1
|
Aebisher D, Czech S, Dynarowicz K, Misiołek M, Komosińska-Vassev K, Kawczyk-Krupka A, Bartusik-Aebisher D. Photodynamic Therapy: Past, Current, and Future. Int J Mol Sci 2024; 25:11325. [PMID: 39457108 PMCID: PMC11508366 DOI: 10.3390/ijms252011325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The Greek roots of the word "photodynamic" are as follows: "phos" (φω~ς) means "light" and "dynamis" (δύναμις) means "force" or "power". Photodynamic therapy (PDT) is an innovative treatment method based on the ability of photosensitizers to produce reactive oxygen species after the exposure to light that corresponds to an absorbance wavelength of the photosensitizer, either in the visible or near-infrared range. This process results in damage to pathological cancer cells, while minimizing the impact on healthy tissues. PDT is a promising direction in the treatment of many diseases, with particular emphasis on the fight against cancer and other diseases associated with excessive cell growth. The power of light contributed to the creation of phototherapy, whose history dates back to ancient times. It was then noticed that some substances exposed to the sun have a negative effect on the body, while others have a therapeutic effect. This work provides a detailed review of photodynamic therapy, from its origins to the present day. It is surprising how a seemingly simple beam of light can have such a powerful healing effect, which is used not only in dermatology, but also in oncology, surgery, microbiology, virology, and even dentistry. However, despite promising results, photodynamic therapy still faces many challenges. Moreover, photodynamic therapy requires further research and improvement.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland
| | - Sara Czech
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland;
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Oncological Laryngology in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College, The Rzeszów University, 35-959 Rzeszów, Poland; (S.C.); (D.B.-A.)
| |
Collapse
|
2
|
Fauiod OG, Fadel M, El-Hussein A, Fadeel DA. Aluminum phthalocyanine tetrasulfonate conjugated to surface-modified Iron oxide nanoparticles as a magnetic targeting platform for photodynamic therapy of Ehrlich tumor-bearing mice. Photodiagnosis Photodyn Ther 2024; 50:104356. [PMID: 39368768 DOI: 10.1016/j.pdpdt.2024.104356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a targeted treatment option for cancers that are non-responding to ordinary anticancer therapies. It involves activating a photosensitizer with a light source of a specific wavelength to destroy targeted cells and their surrounding vasculature. Aluminum phthalocyanine tetra sulfonate (AlPcS4) has gained attention as a second-generation photosensitizer for its strong absorption in the red-light region. AlPcS4 can be conjugated to magnetic iron oxide nanoparticles (IONs) to provide targeted drug delivery to the tumor cells while reducing its undesired effect on healthy tissues in other body parts. METHODS Magnetic glutamine functionalized iron oxide nanocomposites loaded with AlPcS4 (IONs-NH2-AlPcS4) were synthesized via the co-precipitation method. The conjugate (IONs-NH2-AlPcS4) was characterized by TEM, Zeta potential, DLS, FTIR, and UV-VIS absorption spectroscopy. Furthermore, its photodynamic activity was investigated using albino mice with induced Ehrlich solid tumors. RESULTS AlPcS4 was successfully conjugated to IONs-NH2 with a high loading efficiency of 54±2%. The synthesized conjugate exhibited a spherical shape, with 7 ± 2 nm particle size. The In vivo experiment revealed that the albino mice with induced Ehrlich solid tumor that were treated by combined PDT and magnetic targeting conjugate exhibited significant tumor regression and notably higher levels of necrotic tissue compared to the animals in other groups. CONCLUSION PDT mediated by magnetic targeting significantly inhibited tumor growth with minimal adverse effects, indicating its great potential as a promising strategy for solid cancer treatment.
Collapse
Affiliation(s)
- Omnia G Fauiod
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Egypt
| | - Maha Fadel
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Egypt
| | - Ahmed El-Hussein
- Laser Applications in Metrology, Photochemistry and Agriculture unit, National Institute of Laser Enhanced Sciences, Cairo University, Giza, Egypt; Faculty of Science, Galala University, Egypt
| | - Doaa Abdel Fadeel
- Pharmaceutical Nanotechnology Unit, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Egypt.
| |
Collapse
|
3
|
Park CS, Park HJ, Park JH, Lee JH, Kee HJ, Park JH, Jo JH, Lee HS, Ku CR, Park JY, Bang S, Song JM, Na K, Kang SK, Jung HY, Chung MJ. Highly functional duodenal stent with photosensitizers enables photodynamic therapy for metabolic syndrome treatment: Feasibility and safety study in a porcine model. APL Bioeng 2024; 8:036103. [PMID: 38983108 PMCID: PMC11232116 DOI: 10.1063/5.0206328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Duodenal mucosal resurfacing (DMR) by thermal ablation of the duodenal mucosa is a minimally invasive endoscopic procedure for controlling metabolic syndrome (MS). However, thermal energy can cause adverse effects due to deep mucosal injury, necessitating an additional mucosal lifting process, which complicate the procedures. Therefore, we aimed to develop a similar procedure using non-thermal photodynamic therapy (PDT) for DMR using a highly functional metal stent covered with photosensitizers (PSs) to minimize the potential risks of thermal ablation injury. We developed a novel PS stent enabling the controlled release of radical oxygen species with specific structures to prevent stent migration and duodenal stricture after ablation and performed an animal study (n = 8) to demonstrate the feasibility and safety of PDT for DMR. The stents were placed for 7 days to prevent duodenal strictures after PDT. To confirm PDT efficacy, we stained for gastric inhibitory polypeptide (GIP) and glucose transporter isoform 1. The PS stents were deployed, and PDT was applied without evidence of duodenal stricture, pancreatitis, or hemorrhage in any of the pigs. Microscopic evaluation indicated apoptosis of the mucosal cells in the irradiated duodenum on days 7 and 14, which recovered after day 28. Immunohistochemistry revealed suppressed GIP expression in the mucosal wall of the irradiated duodenum. Endoscopic PDT for DMR using PS stents could be applied safely in a porcine model and may result in decreased GIP secretion, which is a crucial mechanism in MS treatment. Further clinical studies are required to explore its safety and efficacy in patients with MS.
Collapse
Affiliation(s)
- Chan Su Park
- Division of Gastroenterology, Department of Internal Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Hyun Jin Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Ji Hoon Park
- Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Korea
| | - Jin Hee Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jung Kee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Hoon Park
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Cheol Ryong Ku
- Division of Endocrinology, Department of Internal Medicine, Yonsei Institute of Endocrinology, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Min Song
- Medical Device Team, Medical Device Assessment Headquarters, Korea Testing and Research Institute, Seoul, Korea
| | | | - Sung Kwon Kang
- Research and Development Department, S&G Biotech, Gyeonggi, Korea
| | - Hwoon-Yong Jung
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Yang L, Liu D, Liu L, Jiang X. Photodynamic effect of vascular-targeted polyphenol nanoparticles on Endothelial cells. Photodiagnosis Photodyn Ther 2024; 47:104096. [PMID: 38643893 DOI: 10.1016/j.pdpdt.2024.104096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Port wine stains (PWS) are vascular malformations, and photodynamic therapy (PDT) is a promising treatment. Emerging drug delivery methods employ nanoparticles (NPs) to enhance drug permeability and retention in diseased blood vessels and improve drug bioavailability. (-) -epigallocatechin-3-gallate glycine (EGCG) has anti-angiogenetic effects and boosts photodynamic therapy. Chlorin e6 (Ce6) is capable of efficiently producing singlet oxygen, rendering it a very promising photosensitizer for utilization in nanomedicine. MATERIAL AND METHODS EGCG-Ce6-NPs were synthesized and characterized using various techniques. The photodynamic effects of EGCG-Ce6-NPs on endothelial cells were evaluated. The compatibility and toxicity of the nanoparticle was tested using the CCK-8 assay. The intracellular uptake of the nanoparticle was observed using an inverted fluorescence microscope, and the intracellular fluorescence intensity was detected using flow cytometry. The ROS generation and apoptosis induced by EGCG-Ce6-NPs was observed using confocal laser scanning microscopy and flow cytometry respectively. RESULTS EGCG-Ce6-NPs exhibited stability, spherical shape of uniform size while reducing the particle diameter, low polydisperse profile and retaining the ability to effectively generate singlet oxygen. These characteristics suggest promising potential for enhancing drug permeability and retention. Additionally, EGCG-Ce6-NPs demonstrated good compatibility with endothelial cells and enhanced intracellular uptake of Ce6. Furthermore, EGCG-Ce6-NPs increased activation efficiency, induced significant toxicity, more reactive oxygen species, and a higher rate of late apoptosis after laser irradiation. CONCLUSION This in vitro study showed the potentials EGCG-Ce6-NPs for the destruction of endothelial cells in vasculature.
