1
|
Lewis MA, Lachgar-Ruiz M, Di Domenico F, Duddy G, Chen J, Fernandez S, Morin M, Williams G, Moreno Pelayo MA, Steel KP. Pathological mechanisms and candidate therapeutic approaches in the hearing loss of mice carrying human MIR96 mutations. Genome Med 2024; 16:121. [PMID: 39434156 PMCID: PMC11492784 DOI: 10.1186/s13073-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Progressive hearing loss is a common problem in the human population with no effective therapeutics currently available. However, it has a strong genetic contribution, and investigating the genes and regulatory interactions underlying hearing loss offers the possibility of identifying therapeutic candidates. Mutations in regulatory genes are particularly useful for this, and an example is the microRNA miR-96, a post-transcriptional regulator which controls hair cell maturation. Mice and humans carrying mutations in miR-96 all exhibit hearing impairment, in homozygosis if not in heterozygosis, but different mutations result in different physiological, structural and transcriptional phenotypes. METHODS Here we present our characterisation of two lines of mice carrying different human mutations knocked-in to Mir96. We have carried out auditory brainstem response tests to examine their hearing with age and after noise exposure and have used confocal and scanning electron microscopy to examine the ultrastructure of the organ of Corti and hair cell synapses. Bulk RNA-seq was carried out on the organs of Corti of postnatal mice, followed by bioinformatic analyses to identify candidate targets. RESULTS While mice homozygous for either mutation are profoundly deaf from 2 weeks old, the heterozygous phenotypes differ markedly, with only one mutation resulting in hearing impairment in heterozygosis. Investigations of the structural phenotype showed that one mutation appears to lead to synaptic defects, while the other has a much more severe effect on the hair cell stereociliary bundles. Transcriptome analyses revealed a wide range of misregulated genes in both mutants which were notably dissimilar. We used the transcriptome analyses to investigate candidate therapeutics, and tested one, finding that it delayed the progression of hearing loss in heterozygous mice. CONCLUSIONS Our work adds further support for the importance of the gain of novel targets in microRNA mutants and offers a proof of concept for the identification of pharmacological interventions to maintain hearing.
Collapse
Affiliation(s)
- Morag A Lewis
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK.
| | - Maria Lachgar-Ruiz
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Francesca Di Domenico
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Graham Duddy
- Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Jing Chen
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Sergio Fernandez
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Matias Morin
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Gareth Williams
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Miguel Angel Moreno Pelayo
- Servicio de Genética, Hospital Universitario Ramón y Cajal, IRYCIS and Biomedical Network Research Centre On Rare Diseases (CIBERER), Km 9.100, Madrid, 28034, Spain
| | - Karen P Steel
- Wolfson Sensory, Pain and Regeneration Centre, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
2
|
Shore AN, Li K, Safari M, Qunies AM, Spitznagel BD, Weaver CD, Emmitte K, Frankel W, Weston MC. Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on somatostatin- and parvalbumin-expressing cortical GABAergic neurons. eLife 2024; 13:RP92915. [PMID: 39392867 PMCID: PMC11469685 DOI: 10.7554/elife.92915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
More than 20 recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Kcnt1Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Kcnt1Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Kcnt1Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.
Collapse
Affiliation(s)
- Amy N Shore
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Department of Neurological Sciences, University of VermontBurlingtonUnited States
| | - Keyong Li
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
| | - Mona Safari
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
| | - Alshaima'a M Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science CenterFort WorthUnited States
- School of Biomedical Sciences, University of North Texas Health Science CenterFort WorthUnited States
| | - Brittany D Spitznagel
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - C David Weaver
- Department of Pharmacology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Institute of Chemical Biology, Vanderbilt UniversityNashvilleUnited States
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Kyle Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science CenterFort WorthUnited States
| | - Wayne Frankel
- Institute for Genomic Medicine, Columbia UniversityNew YorkUnited States
- Department of Neurology, Columbia UniversityNew YorkUnited States
| | - Matthew C Weston
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology ResearchRoanokeUnited States
- Department of Neurological Sciences, University of VermontBurlingtonUnited States
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech CarilionRoanokeUnited States
- School of Neuroscience, Virginia TechBlacksburgUnited States
| |
Collapse
|
3
|
Conrad LJ, Grandi FC, Carlton AJ, Jeng JY, de Tomasi L, Zarecki P, Marcotti W, Johnson SL, Mustapha M. The upregulation of K + and HCN channels in developing spiral ganglion neurons is mediated by cochlear inner hair cells. J Physiol 2024; 602:5329-5351. [PMID: 39324853 DOI: 10.1113/jp286134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.
