflexes, are fundamentally involved in these diseases. Although their reflex arcs are not completely understood, we identified the activation of specific sensory neurons or receptor cells to which barrier endothelial cells respond as effectors that regulate gateways for immune cells to enter the nervous tissue. We explain this novel mechanism and describe its role in neuroinflammatory conditions, including models of multiple sclerosis and posterior autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- 1Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| | - Masaaki Murakami
- 2Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo, 060-0815 Japan
| |
Collapse
|
25
|
Murakami M, Kamimura D, Hirano T. Pleiotropy and Specificity: Insights from the Interleukin 6 Family of Cytokines. Immunity 2019; 50:812-831. [DOI: 10.1016/j.immuni.2019.03.027] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
|