Collapse
Affiliation(s)
- Lihua Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Danni Liu
- Engineering Research Center in Biomaterials and National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Lian Liu
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, PR China; Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
5
|
Khatun S, Pebam M, Sankaranarayanan SA, Pogu SV, Bantal VS, Rengan AK. Glutathione - IR 797 coupled Casein Nano-Trojan for augmenting the therapeutic efficacy of camptothecin in highly invasive triple negative breast cancer. BIOMATERIALS ADVANCES 2024; 159:213802. [PMID: 38401401 DOI: 10.1016/j.bioadv.2024.213802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The rapid metastasis & heterogenic constitution of triple negative breast cancer (TNBC) limits drug entry to the tumor, reducing treatment effectiveness. To address this, we have synthesized Casein nanoparticles (Cn NPs) with attached glutathione (GSH), a natural ligand for cancer cell overexpressed γ-glutamyl transpeptidase (GGT). Cn NPs encapsulated with Camptothecin and NIR dye IR 797 (CCN NPs) for combinatorial therapy of TNBC. The GSH-CCN nanoparticles (CCNG NPs) act as a Nano-Trojan to deceive the cancer cells by delivering therapeutic payloads directly to specific target cells. In this study, Casein Nano-Trojan is equipped with GSH as a targeting ligand for GGT. The binding of CCNG NPs with cell surface receptors switched the anionic charge to catanionic, prompting the target cell to engulf the nanoparticles. The Casein Nano-Trojan releases its therapeutic payload inside the target cell, potentially inhibiting proliferation & inducing a high percentage of cell death (85 ± 7 %). Disintegration of mitochondrial membrane potential, inhibition of both migration & re-growth were observed. Immunofluorescence, acridine orange/ethidium bromide stain, and nuclear fragmentation assay further confirmed the substantial DNA damage induced by the high expression of γH2AX and p53. Significant therapeutic efficacy was observed in the 3D spheroids of 4T1 cells and in vivo breast cancer mice model (BALB/c). These findings demonstrate that CCNG NPs could be an effective treatment approach for highly metastatic triple negative breast cancer.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | - Monika Pebam
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | | | - Sunil Venkanna Pogu
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India
| | | | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Telangana 502285, India.
| |
Collapse
|
6
|
Tian S, Li J, Wang D, Han Y, Dai H, Yan L. Sonodynamic-chemotherapy synergy with chlorin e6-based carrier-free nanoparticles for non-small cell lung cancer. J Mater Chem B 2024; 12:3282-3291. [PMID: 38487900 DOI: 10.1039/d4tb00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Sonodynamic therapy (SDT), an emerging cancer treatment with significant potential, offers the advantages of non-invasiveness and deep tissue penetrability. The method involves activating sonosensitizers with ultrasound to generate reactive oxygen species (ROS) capable of eradicating cancer cells, addressing the challenge faced by photodynamic therapy (PDT) where conventional light sources struggle to penetrate deep tissues, impacting treatment efficacy. This study addresses prevalent challenges in numerous nanodiagnostic and therapeutic agents, such as intricate synthesis, poor repeatability, low stability, and high cost, by introducing a streamlined one-step assembly method for nanoparticle preparation. Specifically, the sonosensitizer Chlorin e6 (Ce6) and the chemotherapy drug erlotinib are effortlessly combined and self-assembled under sonication, yielding carrier-free nanoparticles (EC-NPs) for non-small cell lung cancer (NSCLC) treatment. The resulting EC-NPs exhibit optimal drug loading capacity, a simplified preparation process, and robust stability both in vitro and in vivo, owing to their carrier-free characteristics. Under the synergistic treatment of sonodynamic therapy and chemotherapy, EC-NPs induce an excess of reactive oxygen in tumor tissue, prompting apoptosis of cancer cells and reducing their proliferative capacity. Both in vitro and in vivo experiments demonstrate superior therapeutic effects of EC-NPs under ultrasound conditions compared to free Ce6. In summary, our research findings highlight that the innovatively designed carrier-free sonosensitizer EC-NPs present a therapeutic option with commendable efficacy and minimal side effects.
Collapse
Affiliation(s)
- Shuangyu Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Canter of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jinghang Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Canter of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Dongdong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Canter of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Yingchao Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Canter of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Canter of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Canter of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
7
|
Palanikumar L, Kalmouni M, Houhou T, Abdullah O, Ali L, Pasricha R, Straubinger R, Thomas S, Afzal AJ, Barrera FN, Magzoub M. pH-Responsive Upconversion Mesoporous Silica Nanospheres for Combined Multimodal Diagnostic Imaging and Targeted Photodynamic and Photothermal Cancer Therapy. ACS NANO 2023; 17:18979-18999. [PMID: 37702397 PMCID: PMC10569106 DOI: 10.1021/acsnano.3c04564] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have gained considerable attention as potential alternatives to conventional cancer treatments. However, these approaches remain limited by low solubility, poor stability, and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome the aforementioned limitations, we engineered biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium, and gadolinium) and the PTA bismuth selenide (NaYF4:Yb/Er/Gd,Bi2Se3) enveloped in a mesoporous silica shell that encapsulates a PS, chlorin e6 (Ce6), within its pores. NaYF4:Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites Ce6 to generate cytotoxic reactive oxygen species (ROS), while Bi2Se3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging of the nanospheres. The mesoporous silica shell is coated with DPPC/cholesterol/DSPE-PEG to retain the encapsulated Ce6 and prevent serum protein adsorption and macrophage recognition that hinder tumor targeting. Finally, the coat is conjugated to the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into malignant cells in the mildly acidic microenvironment of tumors. The nanospheres facilitated tumor magnetic resonance and thermal and fluorescence imaging and exhibited potent NIR laser light-induced anticancer effects in vitro and in vivo via combined ROS production and localized hyperthermia, with negligible toxicity to healthy tissue, hence markedly extending survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.
Collapse
Affiliation(s)
- L. Palanikumar
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Mona Kalmouni
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Tatiana Houhou
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Osama Abdullah
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Liaqat Ali
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Renu Pasricha
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Rainer Straubinger
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Sneha Thomas
- Core
Technology Platforms, New York University
Abu Dhabi, P.O. Box 129188, Saadiyat
Island, Abu Dhabi, United Arab
Emirates
| | - Ahmed Jawaad Afzal
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| | - Francisco N. Barrera
- Department
of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Mazin Magzoub
- Biology
Program, Division of Science, New York University
Abu Dhabi, P.O. Box 129188,
Saadiyat Island, Abu Dhabi, United
Arab Emirates
| |
Collapse
|
8
|
Amirshaghaghi A, Chang WC, Chhay B, Bartolomeu AR, Clapper ML, Cheng Z, Tsourkas A. Phthalocyanine-Blue Nanoparticles for the Direct Visualization of Tumors with White Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:33373-33381. [PMID: 37395349 PMCID: PMC10724988 DOI: 10.1021/acsami.3c05140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The current standard of care for colon cancer surveillance relies heavily on white light endoscopy (WLE). However, dysplastic lesions that are not visible to the naked eye are often missed when conventional WLE equipment is used. Although dye-based chromoendoscopy shows promise, current dyes cannot delineate tumor tissues from surrounding healthy tissues accurately. The goal of the present study was to screen various phthalocyanine (PC) dye-loaded micelles for their ability to improve the direct visualization of tumor tissues under white light following intravenous administration. Zinc PC (tetra-tert-butyl)-loaded micelles were identified as the optimal formulation. Their accumulation within syngeneic breast tumors led the tumors to turn dark blue in color, making them clearly visible to the naked eye. These micelles were similarly able to turn spontaneous colorectal adenomas in Apc+/Min mice a dark blue color for easy identification and could enable clinicians to more effectively detect and remove colonic polyps.
Collapse
Affiliation(s)
- Ahmad Amirshaghaghi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wen-Chi Chang
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Bonirath Chhay
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ariane R. Bartolomeu
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Margie L. Clapper
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Palanikumar L, Kalmouni M, Houhou T, Abdullah O, Ali L, Pasricha R, Thomas S, Afzal AJ, Barrera FN, Magzoub M. pH-responsive upconversion mesoporous silica nanospheres for combined multimodal diagnostic imaging and targeted photodynamic and photothermal cancer therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541491. [PMID: 37292655 PMCID: PMC10245854 DOI: 10.1101/2023.05.22.541491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) and photothermal therapy (PTT) have garnered considerable interest as non-invasive cancer treatment modalities. However, these approaches remain limited by low solubility, poor stability and inefficient targeting of many common photosensitizers (PSs) and photothermal agents (PTAs). To overcome these limitations, we have designed biocompatible and biodegradable tumor-targeted upconversion nanospheres with imaging capabilities. The multifunctional nanospheres consist of a sodium yttrium fluoride core doped with lanthanides (ytterbium, erbium and gadolinium) and bismuth selenide (NaYF 4 :Yb/Er/Gd,Bi 2 Se 3 ) within a mesoporous silica shell that encapsulates a PS, Chlorin e6 (Ce6), in its pores. NaYF 4 :Yb/Er converts deeply penetrating near-infrared (NIR) light to visible light, which excites the Ce6 to generate cytotoxic reactive oxygen species (ROS), while the PTA Bi 2 Se 3 efficiently converts absorbed NIR light to heat. Additionally, Gd enables magnetic resonance imaging (MRI) of the nanospheres. The mesoporous silica shell is coated with lipid/polyethylene glycol (DPPC/cholesterol/DSPE-PEG) to ensure retention of the encapsulated Ce6 and minimize interactions with serum proteins and macrophages that impede tumor targeting. Finally, the coat is functionalized with the acidity-triggered rational membrane (ATRAM) peptide, which promotes specific and efficient internalization into cancer cells within the mildly acidic tumor microenvironment. Following uptake by cancer cells in vitro , NIR laser irradiation of the nanospheres caused substantial cytotoxicity due to ROS production and hyperthermia. The nanospheres facilitated tumor MRI and thermal imaging, and exhibited potent NIR laser light-induced antitumor effects in vivo via combined PDT and PTT, with no observable toxicity to healthy tissue, thereby substantially prolonging survival. Our results demonstrate that the ATRAM-functionalized, lipid/PEG-coated upconversion mesoporous silica nanospheres (ALUMSNs) offer multimodal diagnostic imaging and targeted combinatorial cancer therapy.
Collapse
Affiliation(s)
- L. Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Osama Abdullah
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Sneha Thomas
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Ahmed J. Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Francisco N. Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee Knoxville, Knoxville, Tennessee, United States
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
10
|
Zhang B, Jiang X. Magnetic Nanoparticles Mediated Thrombolysis-A Review. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2023; 4:109-132. [PMID: 38111792 PMCID: PMC10727495 DOI: 10.1109/ojnano.2023.3273921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Nanoparticles containing thrombolytic medicines have been developed for thrombolysis applications in response to the increasing demand for effective, targeted treatment of thrombosis disease. In recent years, there has been a great deal of interest in nanoparticles that can be navigated and driven by a magnetic field. However, there are few review publications concerning the application of magnetic nanoparticles in thrombolysis. In this study, we examine the current state of magnetic nanoparticles in the application of in vitro and in vivo thrombolysis under a static or dynamic magnetic field, as well as the combination of magnetic nanoparticles with an acoustic field for dual-mode thrombolysis. We also discuss four primary processes of magnetic nanoparticles mediated thrombolysis, including magnetic nanoparticle targeting, magnetic nanoparticle trapping, magnetic drug release, and magnetic rupture of blood clot fibrin networks. This review will offer unique insights for the future study and clinical development of magnetic nanoparticles mediated thrombolysis approaches.