Collapse
Affiliation(s)
- Linus J Conrad
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Fiorella C Grandi
- INSERM, Institute de Myologie, Centre de Recherche en Myologie F-75013, Sorbonne Université, Paris, France
| | - Adam J Carlton
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Lara de Tomasi
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Patryk Zarecki
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Schubert NMA, Reijntjes DOJ, van Tuinen M, Vijayakumar S, Jones TA, Jones SM, Pyott SJ. Pathophysiological processes underlying hidden hearing loss revealed in Kcnt1/2 double knockout mice. Aging Cell 2024; 23:e14243. [PMID: 39049179 PMCID: PMC11488318 DOI: 10.1111/acel.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 07/27/2024] Open
Abstract
Presbycusis is a prevalent condition in older adults characterized by the progressive loss of hearing due to age-related changes in the cochlea, the auditory portion of the inner ear. Many adults also struggle with understanding speech in noise despite having normal auditory thresholds, a condition termed "hidden" hearing loss because it evades standard audiological assessments. Examination of animal models and postmortem human tissue suggests that hidden hearing loss is also associated with age-related changes in the cochlea and may, therefore, precede overt age-related hearing loss. Nevertheless, the pathological mechanisms underlying hidden hearing loss are not understood, which hinders the development of diagnostic biomarkers and effective treatments for age-related hearing loss. To fill these gaps in knowledge, we leveraged a combination of tools, including transcriptomic profiling and morphological and functional assessments, to identify these processes and examine the transition from hidden to overt hearing loss. As a novel approach, we took advantage of a recently characterized model of hidden hearing loss: Kcnt1/2 double knockout mice. Using this model, we find that even before observable morphological pathology, hidden hearing loss is associated with significant alteration in several processes, notably proteostasis, in the cochlear sensorineural structures, and increased susceptibility to overt hearing loss in response to noise exposure and aging. Our findings provide the first insight into the pathophysiology associated with the earliest and, therefore, most treatable stages of hearing loss and provide critical insight directing future investigation of pharmaceutical strategies to slow and possibly prevent overt age-related hearing loss.
Collapse
Affiliation(s)
- Nick M A Schubert
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - Daniël O J Reijntjes
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcel van Tuinen
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sarath Vijayakumar
- Department of Special Education and Communication Disorders, Barkley Memorial Center, University of Nebraska Lincoln, Lincoln, Nebraska, USA
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, Barkley Memorial Center, University of Nebraska Lincoln, Lincoln, Nebraska, USA
| | - Sherri M Jones
- Department of Special Education and Communication Disorders, Barkley Memorial Center, University of Nebraska Lincoln, Lincoln, Nebraska, USA
| | - Sonja J Pyott
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Graduate School of Medical Sciences Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Shore AN, Li K, Safari M, Qunies AM, Spitznagel BD, Weaver CD, Emmitte KA, Frankel WN, Weston MC. Heterozygous expression of a Kcnt1 gain-of-function variant has differential effects on SST- and PV-expressing cortical GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.11.561953. [PMID: 37873369 PMCID: PMC10592778 DOI: 10.1101/2023.10.11.561953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
More than twenty recurrent missense gain-of-function (GOF) mutations have been identified in the sodium-activated potassium (KNa) channel gene KCNT1 in patients with severe developmental and epileptic encephalopathies (DEEs), most of which are resistant to current therapies. Defining the neuron types most vulnerable to KCNT1 GOF will advance our understanding of disease mechanisms and provide refined targets for precision therapy efforts. Here, we assessed the effects of heterozygous expression of a Kcnt1 GOF variant (Y777H) on KNa currents and neuronal physiology among cortical glutamatergic and GABAergic neurons in mice, including those expressing vasoactive intestinal polypeptide (VIP), somatostatin (SST), and parvalbumin (PV), to identify and model the pathogenic mechanisms of autosomal dominant KCNT1 GOF variants in DEEs. Although the Kcnt1-Y777H variant had no effects on glutamatergic or VIP neuron function, it increased subthreshold KNa currents in both SST and PV neurons but with opposite effects on neuronal output; SST neurons became hypoexcitable with a higher rheobase current and lower action potential (AP) firing frequency, whereas PV neurons became hyperexcitable with a lower rheobase current and higher AP firing frequency. Further neurophysiological and computational modeling experiments showed that the differential effects of the Y777H variant on SST and PV neurons are not likely due to inherent differences in these neuron types, but to an increased persistent sodium current in PV, but not SST, neurons. The Y777H variant also increased excitatory input onto, and chemical and electrical synaptic connectivity between, SST neurons. Together, these data suggest differential pathogenic mechanisms, both direct and compensatory, contribute to disease phenotypes, and provide a salient example of how a pathogenic ion channel variant can cause opposite functional effects in closely related neuron subtypes due to interactions with other ionic conductances.
Collapse
Affiliation(s)
- Amy N. Shore
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Keyong Li
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
| | - Mona Safari
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
- School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Wayne N. Frankel
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Matthew C. Weston
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Center for Neurobiology Research, Roanoke, VA, USA
- Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
- Translational Biology, Medicine, and Health Graduate Program, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
6
|
Wu J, Quraishi IH, Zhang Y, Bromwich M, Kaczmarek LK. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Cell Rep 2024; 43:113904. [PMID: 38457342 PMCID: PMC11013952 DOI: 10.1016/j.celrep.2024.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
The KCNT1 gene encodes the sodium-activated potassium channel Slack (KCNT1, KNa1.1), a regulator of neuronal excitability. Gain-of-function mutations in humans cause cortical network hyperexcitability, seizures, and severe intellectual disability. Using a mouse model expressing the Slack-R455H mutation, we find that Na+-dependent K+ (KNa) and voltage-dependent sodium (NaV) currents are increased in both excitatory and inhibitory cortical neurons. These increased currents, however, enhance the firing of excitability neurons but suppress that of inhibitory neurons. We further show that the expression of NaV channel subunits, particularly that of NaV1.6, is upregulated and that the length of the axon initial segment and of axonal NaV immunostaining is increased in both neuron types. Our study on the coordinate regulation of KNa currents and the expression of NaV channels may provide an avenue for understanding and treating epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Imran H Quraishi
- Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Bromwich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Skrabak D, Bischof H, Pham T, Ruth P, Ehinger R, Matt L, Lukowski R. Slack K + channels limit kainic acid-induced seizure severity in mice by modulating neuronal excitability and firing. Commun Biol 2023; 6:1029. [PMID: 37821582 PMCID: PMC10567740 DOI: 10.1038/s42003-023-05387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.