Collapse
Affiliation(s)
- Bohua Zhang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
11
|
Effect of Photodynamic Therapy with Chlorin e6 on Canine Tumors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122102. [PMID: 36556469 PMCID: PMC9782963 DOI: 10.3390/life12122102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
This work aims to prepare pure Chlorin e6 (Ce6) and establish Ce6-mediated photodynamic therapy (Ce6-PDT) as a better therapy option for canine tumors as well as mouse tumor models. Five dogs suffering from various cancers were treated with Ce6-PDT from one to several times. After receiving the Ce6 (2.5 mg/kg) for 3 h, tumors were illuminated superficially or interstitially with 660 nm light. Two dogs underwent Ce6-guided fluorescence imaging by photodynamic diagnosis (PDD). Cell proliferation and apoptosis were detected by the 4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and western blot assay, respectively. Ce6-PDT efficacy was also determined using melanoma and pancreatic cancer mouse models. Two veterinary patients with mammary carcinoma and histiocytic sarcoma had their tumors significantly diminished and showed improved health after receiving Ce6-PDT. Moreover, in the cases of canine tumors, the adjunctive use of Ce6-PDD revealed cancers that were not visible with white light viewing and provided a visual contrast from surrounding tissues. Also, in vivo, Ce6-PDT remarkably reduced melanoma and pancreatic tumors in the mouse model. These findings could pave the way for a better understanding of the underlying processes of Ce6-PDT, making it an effective and safe candidate for use in human and veterinary applications to abolish various cancers.
Collapse
|
12
|
Pereira F, de Annunzio SR, Lopes TDA, de Oliveira KT, Cilli EM, Barbugli PA, Fontana CR. Efficacy of the combination of P5 peptide and photodynamic therapy mediated by bixin and chlorin-e6 against Cutibacterium acnes biofilm. Photodiagnosis Photodyn Ther 2022; 40:103104. [PMID: 36057364 DOI: 10.1016/j.pdpdt.2022.103104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022]
Abstract
In this study, the action of antimicrobial peptide (AMP) P5 and antimicrobial photodynamic therapy (aPDT) mediated by bixin and chlorin-e6 (Ce6) on Cutibacterium acnes (C. acnes) in planktonic phase and biofilm were evaluated both as monotherapies and combined therapies. Microbial viability after treatments were quantified by colony-forming units per milliliter of the sample (CFU/mL) and have demonstrated that all treatments employed exerted bactericidal activity, reducing the microbial load by more than 3 log10 CFU/mL, also demonstrating for the first time in the literature the antimicrobial photodynamic effect of bixin that occurs mostly through type I mechanism which was proved by the quantification of superoxide anion production. Bacterial biofilm was completely eliminated only after its exposure to aPDT mediated by this PS, however, Ce6 proved to be a more efficient PS, considering that most of the photodynamic effect of bixin- aPDT was exerted by excitation of the endogenous C porphyrins of C. acnes with blue light. The combination of P5 with Ce6-aPDT showed a synergistic effect on the bacterial biofilm with a reduction in microbial load by more than 10 log10 CFU/mL, in which the ability of P5 to permeabilize the polymeric extracellular matrix of the biofilm explains the obtained results, with greater internalization of the PS as shown by the Confocal Laser Scanning Microscopy. One-way ANOVA (Analysis of Variance) with Tukey's post-test and two-way ANOVA with Bonferroni's post-test were used to compare the values of continuous variables between the control group and the treatment groups.
Collapse
Affiliation(s)
- Felipe Pereira
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil
| | - Sarah Raquel de Annunzio
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil
| | - Thais de Assis Lopes
- Federal University of São Carlos, Department of Chemistry, 13565-905, São Carlos, SP, Brazil
| | | | - Eduardo Maffud Cilli
- São Paulo State University (Unesp), Institute of Chemistry, 14800-060, Araraquara, SP, Brazil
| | - Paula Aboud Barbugli
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil; São Paulo State University (Unesp), School of Dentistry, 14801-903, Araraquara, SP, Brazil
| | - Carla Raquel Fontana
- São Paulo State University (Unesp), School of Pharmaceutical Sciences, 14800-903, Araraquara, SP, Brazil.
| |
Collapse
|
13
|
Song L, Cheng H, Ren Z, Wang H, Lu J, Zhao Q, Wang S. Red light-emitting carbon dots for reduced phototoxicity and photothermal/photodynamic-enhanced synergistic tumor therapy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Nanoformulation of Tetrapyrroles Derivatives in Photodynamic Therapy: A Focus on Bacteriochlorin. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3011918. [PMID: 36212948 PMCID: PMC9546677 DOI: 10.1155/2022/3011918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic therapy (PDT) is a well-known remedial treatment for cancer, infections, and various other diseases. PDT uses nontoxic dyes called photosensitizers (PS) that are activated in visible light at the proper wavelength to generate ROS (reactive oxygen species) that aid in killing tumor cells and destroying pathogenic microbes. Deciding a suitable photosensitizer is essential for enhancing the effectiveness of photodynamic therapy. It is challenging to choose the photosensitizer that is appropriate for specific pathological circumstances, such as different cancer species. Porphyrin, chlorin, and bacteriochlorin are tetrapyrroles used with proper functionalization in PDT, among which some compound has been clinically approved. Most photosensitizers are hydrophobic, have minimum solubility, and exhibit cytotoxicity due to the dispersion in biological fluid. This paper reviewed some nanotechnology-based strategies to overcome these drawbacks. In PDT, metal nanoparticles are widely used due to their enhanced surface plasmon resonance. The self-assembled nano-drug carriers like polymeric micelles, liposomes, and metal-based nanoparticles play a significant role in solubilizing the photosensitizer to make them biocompatible.
Collapse
|
15
|
Yasin G, Nasr M, Abdel Gaber SA, Hüttenberger D, Fadel M. Response surface methodological approach for optimization of photodynamic therapy of onychomycosis using chlorin e6 loaded nail penetration enhancer vesicles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112461. [PMID: 35551052 DOI: 10.1016/j.jphotobiol.2022.112461] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic inactivation (aPDI) has a tremendous potential as an alternative therapeutic modality to conventional antifungals in treatment of onychomycosis, yet the nail barrier properties and the deep-seated nature of fungi within the nails remain challenging. Therefore, the aim of this study was to prepare, optimize, and characterize Chorin e6 (Ce6) nail penetration enhancer containing vesicles (Ce6-nPEVs) and evaluate their photodynamic mediated effect against Trichophyton rubrum (T.rubrum); the main causative agent of onychomycosis. Optimization of the particle size and encapsulation efficiency of nPEVs was performed using a four-factor two-level full factorial design. The transungual delivery potential of the selected formulation was assessed in comparison with the free drug. The photodynamic treatment conditions for T.rubrum aPDI by free Ce6 was optimized using response surface methodology based on Box-Behnken design, and the aPDI effect of the selected Ce6-nPEVs was evaluated versus the free Ce6 at the optimized condition. Results showed that formulations exhibited high encapsulation efficiency for Ce6 ranging from 79.4 to 98%, particle sizes ranging from 225 to 859 nm, positive zeta potential values ranging from +30 to +70 mV, and viscosity ranging from 1.26 to 3.43 cP. The predominant parameters for maximizing the encapsulation efficiency and minimizing the particle size of Ce6-nPEVs were identified. The selected formulation showed 1.8-folds higher nail hydration and 2.3 folds improvement in percentage of Ce6 up-taken by nails compared to the free drug. Results of the microbiological study confirmed the reliability and adequacy of the Box-Behnken model, and delineated Ce6 concentration and incubation time as the significant model terms. Free Ce6 and Ce6-nPEVs showed an equipotent in vitro fungicidal effect on T.rubrum at the optimized conditions, however Ce6-nPEVs is expected to show a differential effect at the in vivo level where the advantage of the enhanced nail penetration feature will be demonstrated.
Collapse
Affiliation(s)
- Ghada Yasin
- Pharmaceutical Nano-Technology Laboratory, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | | - Maha Fadel
- Pharmaceutical Nano-Technology Laboratory, Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt.
| |
Collapse
|
16
|
Guo S, Song Z, Ji DK, Reina G, Fauny JD, Nishina Y, Ménard-Moyon C, Bianco A. Combined Photothermal and Photodynamic Therapy for Cancer Treatment Using a Multifunctional Graphene Oxide. Pharmaceutics 2022; 14:1365. [PMID: 35890259 PMCID: PMC9318106 DOI: 10.3390/pharmaceutics14071365] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Graphene oxide (GO) is one of the most studied nanomaterials in many fields, including the biomedical field. Most of the nanomaterials developed for drug delivery and phototherapies are based on noncovalent approaches that lead to an unspecific release of physisorbed molecules in complex biological environments. Therefore, preparing covalently functionalized GO using straightforward and versatile methods is highly valuable. Phototherapies, including photothermal therapy (PTT) and photodynamic therapy (PDT), have shown great potential as effective therapeutic approaches against cancer. To overcome the limits of a single method, the combination of PTT and PDT can lead to a combined effect with a higher therapeutic efficiency. In this work, we prepare a folic acid (FA) and chlorin e6 (Ce6) double-functionalized GO for combined targeted PTT/PDT. This conjugate can penetrate rapidly into cancer cells and macrophages. A combined effect of PTT and PDT is observed, leading to a higher killing efficiency toward different types of cells involved in cancer and other diseases. Our work provides a simple protocol to prepare multifunctional platforms for the treatment of various diseases.