Collapse
Affiliation(s)
- David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Thomas Pham
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Paplou VG, Schubert NMA, van Tuinen M, Vijayakumar S, Pyott SJ. Functional, Morphological and Molecular Changes Reveal the Mechanisms Associated with Age-Related Vestibular Loss. Biomolecules 2023; 13:1429. [PMID: 37759828 PMCID: PMC10526133 DOI: 10.3390/biom13091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Age-related loss of vestibular function and hearing are common disorders that arise from the loss of function of the inner ear and significantly decrease quality of life. The underlying pathophysiological mechanisms are poorly understood and difficult to investigate in humans. Therefore, our study examined young (1.5-month-old) and old (24-month-old) C57BL/6 mice, utilizing physiological, histological, and transcriptomic methods. Vestibular sensory-evoked potentials revealed that older mice had reduced wave I amplitudes and delayed wave I latencies, indicating reduced vestibular function. Immunofluorescence and image analysis revealed that older mice exhibited a significant decline in type I sensory hair cell density, particularly in hair cells connected to dimorphic vestibular afferents. An analysis of gene expression in the isolated vestibule revealed the upregulation of immune-related genes and the downregulation of genes associated with ossification and nervous system development. A comparison with the isolated cochlear sensorineural structures showed similar changes in genes related to immune response, chondrocyte differentiation, and myelin formation. These findings suggest that age-related vestibular hypofunction is linked to diminished peripheral vestibular responses, likely due to the loss of a specific subpopulation of hair cells and calyceal afferents. The upregulation of immune- and inflammation-related genes implies that inflammation contributes to these functional and structural changes. Furthermore, the comparison of gene expression between the vestibule and cochlea indicates both shared and distinct mechanisms contributing to age-related vestibular and hearing impairments. Further research is necessary to understand the mechanistic connection between inflammation and age-related balance and hearing disorders and to translate these findings into clinical treatment strategies.
Collapse
Affiliation(s)
- Vasiliki Georgia Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
| | - Nick M. A. Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
- Graduate School of Medical Sciences Research, School of Behavioural and Cognitive Neurosciences, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Marcel van Tuinen
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
| | - Sarath Vijayakumar
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA;
| | - Sonja J. Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands; (V.G.P.); (N.M.A.S.); (M.v.T.)
- Graduate School of Medical Sciences Research, School of Behavioural and Cognitive Neurosciences, University of Groningen, 9713 AV Groningen, The Netherlands
| |
Collapse
|
9
|
Kaczmarek LK. Modulation of potassium conductances optimizes fidelity of auditory information. Proc Natl Acad Sci U S A 2023; 120:e2216440120. [PMID: 36930599 PMCID: PMC10041146 DOI: 10.1073/pnas.2216440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/08/2023] [Indexed: 03/18/2023] Open
Abstract
Potassium channels in auditory neurons are rapidly modified by changes in the auditory environment. In response to elevated auditory stimulation, short-term mechanisms such as protein phosphorylation and longer-term mechanisms such as accelerated channel synthesis increase the amplitude of currents that promote high-frequency firing. It has been suggested that this allows neurons to fire at high rates in response to high sound levels. We have carried out simple simulations of the response to postsynaptic neurons to patterns of neurotransmitter release triggered by auditory stimuli. These demonstrate that the amplitudes of potassium currents required for optimal encoding of a low-amplitude auditory signal differ from those for louder sounds. Specifically, the cross-correlation of the output of a neuron with an auditory stimulus is improved by increasing potassium currents as sound amplitude increases. Temporal fidelity for low-frequency stimuli is improved by increasing potassium currents that activate at negative potentials, while that for high-frequency stimuli requires increases in currents that activate at positive membrane potentials. These effects are independent of the firing rate. Moreover, levels of potassium currents that maximize the fidelity of the output of an ensemble of neurons differ from those that maximize fidelity for a single neuron. This suggests that the modulatory mechanisms must coordinate channel activity in groups of neurons or an entire nucleus. The simulations provide an explanation for the modulation of the intrinsic excitability of auditory brainstem neurons by changes in environmental sound levels, and the results may extend to information processing in other neural systems.
Collapse
Affiliation(s)
- Leonard K. Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT06520
| |
Collapse
|
10
|
Wu J, Quraishi IH, Zhang Y, Bromwich M, Kaczmarek LK. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528229. [PMID: 36824888 PMCID: PMC9948954 DOI: 10.1101/2023.02.14.528229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
KCNT1 encodes the sodium-activated potassium channel Slack (KCNT1, K Na 1.1), an important mediator of neuronal membrane excitability. Gain-of-function (GOF) mutations in humans lead cortical network hyperexcitability and seizures, as well as very severe intellectual disability. Using a mouse model of Slack GOF-associated epilepsy, we found that both excitatory and inhibitory neurons of the cerebral cortex have increased Na + -dependent K + (K Na ) currents and voltage-dependent sodium (Na V ) currents. The characteristics of the increased K Na currents were, however, different in the two cell types such that the intrinsic excitability of excitatory neurons was enhanced but that of inhibitory neurons was suppressed. We further showed that the expression of Na V channel subunits, particularly that of Na V 1.6, is upregulated and that the length of the axon initial segment (AIS) and of axonal Na V immunostaining is increased in both neuron types. We found that the proximity of the AIS to the soma is shorter in excitatory neurons than in inhibitory neurons of the mutant animals, potentially contributing to the different effects on membrane excitability. Our study on the coordinate regulation of K Na currents and the expression of Na V channels may provide a new avenue for understanding and treating epilepsies and other neurological disorders. In brief In a genetic mouse model of Na + -activated K + potassium channel gene Slack -related childhood epilepsy, Wu et al . show that a disease-causing gain-of-function (GOF) mutation R455H in Slack channel causes opposite effects on excitability of cortical excitatory and inhibitory neurons. In contrast to heterologous expression systems, they find that the increase in potassium current substantially alters the expression of sodium channel subunits, resulting in increased lengths of axonal initial segments. Highlights GOF mutations in Slack potassium channel cause elevated outward K + currents and inward voltage-dependent Na + (Na V ) currents in cortical neurons Slack GOF does not alter the expression of Slack channel but upregulates the expression of Na V channel Slack GOF enhances the excitability of excitatory neurons but suppresses the firing of inhibitory interneuronsSlack GOF alters the length of AIS in both excitatory and inhibitory neuronsProximity of AIS to the soma is different between excitatory neuron and inhibitory neuron.
Collapse
|
11
|
Miziak B, Czuczwar SJ. Approaches for the discovery of drugs that target K Na 1.1 channels in KCNT1-associated epilepsy. Expert Opin Drug Discov 2022; 17:1313-1328. [PMID: 36408599 DOI: 10.1080/17460441.2023.2150164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There are approximately 70 million people with epilepsy and about 30% of patients are not satisfactorily treated. A link between gene mutations and epilepsy is well documented. A number of pathological variants of KCNT1 gene (encoding the weakly voltage-dependent sodium-activated potassium channel - KNa 1.1) mutations has been found. For instance, epilepsy of infancy with migrating focal seizures, autosomal sleep-related hypermotor epilepsy or Ohtahara syndrome have been associated with KCNT1 gene mutations. AREAS COVERED Several methods for studies on KNa 1.1 channels have been reviewed - patch clamp analysis, Förster resonance energy transfer spectroscopy and whole-exome sequencing. The authors also review available drugs for the management of KCNT1 epilepsies. EXPERT OPINION The current methods enable deeper insights into electrophysiology of KNa 1.1 channels or its functioning in different activation states. It is also possible to identify a given KCNT1 mutation. Quinidine and cannabidiol show variable efficacy as add-on to baseline antiepileptic drugs so more effective treatments are required. A combined approach with the methods shown above, in silico methods and the animal model of KCNT1 epilepsies seems likely to create personalized treatment of patients with KCNT1 gene mutations.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
12
|
Liu R, Sun L, Wang Y, Jia M, Wang Q, Cai X, Wu J. Double-edged Role of K Na Channels in Brain Tuning: Identifying Epileptogenic Network Micro-Macro Disconnection. Curr Neuropharmacol 2022; 20:916-928. [PMID: 34911427 PMCID: PMC9881102 DOI: 10.2174/1570159x19666211215104829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsy is commonly recognized as a disease driven by generalized hyperexcited and hypersynchronous neural activity. Sodium-activated potassium channels (KNa channels), which are encoded by the Slo 2.2 and Slo 2.1 genes, are widely expressed in the central nervous system and considered as "brakes" to adjust neuronal adaptation through regulating action potential threshold or after-hyperpolarization under physiological condition. However, the variants in KNa channels, especially gain-of-function variants, have been found in several childhood epileptic conditions. Most previous studies focused on mapping the epileptic network on the macroscopic scale while ignoring the value of microscopic changes. Notably, paradoxical role of KNa channels working on individual neuron/microcircuit and the macroscopic epileptic expression highlights the importance of understanding epileptogenic network through combining microscopic and macroscopic methods. Here, we first illustrated the molecular and physiological function of KNa channels on preclinical seizure models and patients with epilepsy. Next, we summarized current hypothesis on the potential role of KNa channels during seizures to provide essential insight into what emerged as a micro-macro disconnection at different levels. Additionally, we highlighted the potential utility of KNa channels as therapeutic targets for developing innovative anti-seizure medications.