Collapse
Affiliation(s)
- Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Jean-Daniel Fauny
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan;
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France; (S.G.); (Z.S.); (D.-K.J.); (G.R.); (J.-D.F.); (C.M.-M.)
| |
Collapse
|
17
|
Sertcelik KNO, Karaman O, Almammadov T, Gunbas G, Kolemen S, Acar HY, Onbasli K. Selective on the outside deadly on the inside: Superior photodynamic therapy of EGFR1 positive colon cancer cells by selenophene‐BODIPY loaded SPIONs2. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Osman Karaman
- Middle East Technical University: Orta Dogu Teknik Universitesi Chemistry TURKEY
| | | | - Gorkem Gunbas
- Middle East Technical University: Orta Dogu Teknik Universitesi Chemistry TURKEY
| | | | | | - Kubra Onbasli
- Koc University: Koc Universitesi Chemistry Rumeli Feneri Yolu 34450 Istanbul TURKEY
| |
Collapse
|
18
|
Kozlikina EI, Efendiev KT, Grigoriev AY, Bogdanova OY, Trifonov IS, Krylov VV, Loschenov VB. A Pilot Study of Fluorescence-Guided Resection of Pituitary Adenomas with Chlorin e6 Photosensitizer. Bioengineering (Basel) 2022; 9:bioengineering9020052. [PMID: 35200407 PMCID: PMC8869665 DOI: 10.3390/bioengineering9020052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Fluorescence diagnostics is one of the promising methods for intraoperative detection of brain tumor boundaries and helps in maximizing the extent of resection. This paper presents the results of a pilot study on the first use of the chlorin e6 photosensitizer and a two-channel video system for fluorescence-guided resection of pituitary adenomas. The study’s clinical part involved two patients diagnosed with hormonally inactive pituitary macroadenomas and one patient with a hormonally active one. All neoplasms had different sizes and growth patterns. The data showed accumulation of chlorin e6 in tumor tissues in high concentrations: Patient 1: 2 mg/kg, Patient 2: 5 mg/kg, and Patient 3: 4 mg/kg. For Patient 1, the residual part of the tumor was not resected since it was intimately attached to the anterior genu of the internal carotid artery. For Patients 2 and 3, no regions of increased Ce6 accumulation were detected in the tumor foci after resection. Therefore, the use of the Ce6 and a two-channel video system helped to achieve a high degree of tumor resection in each case.
Collapse
Affiliation(s)
- Elizaveta I. Kozlikina
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
- Correspondence:
| | - Kanamat T. Efendiev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| | - Andrey Yu. Grigoriev
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
- The National Medical Research Centre for Endocrinology, 117292 Moscow, Russia
| | - Olesia Y. Bogdanova
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Igor S. Trifonov
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Vladimir V. Krylov
- Federal State Budgetary Educational Institution of Higher Education “A.I. Evdokimov Moscow State University of Medicine and Dentistry”, The Ministry of Healthcare of the Russian Federation, 127473 Moscow, Russia; (A.Y.G.); (O.Y.B.); (I.S.T.); (V.V.K.)
| | - Victor B. Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia; (K.T.E.); (V.B.L.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
19
|
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:503. [PMID: 35057223 PMCID: PMC8779542 DOI: 10.3390/ma15020503] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023]
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Nhat M. Ngo
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Riddhiman Medhi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Pannaree Srinoi
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Tingting Liu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Supparesk Rittikulsittichai
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| |
Collapse
|
20
|
Kim HS, Seo M, Park TE, Lee DY. A novel therapeutic strategy of multimodal nanoconjugates for state-of-the-art brain tumor phototherapy. J Nanobiotechnology 2022; 20:14. [PMID: 34983539 PMCID: PMC8725459 DOI: 10.1186/s12951-021-01220-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background The outcome of phototherapy, including photothermal therapy (PTT) and photodynamic therapy (PDT) for glioblastoma multiforme (GBM), is disappointing due to insufficient photoconversion efficiency and low targeting rate. The development of phototherapeutic agents that target GBM and generate high heat and potent ROS is important to overcome the weak anti-tumor effect. Results In this study, nanoconjugates composed of gold nanoparticles (AuNPs) and photosensitizers (PSs) were prepared by disulfide conjugation between Chlorin e6 (Ce6) and glutathione coated-AuNP. The maximum heat dissipation of the nanoconjugate was 64.5 ± 4.5 °C. Moreover, the proximate conjugation of Ce6 on the AuNP surface resulted in plasmonic crossover between Ce6 and AuNP. This improves the intrinsic ROS generating capability of Ce6 by 1.6-fold compared to that of unmodified-Ce6. This process is called generation of metal-enhanced reactive oxygen species (MERos). PEGylated-lactoferrin (Lf-PEG) was incorporated onto the AuNP surface for both oral absorption and GBM targeting of the nanoconjugate (denoted as Ce6-AuNP-Lf). In this study, we explored the mechanism by which Ce6-AuNP-Lf interacts with LfR at the intestinal and blood brain barrier (BBB) and penetrates these barriers with high efficiency. In the orthotopic GBM mice model, the oral bioavailability and GBM targeting amount of Ce6-AuNP-Lf significantly improved to 7.3 ± 1.2% and 11.8 ± 2.1 μg/kg, respectively. The order of laser irradiation, such as applying PDT first and then PTT, was significant for the treatment outcome due to the plasmonic advantages provided by AuNPs to enhance ROS generation capability. As a result, GBM-phototherapy after oral administration of Ce6-AuNP-Lf exhibited an outstanding anti-tumor effect due to GBM targeting and enhanced photoconversion efficiency. Conclusions The designed nanoconjugates greatly improved ROS generation by plasmonic crossover between AuNPs and Ce6, enabling sufficient PDT for GBM as well as PTT. In addition, efficient GBM targeting through oral administration was possible by conjugating Lf to the nanoconjugate. These results suggest that Ce6-AuNP-Lf is a potent GBM phototherapeutic nanoconjugate that can be orally administered. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01220-9.
Collapse
Affiliation(s)
- Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Minwook Seo
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information-Bio Convergence Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea. .,Institute of Nano Science and Technology (INST), Hanyang University, Seoul, 04763, Republic of Korea. .,Elixir Pharmatech Inc., Seoul, 07463, Republic of Korea.
| |
Collapse
|
21
|
Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 37:102697. [PMID: 34936918 DOI: 10.1016/j.pdpdt.2021.102697] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Light-mediated therapies, including photodynamic therapy (PDT) and photothermal therapy (PTT) have been exploited as minimally invasive techniques for ablation of various tumors., Both modalities may eradicate tumors with minimal side effects to normal tissues and organs. Moreover, developments of light-mediated approaches using nanoparticles (NPs) and photosensitizer (PS) as diagnostic and therapeutic agents may have a crucial role in achieving successful cancer treatment. In recent years, novel nanoplatforms and strategies have been investigated to boost the therapeutic effect.. In this regard, gold, iron oxide, graphene oxide nanoparticles and hybrid nanocomposites have attracted attention.. Moreover, the combination of these materials with PS, in the form of hybrid NPs, reduces in vitro and in vivo normal tissue cytotoxicity, improves their solubility property in the biological environment and enhances the therapeutic effects. In this review, we look into the basic principles of PTT and PDT with their strengths and limitations to treat cancers. We also will discuss light-based nanoparticles and their PTT and PDT applications in the preclinical and clinical translation. Also, recent advances and trends in this field will be discussed along with the clinical challenges of PTT and PDT.
Collapse
|
22
|
Mollaeva MR, Nikolskaya E, Beganovskaya V, Sokol M, Chirkina M, Obydennyi S, Belykh D, Startseva O, Mollaev MD, Yabbarov N. Oxidative Damage Induced by Phototoxic Pheophorbide a 17-Diethylene Glycol Ester Encapsulated in PLGA Nanoparticles. Antioxidants (Basel) 2021; 10:1985. [PMID: 34943088 PMCID: PMC8750000 DOI: 10.3390/antiox10121985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023] Open
Abstract
Pheophorbide a 17-diethylene glycol ester (XL-8), is a promising high-active derivative of known photosensitizer chlorin e6 used in photodynamic therapy. However, high lipophilicity and poor tumor accumulation limit XL-8 therapeutic application. We developed a novel XL-8 loaded with poly(D,L-lactide-co-glycolide) nanoparticles using the single emulsion-solvent evaporation method. The nanoparticles possessed high XL-8 loading content (4.6%) and encapsulation efficiency (87.7%) and a small size (182 ± 19 nm), and negative surface charge (-22.2 ± 3.8 mV) contributed to a specific intracellular accumulation. Sustained biphasic XL-8 release from nanoparticles enhanced the photosensitizer photostability upon irradiation that could potentially reduce the quantity of the drug applied. Additionally, the encapsulation of XL-8 in the polymer matrix preserved phototoxic activity of the payload. The nanoparticles displayed enhanced cellular internalization. Flow cytometry and confocal laser-scanning microscopy studies revealed rapid XL-8 loaded nanoparticles distribution throughout the cell and initiation of DNA damage, glutathione depletion, and lipid peroxidation via reactive oxygen species formation. The novel nanoformulated XL-8 simultaneously revealed a significant phototoxicity accompanied with enhanced photostability, in contrast with traditional photosensitizers, and demonstrated a great potential for further in vivo studies.
Collapse
Affiliation(s)
- Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Elena Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Veronika Beganovskaya
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
- Department of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology, 125047 Moscow, Russia
| | - Maria Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Margarita Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| | - Sergey Obydennyi
- Center for Theoretical Problems of Physicochemical Pharmacology, 119334 Moscow, Russia;
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Dmitry Belykh
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Olga Startseva
- Pitirim Sorokin Syktyvkar State University, 167001 Syktyvkar, Russia;
| | - Murad D. Mollaev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, 117198 Moscow, Russia;
| | - Nikita Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.); (M.S.); (M.C.)
- JSC Russian Research Center for Molecular Diagnostics and Therapy, 117149 Moscow, Russia;
| |
Collapse
|
23
|
Lu J, Ni C, Huang J, Liu Y, Tao Y, Hu P, Wang Y, Zheng S, Shi M. Biocompatible Mesoporous Silica-Polydopamine Nanocomplexes as MR/Fluorescence Imaging Agent for Light-Activated Photothermal-Photodynamic Cancer Therapy In Vivo. Front Bioeng Biotechnol 2021; 9:752982. [PMID: 34858959 PMCID: PMC8630682 DOI: 10.3389/fbioe.2021.752982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Conventional cancer phototherapy with single modality suffers from low therapeutic efficacy and undesired posttreatment damage for adjacent normal tissues. Therefore, the lower NIR laser irradiation power is vital to the reduction or preclusion of risk of scalds and burns in normal tissues. Herein, we rationally proposed a novel multifunctional nanocomplex, which enabled good magnetic resonance (MR) imaging contrast effect and promising photothermal conversion efficacy. The prepared core/shell nanocomplexes [MSN-Ce6@PDA (Mn)] were composed of chlorin e6-embedded mesoporous silica/nanoparticle composites as the cores, and then polydopamine and manganese ions were conjugated on the cores to form protective shells. The MSN-Ce6@PDA (Mn) nanocomplexes revealed superior properties in colloidal stability, photothermal conversion, reaction oxygen species generation, magnetic resonance imaging, etc. Under the guidance of MR and fluorescence imaging, these MSN-Ce6@PDA (Mn) nanocomplexes were found to be primarily accumulated in the MDA-MB-231 tumor area. Furthermore, the combined photodynamic and photothermal therapy exhibited strong inhibition to the growth of MDA-MB-231 tumor in vitro and in vivo. Besides, the MSN-Ce6@PDA (Mn) nanocomplexes also exhibited excellent biocompatibility and low damage to the healthy animals. Hence, the results demonstrated that the prepared MSN-Ce6@PDA (Mn) nanocomplex would be a promising potential for multimodal imaging-guided phototherapy.
Collapse
Affiliation(s)
- Jiahui Lu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, China
| | - Chen Ni
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Jie Huang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yawen Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yingkai Tao
- Department of Dermatology and Venereal Diseases, The First People’s Hospital of Changzhou, Changzhou, China
| | - Pengcheng Hu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yong Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou, China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
- Institute of Medical Imaging and Digital Medicine, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
24
|
Ziental D, Mlynarczyk DT, Czarczynska-Goslinska B, Lewandowski K, Sobotta L. Photosensitizers Mediated Photodynamic Inactivation against Fungi. NANOMATERIALS 2021; 11:nano11112883. [PMID: 34835655 PMCID: PMC8621466 DOI: 10.3390/nano11112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Superficial and systemic fungal infections are essential problems for the modern health care system. One of the challenges is the growing resistance of fungi to classic antifungals and the constantly increasing cost of therapy. These factors force the scientific world to intensify the search for alternative and more effective methods of treatment. This paper presents an overview of new fungal inactivation methods using Photodynamic Antimicrobial Chemotherapy (PACT). The results of research on compounds from the groups of phenothiazines, xanthanes, porphyrins, chlorins, porphyrazines, and phthalocyanines are presented. An intensive search for a photosensitizer with excellent properties is currently underway. The formulation based on the existing ones is also developed by combining them with nanoparticles and common antifungal therapy. Numerous studies indicate that fungi do not form any specific defense mechanism against PACT, which deems it a promising therapeutic alternative.
Collapse
Affiliation(s)
- Daniel Ziental
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Dariusz T. Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland;
| | - Konrad Lewandowski
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
| | - Lukasz Sobotta
- Chair and Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland; (D.Z.); (K.L.)
- Correspondence:
| |
Collapse
|
25
|
Henderson E, Huynh G, Wilson K, Plebanski M, Corrie S. The Development of Nanoparticles for the Detection and Imaging of Ovarian Cancers. Biomedicines 2021; 9:1554. [PMID: 34829783 PMCID: PMC8615601 DOI: 10.3390/biomedicines9111554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/27/2022] Open
Abstract
Ovarian cancer remains as one of the most lethal gynecological cancers to date, with major challenges associated with screening, diagnosis and treatment of the disease and an urgent need for new technologies that can meet these challenges. Nanomaterials provide new opportunities in diagnosis and therapeutic management of many different types of cancers. In this review, we highlight recent promising developments of nanoparticles designed specifically for the detection or imaging of ovarian cancer that have reached the preclinical stage of development. This includes contrast agents, molecular imaging agents and intraoperative aids that have been designed for integration into standard imaging procedures. While numerous nanoparticle systems have been developed for ovarian cancer detection and imaging, specific design criteria governing nanomaterial targeting, biodistribution and clearance from the peritoneal cavity remain key challenges that need to be overcome before these promising tools can accomplish significant breakthroughs into the clinical setting.
Collapse
Affiliation(s)
- Edward Henderson
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Gabriel Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
| | - Kirsty Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (K.W.); (M.P.)
| | - Simon Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia; (E.H.); (G.H.)
- ARC Training Center for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
26
|
Efficient Delivery of Chlorin e6 by Polyglycerol-Coated Iron Oxide Nanoparticles with Conjugated Doxorubicin for Enhanced Photodynamic Therapy of Melanoma. Mol Pharm 2021; 18:3601-3615. [PMID: 34388342 DOI: 10.1021/acs.molpharmaceut.1c00510] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chlorin e6 (Ce6) is a promising photosensitizer for tumor photodynamic therapy (PDT). However, the efficacy of Ce6 PDT is limited by Ce6's poor water solubility, rapid blood clearance, and inadequate accumulation in the tumor tissue. This problem is tackled in this work, wherein functionalized superparamagnetic iron oxide nanoparticles (IO-NPs) were used as carriers to deliver Ce6 to melanoma. The IO-NPs were coated with polyglycerol (PG) to afford good aqueous solubility. The chemotherapeutic agent doxorubicin (DOX) was attached to the PG coating via the hydrazone bond to afford affinity to the cell membrane and thereby promote the cell uptake. The hydrophobic nature of DOX also induced the aggregation of IO-NPs to form nanoclusters. Ce6 was then loaded onto the IO nanoclusters through physical adsorption and coordination with surface iron atoms, yielding the final composites IO-PG-DOX-Ce6. In vitro experiments showed that IO-PG-DOX-Ce6 markedly increased Ce6 uptake in mouse melanoma cells, leading to much-enhanced photocytotoxicity characterized by intensified reactive oxygen species production, loss of viability, DNA damage, and stimulation of tumor cell immunogenicity. In vivo experiments corroborated the in vitro findings and demonstrated prolonged blood clearance of IO-PG-DOX-Ce6. Importantly, IO-PG-DOX-Ce6 markedly increased the Ce6 distribution and retention in mouse subcutaneous melanoma grafts and significantly improved the efficacy of Ce6-mediated PDT. No apparent vital organ damage was observed at the same time. In conclusion, the IO-PG-DOX NPs provide a simple and safe delivery platform for efficient tumor enrichment of Ce6, thereby enhancing antimelanoma PDT.
Collapse
|
27
|
Pucci C, Martinelli C, Degl'Innocenti A, Desii A, De Pasquale D, Ciofani G. Light-Activated Biomedical Applications of Chlorophyll Derivatives. Macromol Biosci 2021; 21:e2100181. [PMID: 34212510 DOI: 10.1002/mabi.202100181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Indexed: 02/01/2023]
Abstract
Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| |
Collapse
|
28
|
Zhou M, Liu X, Chen F, Yang L, Yuan M, Fu DY, Wang W, Yu H. Stimuli-activatable nanomaterials for phototherapy of cancer. Biomed Mater 2021; 16. [PMID: 33882463 DOI: 10.1088/1748-605x/abfa6e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/21/2021] [Indexed: 12/24/2022]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT), as non-invasive therapy approaches, have gained accumulated attention for cancer treatment in past years. PTT and PDT can generate local hyperthermia effects and reactive oxygen species (ROS) respectively, for tumor eradication. To improve the therapeutic performance while minimizing the reverse side effects of phototherapy, extensive efforts have been devoted to developing stimuli-activatable (e.g. pH, redox, ROS, enzyme, etc) nanomaterials for tumor-specific delivery/activation of the phototherapeutics. In this review, we first overviewed the recent advances of the engineered stimuli-responsive nanovectors for the phototherapy of cancer. We particularly summarized the progress of stimuli-activatable nanomaterials-based combinatory therapy strategies for augmenting the performance of phototherapy. We further discuss challenges for the clinical translation of nanomaterials-based phototherapy.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Xiao Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Lili Yang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Minjian Yuan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Ding-Yi Fu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China
| | - Weiqi Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226000, Jiangsu, People's Republic of China.,State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China.,Peking University Shenzhen Institute, Shenzhen 518055, People's Republic of China
| |
Collapse
|
29
|
Stimuli responsive and receptor targeted iron oxide based nanoplatforms for multimodal therapy and imaging of cancer: Conjugation chemistry and alternative therapeutic strategies. J Control Release 2021; 333:188-245. [DOI: 10.1016/j.jconrel.2021.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/18/2022]
|
30
|
Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021; 124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
To improve the prognosis of cancer patients, methods of local cancer detection and treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or quantum dots. They may also be excited and detected using well-established optical methods, relying on scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor detection in various ways. In addition, these systems provide a wealth of information, which is inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. This review brings forward the idea that iron-based nanomaterials may be associated with various optical techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer with a better efficacy than more standard medical approaches. STATEMENT OF SIGNIFICANCE: New tools should be developed to improve cancer treatment outcome. For that, two closely-related aspects deserve to be considered, i.e. early tumor detection and local tumor treatment. Here, I present various types of iron-based nanomaterials, which can achieve this double objective when they interact with a beam of light under specific and accurately chosen conditions. Indeed, these materials are biocompatible and can be used/combined with most standard microscopic/optical methods. Thus, these systems enable on the one hand tumor cell detection with a high sensitivity, i.e. down to single tumor cell level, and on the other hand tumor destruction through various mechanisms in a controlled and localized manner by deciding whether or not to apply a beam of light and by having these nanomaterials specifically target tumor cells.