Collapse
Affiliation(s)
- Ru Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Lei Sun
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Meng Jia
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qun Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xiang Cai
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| | - Jianping Wu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China;,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China;,China National Clinical Research Center for Neurological Diseases, Beijing, China;,Address correspondence to these authors at the Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Tel: +0086-18062552085; E-mail: Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China; Tel: +0086-13319285082; E-mail:
| |
Collapse
|
13
|
Liu W, Rask-Andersen H. Na/K-ATPase Gene Expression in the Human Cochlea: A Study Using mRNA in situ Hybridization and Super-Resolution Structured Illumination Microscopy. Front Mol Neurosci 2022; 15:857216. [PMID: 35431803 PMCID: PMC9009265 DOI: 10.3389/fnmol.2022.857216] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Background The pervasive Na/K-ATPase pump is highly expressed in the human cochlea and is involved in the generation of the endocochlear potential as well as auditory nerve signaling and relay. Its distribution, molecular organization and gene regulation are essential to establish to better understand inner ear function and disease. Here, we analyzed the expression and distribution of the ATP1A1, ATP1B1, and ATP1A3 gene transcripts encoding the Na/K-ATPase α1, α3, and β1 isoforms in different domains of the human cochlea using RNA in situ hybridization. Materials and Methods Archival paraformaldehyde-fixed sections derived from surgically obtained human cochleae were used to label single mRNA gene transcripts using the highly sensitive multiplex RNAscope® technique. Localization of gene transcripts was performed by super-resolution structured illumination microscopy (SR-SIM) using fluorescent-tagged probes. GJB6 encoding of the protein connexin30 served as an additional control. Results Single mRNA gene transcripts were seen as brightly stained puncta. Positive and negative controls verified the specificity of the labeling. ATP1A1 and ATP1B1 gene transcripts were demonstrated in the organ of Corti, including the hair and supporting cells. In the stria vascularis, these transcripts were solely expressed in the marginal cells. A large number of ATP1B1 gene transcripts were found in the spiral ganglion cell soma, outer sulcus, root cells, and type II fibrocytes. The ATP1B1 and ATP1A3 gene transcripts were rarely detected in axons. Discussion Surgically obtained inner ear tissue can be used to identify single mRNA gene transcripts using high-resolution fluorescence microscopy after prompt formaldehyde fixation and chelate decalcification. A large number of Na/K-ATPase gene transcripts were localized in selected areas of the cochlear wall epithelium, fibrocyte networks, and spiral ganglion, confirming the enzyme’s essential role for human cochlear function.