Collapse
|
31
|
Sun Z, Luo M, Li J, Wang A, Sun X, Wu Q, Li K, Ma Y, Yang C, Li X. Folic Acid Functionalized Chlorin e6-Superparamagnetic Iron Oxide Nanocarriers as a Theranostic Agent for MRI-Guided Photodynamic Therapy. J Biomed Nanotechnol 2021; 17:205-215. [DOI: 10.1166/jbn.2021.3021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Imaging-guided cancer theranostic is a promising strategy for cancer diagnostic and therapeutic. Photodynamic therapy (PDT), as an approved treatment modality, is limited by the poor solubility and dispersion of photosensitizers (PS) in biological fluids. Herein, it is demonstrated
that superparamagnetic iron oxide (SPIO)-based nanoparticles (SCFs), prepared by conjugated with Chlorin e6 (Ce6) and modified with folic acid (FA) on the surface, can be used as versatile drug delivery vehicles for effective PDT. The nanoparticles are great carriers for photosensitizer Ce6
with an extremely high loading efficiency. In vitro fluorescence imaging and in vivo magnetic resonance imaging (MRI) results indicated that SCFs selectively accumulated in tumor cells. Under near-infrared laser irradiation, SCFs were confirmed to be capable of inducing low cell
viability of RM-1 cells In vitro and displaying efficient tumor ablation with negligible side effects in tumor-bearing mice models.
Collapse
Affiliation(s)
- Zhenbo Sun
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Mingfang Luo
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Jia Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Ailing Wang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, P. R. China
| | - Xucheng Sun
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Qiong Wu
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Kaiyue Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Ying Ma
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Caixia Yang
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| | - Xianglin Li
- Medical Imaging Research Institute, Binzhou Medical University, Yantai, Shandong 264003, P. R. China
| |
Collapse
|
32
|
Deng X, Shao Z, Zhao Y. Solutions to the Drawbacks of Photothermal and Photodynamic Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002504. [PMID: 33552860 PMCID: PMC7856884 DOI: 10.1002/advs.202002504] [Citation(s) in RCA: 243] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Indexed: 05/11/2023]
Abstract
Phototherapy such as photothermal therapy and photodynamic therapy in cancer treatment has been developed quickly over the past few years for its noninvasive nature and high efficiency. However, there are still many drawbacks in phototherapy that prevent it from clinical applications. Thus, scientists have designed different systems to overcome the issues associated with phototherapy, including enhancing the targeting ability of phototherapy, low-temperature photothermal therapy, replacing near-infrared light with other excitation sources, and so on. This article discusses the problems and shortcomings encountered in the development of phototherapy and highlights possible solutions to address them so that phototherapy may become a useful cancer treatment approach in clinical practice. This article aims to give a brief summary about current research advancements in phototherapy research and provides a quick guideline toward future developments in the field.
Collapse
Affiliation(s)
- Xiangyu Deng
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| | - Zengwu Shao
- Department of Orthopaedic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yanli Zhao
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University21 Nanyang LinkSingapore637371Singapore
| |
Collapse
|
33
|
Mohapatra A, Uthaman S, Park IK. External and Internal Stimuli-Responsive Metallic Nanotherapeutics for Enhanced Anticancer Therapy. Front Mol Biosci 2021; 7:597634. [PMID: 33505987 PMCID: PMC7831291 DOI: 10.3389/fmolb.2020.597634] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Therapeutic, diagnostic, and imaging approaches based on nanotechnology offer distinct advantages in cancer treatment. Various nanotherapeutics have been presented as potential alternatives to traditional anticancer therapies such as chemotherapy, radiotherapy, and surgical intervention. Notably, the advantage of nanotherapeutics is mainly attributable to their accumulation and targeting ability toward cancer cells, multiple drug-carrying abilities, combined therapies, and imaging approaches. To date, numerous nanoparticle formulations have been developed for anticancer therapy and among them, metallic nanotherapeutics reportedly demonstrate promising cancer therapeutic and diagnostic efficiencies owing to their dense surface functionalization ability, uniform size distribution, and shape-dependent optical responses, easy and cost-effective synthesis procedure, and multiple anti-cancer effects. Metallic nanotherapeutics can remodel the tumor microenvironment by changing unfavorable therapeutic conditions into therapeutically accessible ones with the help of different stimuli, including light, heat, ultrasound, an alternative magnetic field, redox, and reactive oxygen species. The combination of metallic nanotherapeutics with both external and internal stimuli can be used to trigger the on-demand release of therapeutic molecules, augmenting the therapeutic efficacies of anticancer therapies such as photothermal therapy, photodynamic therapy, magnetic hyperthermia, sonodynamic therapy, chemodynamic therapy, and immunotherapy. In this review, we have summarized the role of different metallic nanotherapeutics in anti-cancer therapy, as well as their combinational effects with multiple stimuli for enhanced anticancer therapy.
Collapse
Affiliation(s)
- Adityanarayan Mohapatra
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Saji Uthaman
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon, South Korea
| | - In-Kyu Park
- Department of Biomedical Sciences, Chonnam National University Medical School, Jeollanam-do, South Korea
| |
Collapse
|
34
|
Amirshaghaghi A, Cheng Z, Josephson L, Tsourkas A. Magnetic Nanoparticles. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
35
|
Krasia-Christoforou T, Socoliuc V, Knudsen KD, Tombácz E, Turcu R, Vékás L. From Single-Core Nanoparticles in Ferrofluids to Multi-Core Magnetic Nanocomposites: Assembly Strategies, Structure, and Magnetic Behavior. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2178. [PMID: 33142887 PMCID: PMC7692798 DOI: 10.3390/nano10112178] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Iron oxide nanoparticles are the basic components of the most promising magnetoresponsive nanoparticle systems for medical (diagnosis and therapy) and bio-related applications. Multi-core iron oxide nanoparticles with a high magnetic moment and well-defined size, shape, and functional coating are designed to fulfill the specific requirements of various biomedical applications, such as contrast agents, heating mediators, drug targeting, or magnetic bioseparation. This review article summarizes recent results in manufacturing multi-core magnetic nanoparticle (MNP) systems emphasizing the synthesis procedures, starting from ferrofluids (with single-core MNPs) as primary materials in various assembly methods to obtain multi-core magnetic particles. The synthesis and functionalization will be followed by the results of advanced physicochemical, structural, and magnetic characterization of multi-core particles, as well as single- and multi-core particle size distribution, morphology, internal structure, agglomerate formation processes, and constant and variable field magnetic properties. The review provides a comprehensive insight into the controlled synthesis and advanced structural and magnetic characterization of multi-core magnetic composites envisaged for nanomedicine and biotechnology.
Collapse
Affiliation(s)
- Theodora Krasia-Christoforou
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos Avenue, P.O. Box 20537, Nicosia 1678, Cyprus;
| | - Vlad Socoliuc
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy–Timisoara Branch, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania;
| | - Kenneth D. Knudsen
- Department for Neutron Materials Characterization, Institute for Energy Technology (IFE), 2027 Kjeller, Norway;
| | - Etelka Tombácz
- Soós Ernő Water Technology Research and Development Center, University of Pannonia, Zrínyi M. Str. 18., H-8800 Nagykanizsa, Hungary;
| | - Rodica Turcu
- Department of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Ladislau Vékás
- Laboratory of Magnetic Fluids, Center for Fundamental and Advanced Technical Research, Romanian Academy–Timisoara Branch, Mihai Viteazul Ave. 24, 300223 Timisoara, Romania;
| |
Collapse
|
36
|
Teng CW, Amirshaghaghi A, Cho SS, Cai SS, De Ravin E, Singh Y, Miller J, Sheikh S, Delikatny E, Cheng Z, Busch TM, Dorsey JF, Singhal S, Tsourkas A, Lee JYK. Combined fluorescence-guided surgery and photodynamic therapy for glioblastoma multiforme using cyanine and chlorin nanocluster. J Neurooncol 2020; 149:243-252. [PMID: 32914293 PMCID: PMC7720701 DOI: 10.1007/s11060-020-03618-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most common primary intracranial malignancy; survival can be improved by maximizing the extent-of-resection. METHODS A near-infrared fluorophore (Indocyanine-Green, ICG) was combined with a photosensitizer (Chlorin-e6, Ce6) on the surface of superparamagnetic-iron-oxide-nanoparticles (SPIONs), all FDA-approved for clinical use, yielding a nanocluster (ICS) using a microemulsion. The physical-chemical properties of the ICS were systematically evaluated. Efficacy of photodynamic therapy (PDT) was evaluated in vitro with GL261 cells and in vivo in a subtotal resection trial using a syngeneic flank tumor model. NIR imaging properties of ICS were evaluated in both a flank and an intracranial GBM model. RESULTS ICS demonstrated high ICG and Ce6 encapsulation efficiency, high payload capacity, and chemical stability in physiologic conditions. In vitro cell studies demonstrated significant PDT-induced cytotoxicity using ICS. Preclinical animal studies demonstrated that the nanoclusters can be detected through NIR imaging in both flank and intracranial GBM tumors (ex: 745 nm, em: 800 nm; mean signal-to-background 8.5 ± 0.6). In the flank residual tumor PDT trial, subjects treated with PDT demonstrated significantly enhanced local control of recurrent neoplasm starting on postoperative day 8 (23.1 mm3 vs 150.5 mm3, p = 0.045), and the treatment effect amplified to final mean volumes of 220.4 mm3 vs 806.1 mm3 on day 23 (p = 0.0055). CONCLUSION A multimodal theragnostic agent comprised solely of FDA-approved components was developed to couple optical imaging and PDT. The findings demonstrated evidence for the potential theragnostic benefit of ICS in surgical oncology that is conducive to clinical integration.
Collapse
Affiliation(s)
- Clare W Teng
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ahmad Amirshaghaghi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Steve S Cho
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuting S Cai
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Emma De Ravin
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yash Singh
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA
| | - Joann Miller
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saad Sheikh
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Delikatny
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunil Singhal
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 801 Spruce Street, 8th Floor, Philadelphia, PA, 19107, USA.
| |
Collapse
|
37
|
Carofiglio M, Barui S, Cauda V, Laurenti M. Doped Zinc Oxide Nanoparticles: Synthesis, Characterization and Potential Use in Nanomedicine. APPLIED SCIENCES (BASEL, SWITZERLAND) 2020; 10:5194. [PMID: 33850629 PMCID: PMC7610589 DOI: 10.3390/app10155194] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Smart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration. However, ZnO NPs also show a limited stability in biological environments and unpredictable cytotoxic effects thereof. To overcome the abovementioned limitations and further extend the use of ZnO NPs in nanomedicine, doping seems to represent a promising solution. This review covers the main achievements in the use of doped ZnO NPs for nanomedicine applications. Sol-gel, as well as hydrothermal and combustion methods are largely employed to prepare ZnO NPs doped with rare earth and transition metal elements. For both dopant typologies, biomedical applications were demonstrated, such as enhanced antimicrobial activities and contrast imaging properties, along with an improved biocompatibility and stability of the colloidal ZnO NPs in biological media. The obtained results confirm that the doping of ZnO NPs represents a valuable tool to improve the corresponding biomedical properties with respect to the undoped counterpart, and also suggest that a new application of ZnO NPs in nanomedicine can be envisioned.
Collapse
Affiliation(s)
- Marco Carofiglio
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Sugata Barui
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marco Laurenti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
38
|
Choi SK. Photoactivation Strategies for Therapeutic Release in Nanodelivery Systems. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences University of Michigan Medical School Ann Arbor MI 48109 USA
- Department of Internal Medicine University of Michigan Medical School Ann Arbor MI 48109 USA
| |
Collapse
|
39
|
Acosta S, Moreno-Aguilar C, Hernández-Sánchez D, Morales-Cruzado B, Sarmiento-Gomez E, Bittencourt C, Sánchez-Vargas LO, Quintana M. A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1054-1061. [PMID: 32733780 PMCID: PMC7372247 DOI: 10.3762/bjnano.11.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The global emergence of multidrug resistance of fungal infections and the decline in the discovery of new antibiotics are increasingly prevalent causes of hospital-acquired infections, among other major challenges in the global health care sector. There is an urgent need to develop noninvasive, nontoxic, and new antinosocomial approaches that work more effectively and faster than current antibiotics. In this work, we report on a biocompatible hybrid nanomaterial composed of few-layer graphene and chlorin e6 (FLG-Ce6) for the photodynamic treatment (PDT) of Candida albicans. We show that the FLG-Ce6 hybrid nanomaterial displays enhanced reactive oxygen species (ROS) generation compared with Ce6. The enhancement is up to 5-fold when irradiated for 15 min at 632 nm with a red light-emitting diode (LED). The viability of C. albicans in the presence of FLG-Ce6 was measured 48 h after photoactivation. An antifungal effect was observed only when the culture/FLG-Ce6 hybrid was exposed to the light source. C. albicans is rendered completely unviable after exposure to ROS generated by the excited FLG-Ce6 hybrid nanomaterial. An increased PDT effect was observed with the FLG-Ce6 hybrid nanomaterial by a significant reduction in the viability of C. albicans, by up to 95%. This is a marked improvement compared to Ce6 without FLG, which reduces the viability of C. albicans to only 10%. The antifungal action of the hybrid nanomaterial can be activated by a synergistic mechanism of energy transfer of the absorbed light from Ce6 to FLG. The novel FLG-Ce6 hybrid nanomaterial in combination with the red LED light irradiation can be used in the development of a wide range of antinosocomial devices and coatings.
Collapse
Affiliation(s)
- Selene Acosta
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, México
- Chimie des Interactions Plasma – Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Belgium
| | - Carlos Moreno-Aguilar
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | | | | | - Erick Sarmiento-Gomez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| | - Carla Bittencourt
- Chimie des Interactions Plasma – Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Belgium
| | - Luis Octavio Sánchez-Vargas
- Laboratorio de Bioquímica, Patología y Microbiología, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, México
| | - Mildred Quintana
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, México
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, México
| |
Collapse
|
40
|
Li Q, Ren J, Chen Q, Liu W, Xu Z, Cao Y, Kang Y, Xue P. A HMCuS@MnO 2 nanocomplex responsive to multiple tumor environmental clues for photoacoustic/fluorescence/magnetic resonance trimodal imaging-guided and enhanced photothermal/photodynamic therapy. NANOSCALE 2020; 12:12508-12521. [PMID: 32497157 DOI: 10.1039/d0nr01547d] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) are advantageous for loading small-molecule therapeutic drugs coupled with photothermal ablation for synergistic tumor therapy. However, treatment efficacy mediated by HMCuS NPs is not always satisfactory owing to their insensitivity toward the tumor microenvironment (TME), and unpredictable drug leakage may also result in deleterious systemic toxicity. Here, a novel HMCuS@MnO2-based core-shell nanoplatform was developed as a highly efficient TME modulator, which could alleviate tumor hypoxia, deplete the level of intracellular glutathione (GSH) and trigger the dissolution of Mn2+. Moreover, MnO2, in situ grown on the surface of HMCuS, may act as a gatekeeper by forming a stimulus-responsive plug within the mesoporous structure, which effectively prevented the premature release of encapsulated photosensitizer chlorin e6 (Ce6) and was responsive to the acidic TME for demand-based drug release. Under the condition of 660/808 nm dual-wavelength laser irradiation, hyperthermia-mediated photothermal therapy (PTT) and reactive oxygen species (ROS)-mediated photodynamic therapy (PDT) can be triggered for tumor eradication, which were further enhanced upon the modification of the TME. In the meantime, splendid photoacoustic (PA)/fluorescence (FL)/magnetic resonance (MR) imaging properties of HMCuS@MnO2/Ce6 (CMC) NPs could enable the realization of more precise, reliable and on-demand combination therapy. In a word, this study illustrated a promising approach to strengthen the efficacy of HMCuS-based nanotherapeutics, which would definitely promote the further exploitation of smarter nanoplatforms for synergistic disease management.
Collapse
Affiliation(s)
- Qian Li
- Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hedayatnasab Z, Dabbagh A, Abnisa F, Wan Daud WMA. Polycaprolactone-coated superparamagnetic iron oxide nanoparticles for in vitro magnetic hyperthermia therapy of cancer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109789] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Superparamagnetic Iron Oxide Nanoparticles Modified with Silica Layers as Potential Agents for Lung Cancer Treatment. NANOMATERIALS 2020; 10:nano10061076. [PMID: 32486431 PMCID: PMC7353209 DOI: 10.3390/nano10061076] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising drug delivery carriers and hyperthermia agents for the treatment of cancer. However, to ensure their safety in vivo, SPIONs must be modified in order to prevent unwanted iron release. Thus, SPIONs were coated with silica layers of different morphologies: non-porous (@SiO2), mesoporous (@mSiO2) or with a combination of non-porous and mesoporous layers (@SiO2@mSiO2) deposited via a sol-gel method. The presence of SiO2 drastically changed the surface properties of the nanoparticles. The zeta potential changed from 19.6 ± 0.8 mV for SPIONs to -26.1 ± 0.1 mV for SPION@mSiO2. The Brunauer-Emmett-Teller (BET) surface area increased from 7.54 ± 0.02 m2/g for SPIONs to 101.3 ± 2.8 m2/g for SPION@mSiO2. All types of coatings significantly decreased iron release (at least 10 fold as compared to unmodified SPIONs). SPIONs and SPION@mSiO2 were tested in vitro in contact with human lung epithelial cells (A549 and BEAS-2B). Both nanoparticle types were cytocompatible, although some delay in proliferation was observed for BEAS-2B cells as compared to A549 cells, which was correlated with increased cell velocity and nanoparticles uptake.
Collapse
|
43
|
Avasthi A, Caro C, Pozo-Torres E, Leal MP, García-Martín ML. Magnetic Nanoparticles as MRI Contrast Agents. Top Curr Chem (Cham) 2020; 378:40. [PMID: 32382832 PMCID: PMC8203530 DOI: 10.1007/s41061-020-00302-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
Iron oxide nanoparticles (IONPs) have emerged as a promising alternative to conventional contrast agents (CAs) for magnetic resonance imaging (MRI). They have been extensively investigated as CAs due to their high biocompatibility and excellent magnetic properties. Furthermore, the ease of functionalization of their surfaces with different types of ligands (antibodies, peptides, sugars, etc.) opens up the possibility of carrying out molecular MRI. Thus, IONPs functionalized with epithelial growth factor receptor antibodies, short peptides, like RGD, or aptamers, among others, have been proposed for the diagnosis of various types of cancer, including breast, stomach, colon, kidney, liver or brain cancer. In addition to cancer diagnosis, different types of IONPs have been developed for other applications, such as the detection of brain inflammation or the early diagnosis of thrombosis. This review addresses key aspects in the development of IONPs for MRI applications, namely, synthesis of the inorganic core, functionalization processes to make IONPs biocompatible and also to target them to specific tissues or cells, and finally in vivo studies in animal models, with special emphasis on tumor models.
Collapse
Affiliation(s)
- Ashish Avasthi
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Carlos Caro
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain
| | - Esther Pozo-Torres
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain
| | - Manuel Pernia Leal
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, 41012, Seville, Spain.
| | - María Luisa García-Martín
- BIONAND - Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía-Universidad de Málaga, C/Severo Ochoa, 35, 29590, Málaga, Spain. .,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Málaga, Spain.
| |
Collapse
|
44
|
Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive drug delivery systems for improving tumor-targeting ability and reducing adverse side effects. Asian J Pharm Sci 2020; 15:311-325. [PMID: 32636949 PMCID: PMC7327776 DOI: 10.1016/j.ajps.2019.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/28/2019] [Accepted: 06/20/2019] [Indexed: 01/23/2023] Open
Abstract
Cancer is a big challenge that has plagued the human beings for ages and one of the most effective treatments is chemotherapy. However, the low tumor-targeting ability limits the wide clinical application of chemotherapy. The microenvironment plays a critical role in many aspects of tumor genesis. It generates the tumor vasculature and it is highly implicated in the progression to metastasis. To maintain a suitable environment for tumor progression, there are special microenvironment in tumor cell, such as low pH, high level of glutathione (GSH) and reactive oxygen species (ROS), and more special enzymes, which is different to normal cell. Microenvironment-targeted therapy strategy could create new opportunities for therapeutic targeting. Compared to other targeting strategies, microenvironment-targeted therapy strategy will control the drug release into tumor cells more accurately. Redox responsive drug delivery systems (DDSs) are developed based on the high level of GSH in tumor cells. However, there are also GSH in normal cell though its level is lower. In order to control the release of drugs more accurately and reduce side effects, other drug release stimuli have been introduced to redox responsive DDSs. Under the synergistic reaction of two stimuli, redox dual-stimuli responsive DDSs will control the release of drugs more accurately and quickly and even increase the accumulation. This review summarizes strategies of redox dual-stimuli responsive DDSs such as pH, light, enzyme, ROS, and magnetic guide to delivery chemotherapeutic agents more accurately, aiming at providing new ideas for further promoting the drug release, enhancing tumor-targeting and improving anticancer effects. To better illustrate the redox dual-stimuli responsive DDS, preparations of carriers are also briefly described in the review.