Collapse
|
14
|
Transcriptome-Guided Identification of Drugs for Repurposing to Treat Age-Related Hearing Loss. Biomolecules 2022; 12:biom12040498. [PMID: 35454087 PMCID: PMC9028743 DOI: 10.3390/biom12040498] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Age-related hearing loss (ARHL) or presbycusis is a prevalent condition associated with social isolation, cognitive impairment, and dementia. Age-related changes in the cochlea, the auditory portion of the inner ear, are the primary cause of ARHL. Unfortunately, there are currently no pharmaceutical approaches to treat ARHL. To examine the biological processes underlying age-related changes in the cochlea and identify candidate drugs for rapid repurposing to treat ARHL, we utilized bulk RNA sequencing to obtain transcriptomes from the functional substructures of the cochlea—the sensorineural structures, including the organ of Corti and spiral ganglion neurons (OC/SGN) and the stria vascularis and spiral ligament (SV/SL)—in young (6-week-old) and old (2-year-old) C57BL/6 mice. Transcriptomic analyses revealed both overlapping and unique patterns of gene expression and gene enrichment between substructures and with ageing. Based on these age-related transcriptional changes, we queried the protein products of genes differentially expressed with ageing in DrugBank and identified 27 FDA/EMA-approved drugs that are suitable to be repurposed to treat ARHL. These drugs target the protein products of genes that are differentially expressed with ageing uniquely in either the OC/SGN or SV/SL and that interrelate diverse biological processes. Further transcriptomic analyses revealed that most genes differentially expressed with ageing in both substructures encode protein products that are promising drug target candidates but are, nevertheless, not yet linked to approved drugs. Thus, with this study, we apply a novel approach to characterize the druggable genetic landscape for ARHL and propose a list of drugs to test in pre-clinical studies as potential treatment options for ARHL.
Collapse
|
15
|
Bharadwaj T, Schrauwen I, Rehman S, Liaqat K, Acharya A, Giese APJ, Nouel-Saied LM, Nasir A, Everard JL, Pollock LM, Zhu S, Bamshad MJ, Nickerson DA, Ali RH, Ullah A, Wali A, Ali G, Santos-Cortez RLP, Ahmed ZM, McDermott BM, Ansar M, Riazuddin S, Ahmad W, Leal SM. ADAMTS1, MPDZ, MVD, and SEZ6: candidate genes for autosomal recessive nonsyndromic hearing impairment. Eur J Hum Genet 2022; 30:22-33. [PMID: 34135477 PMCID: PMC8738740 DOI: 10.1038/s41431-021-00913-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/08/2022] Open
Abstract
Hearing impairment (HI) is a common disorder of sensorineural function with a highly heterogeneous genetic background. Although substantial progress has been made in the understanding of the genetic etiology of hereditary HI, many genes implicated in HI remain undiscovered. Via exome and Sanger sequencing of DNA samples obtained from consanguineous Pakistani families that segregate profound prelingual sensorineural HI, we identified rare homozygous missense variants in four genes (ADAMTS1, MPDZ, MVD, and SEZ6) that are likely the underlying cause of HI. Linkage analysis provided statistical evidence that these variants are associated with autosomal recessive nonsyndromic HI. In silico analysis of the mutant proteins encoded by these genes predicted structural, conformational or interaction changes. RNAseq data analysis revealed expression of these genes in the sensory epithelium of the mouse inner ear during embryonic, postnatal, and adult stages. Immunohistochemistry of the mouse cochlear tissue, further confirmed the expression of ADAMTS1, SEZ6, and MPDZ in the neurosensory hair cells of the organ of Corti, while MVD expression was more prominent in the spiral ganglion cells. Overall, supported by in silico mutant protein analysis, animal models, linkage analysis, and spatiotemporal expression profiling in the mouse inner ear, we propose four new candidate genes for HI and expand our understanding of the etiology of HI.