Collapse
Affiliation(s)
- Ruirui Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feifei Peng
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Cai
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dandan Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
45
|
Conjugate of chlorin е6 with iron bis(dicarbollide) nanocluster: synthesis and biological properties. Future Med Chem 2020; 12:1015-1023. [PMID: 32319316 DOI: 10.4155/fmc-2020-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Efficiency of both photodynamic and boron-neutron capture anticancer therapies (BNCT) depends on the properties of the used photo- and neutronsensitizer. We report on the synthesis and properties of the advanced photo- and neutronsensitizer designed as a conjugate of chlorin e6 with iron bis(dicarbollide) nanocluster. Results: The conjugate is shown to accumulate efficiently in rat glioblastoma C6 cells delivering >109 boron atoms per cell and thus meeting requirements for BNCT agents, to provide photoinduced 50% death of C6 cells at 35 ± 3 nM, to be not toxic for cells without activating stimulus. Conclusions: The conjugate is a prospective theranostic agent for photodynamic, BNCT and fluorescent diagnostics of tumors.
Collapse
|
46
|
Sharifi M, Hasan A, Nanakali NMQ, Salihi A, Qadir FA, Muhammad HA, Shekha MS, Aziz FM, Amen KM, Najafi F, Yousefi-Manesh H, Falahati M. Combined chemo-magnetic field-photothermal breast cancer therapy based on porous magnetite nanospheres. Sci Rep 2020; 10:5925. [PMID: 32245980 PMCID: PMC7125194 DOI: 10.1038/s41598-020-62429-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/14/2020] [Indexed: 11/08/2022] Open
Abstract
The efficacy of different modalities of treating breast cancer is inhibited by several limitations such as off-targeted drug distribution, rapid drug clearance, and drug resistance. To overcome these limitations, we developed Lf-Doxo-PMNSs for combined chemo-MF-PTT. The PMNSs were synthesized by hydrothermal method and their physicochemical properties were examined by FE-SEM, TEM, DLS, TGA, XRD investigations. The cytotoxicity of as-synthesized NPs against 4T1 cells was carried out by MTT and flow cytometry assays. Afterwards, the anti-cancer activities of as-synthesized Lf-Doxo-PMNSs on the tumor status, drug distribution and apoptosis mechanism were evaluated. The anti-cancer assays showed that Lf-Doxo-PMNSs significantly suppressed the cancer cell proliferation and tumor weight by prolonging drug availability and potential drug loading in tumor cells; whereas they showed a minimum cytotoxicity against non-cancerous cells. Likewise, combined chemo-MF-PTT using Lf-Doxo-PMNSs displayed the highest anti-cancer activity followed by combined chemo-PTT and combined chemo-MF therapy based on altering the apoptosis mechanism. Therefore, these results showed that combined chemo-MF-PTT based on Lf-Doxo-PMNSs can be used as a promising therapeutic platform with potential targeted drug delivery and high loading capacity features as well as reducing cancer drug resistance.
Collapse
Affiliation(s)
- Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Anwarul Hasan
- Biomedical Research Center, Qatar University, Doha, 2713, Qatar.
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar.
| | - Nadir Mustafa Qadir Nanakali
- Department of Biology, College of Science, Cihan University-Erbil, Kurdistan Region, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Fikry Ali Qadir
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Hawzheen A Muhammad
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaimani, Kurdistan region, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Karwan M Amen
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
- College of Nursing, Hawler Medical University, Erbil, Iraq
| | - Farrokh Najafi
- Department of Biomaterial engineering, University of Amir-Kabir, Tehran, Iran
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
47
|
Magalhães JA, Fernandes AU, Junqueira HC, Nunes BC, Cursino TAF, Formaggio DMD, da S Baptista M, Tada DB. Bimetallic nanoparticles enhance photoactivity of conjugated photosensitizer. NANOTECHNOLOGY 2020; 31:095102. [PMID: 31703225 DOI: 10.1088/1361-6528/ab55c0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although photodynamic therapy (PDT) of cancer has been continuously improved, its efficiency is still limited by the high toxicity in the absence of irradiation, aggregation and deactivation by biomolecules of the most common photosensitizers (PS). The association of PS to nanoparticles (NPs) can be a promising tool to overcome these limitations and also to enhance PS tumoral selectivity. In addition, the association of PS to metallic NPs may provide the modulation of PS fluorescence and also the enhancement of PS photoactivity due to the electronic coupling with NPs plasmon effect. Adversely to the innumerous work on the coupling of PS to metallic NPs, the application of bimetallic NPs with this goal has not been explored yet. In this work we investigated the physicochemical properties and cytotoxicity of bimetallic gold-platinum NPs (AuPtNPs) conjugated to a chlorin molecule modified with a thiol group. Additionally, chlorin was coupled to AuNPs for comparative purposes since these have been the most commonly used NPs in PDT. The results showed that both platforms promoted the chlorin solubility in water which is crucial in biological applications. Despite the enhancement of photoactivity promoted by both NPs in comparison with chlorin in solution, chlorin-conjugated with AuPtNPs proved to be a more suitable platform for PDT application, since it showed a lower dark citotoxicity, as well as a higher generation of singlet oxygen and cell internalization compared with chlorin-conjugated AuNPs. It is important to highlight that this is the first work reporting on the enhancement of PS photoactivity by its conjugation to AuPtNPs.
Collapse
Affiliation(s)
- Jéssica A Magalhães
- Department of Science and Technology, Federal University of São Paulo, São José dos Campos, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhou Z, Zhang W, Zhang L, Cao Y, Xu Z, Kang Y, Xue P. The synthesis of two-dimensional Bi2Te3@SiO2core–shell nanosheets for fluorescence/photoacoustic/infrared (FL/PA/IR) tri-modal imaging-guided photothermal/photodynamic combination therapy. Biomater Sci 2020; 8:5874-5887. [DOI: 10.1039/d0bm01394c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Surface activated Bi2Te3nanosheets (NSs) conjugated with chlorin e6 (Ce6) were developed for high-performance tumor theranostics.
Collapse
Affiliation(s)
- Zhihao Zhou
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Wei Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Second Affiliated Hospital
- Chongqing Medical University
- Chongqing 400010
| | - Lei Zhang
- State Key Laboratory of Silkworm Genome Biology
- Southwest University
- Chongqing 400716
- China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging
- Institute of Ultrasound Imaging
- Second Affiliated Hospital
- Chongqing Medical University
- Chongqing 400010
| | - Zhigang Xu
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Yuejun Kang
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| | - Peng Xue
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
49
|
Belh S, Walalawela N, Lekhtman S, Greer A. Dark-Binding Process Relevant to Preventing Photosensitized Oxidation: Conformation-Dependent Light and Dark Mechanisms by a Dual-Functioning Diketone. ACS OMEGA 2019; 4:22623-22631. [PMID: 31909346 PMCID: PMC6941363 DOI: 10.1021/acsomega.9b03488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Few photosensitizers function in both light and dark processes as they usually have no function when the lights are turned off. We hypothesized that light and dark mechanisms in an α-diketone will be decoupled by dihedral rotation in a conformation-dependent binding process. Successful decoupling of these two functions is now shown. Namely, anti- and syn-skewed conformations of 4,4'-dimethylbenzil promote photosensitized alkoxy radical production, whereas the syn conformation promotes a binding shutoff reaction with trimethyl phosphite. Less rotation of the diketone is better suited to the photosensitizing function since phosphite binding arises through the syn conformer of lower stability. The dual function seen here with the α-diketone is generally not available to sensitizers of limited conformational flexibility, such as porphyrins, phthalocyanines, and fullerenes.
Collapse
Affiliation(s)
- Sarah
J. Belh
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United
States
| | - Niluksha Walalawela
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United
States
| | - Stas Lekhtman
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United
States
| |
Collapse
|
50
|
Wallyn J, Anton N, Vandamme TF. Synthesis, Principles, and Properties of Magnetite Nanoparticles for In Vivo Imaging Applications-A Review. Pharmaceutics 2019; 11:E601. [PMID: 31726769 PMCID: PMC6920893 DOI: 10.3390/pharmaceutics11110601] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/04/2019] [Accepted: 11/09/2019] [Indexed: 12/16/2022] Open
Abstract
The current nanotechnology era is marked by the emergence of various magnetic inorganic nanometer-sized colloidal particles. These have been extensively applied and hold an immense potential in biomedical applications including, for example, cancer therapy, drug nanocarriers (NCs), or in targeted delivery systems and diagnosis involving two guided-nanoparticles (NPs) as nanoprobes and contrast agents. Considerable efforts have been devoted to designing iron oxide NPs (IONPs) due to their superparamagnetic (SPM) behavior (SPM IONPs or SPIONs) and their large surface-to-volume area allowing more biocompatibility, stealth, and easy bonding to natural biomolecules thanks to grafted ligands, selective-site moieties, and/or organic and inorganic corona shells. Such nanomagnets with adjustable architecture have been the topic of significant progresses since modular designs enable SPIONs to carry out several functions simultaneously such as local drug delivery with real-time monitoring and imaging of the targeted area. Syntheses of SPIONs and adjustments of their physical and chemical properties have been achieved and paved novel routes for a safe use of those tailored magnetic ferrous nanomaterials. Herein we will emphasis a basic notion about NPs magnetism in order to have a better understanding of SPION assets for biomedical applications, then we mainly focus on magnetite iron oxide owing to its outstanding magnetic properties. The general methods of preparation and typical characteristics of magnetite are reviewed, as well as the major biomedical applications of magnetite.
Collapse
Affiliation(s)
| | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
| | | |
Collapse
|