Collapse
Affiliation(s)
- Thashi Bharadwaj
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Sakina Rehman
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Khurram Liaqat
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Anushree Acharya
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Arnaud P J Giese
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Liz M Nouel-Saied
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Abdul Nasir
- Synthetic Protein Engineering Lab (SPEL), Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Jenna L Everard
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Lana M Pollock
- Case Western Reserve University, Department of Otolaryngology, Head and Neck Surgery, Cleveland, OH, USA
| | - Shaoyuan Zhu
- Case Western Reserve University, Department of Otolaryngology, Head and Neck Surgery, Cleveland, OH, USA
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Raja Hussain Ali
- Department of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Asmat Ullah
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Abdul Wali
- Department of Biotechnology and Informatics, Faculty of Life Sciences and Informatics, BUITEMS, Quetta, Pakistan
| | - Ghazanfar Ali
- Department of Biotechnology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology - Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Brian M McDermott
- Case Western Reserve University, Department of Otolaryngology, Head and Neck Surgery, Cleveland, OH, USA
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Maryland, Baltimore, MD, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Gertrude H. Sergievsky Center, and the Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
16
|
Kalluri R. Similarities in the Biophysical Properties of Spiral-Ganglion and Vestibular-Ganglion Neurons in Neonatal Rats. Front Neurosci 2021; 15:710275. [PMID: 34712112 PMCID: PMC8546178 DOI: 10.3389/fnins.2021.710275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
The membranes of auditory and vestibular afferent neurons each contain diverse groups of ion channels that lead to heterogeneity in their intrinsic biophysical properties. Pioneering work in both auditory- and vestibular-ganglion physiology have individually examined this remarkable diversity, but there are few direct comparisons between the two ganglia. Here the firing patterns recorded by whole-cell patch-clamping in neonatal vestibular- and spiral ganglion neurons are compared. Indicative of an overall heterogeneity in ion channel composition, both ganglia exhibit qualitatively similar firing patterns ranging from sustained-spiking to transient-spiking in response to current injection. The range of resting potentials, voltage thresholds, current thresholds, input-resistances, and first-spike latencies are similarly broad in both ganglion groups. The covariance between several biophysical properties (e.g., resting potential to voltage threshold and their dependence on postnatal age) was similar between the two ganglia. Cell sizes were on average larger and more variable in VGN than in SGN. One sub-group of VGN stood out as having extra-large somata with transient-firing patterns, very low-input resistance, fast first-spike latencies, and required large current amplitudes to induce spiking. Despite these differences, the input resistance per unit area of the large-bodied transient neurons was like that of smaller-bodied transient-firing neurons in both VGN and SGN, thus appearing to be size-scaled versions of other transient-firing neurons. Our analysis reveals that although auditory and vestibular afferents serve very different functions in distinct sensory modalities, their biophysical properties are more closely related by firing pattern and cell size than by sensory modality.
Collapse
Affiliation(s)
- Radha Kalluri
- Caruso Department of Otolaryngology-Head and Neck Surgery, Zilkha Neurogenetics Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Ingham NJ, Banafshe N, Panganiban C, Crunden JL, Chen J, Lewis MA, Steel KP. Inner hair cell dysfunction in Klhl18 mutant mice leads to low frequency progressive hearing loss. PLoS One 2021; 16:e0258158. [PMID: 34597341 PMCID: PMC8486144 DOI: 10.1371/journal.pone.0258158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/19/2021] [Indexed: 12/30/2022] Open
Abstract
Age-related hearing loss in humans (presbycusis) typically involves impairment of high frequency sensitivity before becoming progressively more severe at lower frequencies. Pathologies initially affecting lower frequency regions of hearing are less common. Here we describe a progressive, predominantly low-frequency recessive hearing impairment in two mutant mouse lines carrying different mutant alleles of the Klhl18 gene: a spontaneous missense mutation (Klhl18lowf) and a targeted mutation (Klhl18tm1a(KOMP)Wtsi). Both males and females were studied, and the two mutant lines showed similar phenotypes. Threshold for auditory brainstem responses (ABR; a measure of auditory nerve and brainstem neural activity) were normal at 3 weeks old but showed progressive increases from 4 weeks onwards. In contrast, distortion product otoacoustic emission (DPOAE) sensitivity and amplitudes (a reflection of cochlear outer hair cell function) remained normal in mutants. Electrophysiological recordings from the round window of Klhl18lowf mutants at 6 weeks old revealed 1) raised compound action potential thresholds that were similar to ABR thresholds, 2) cochlear microphonic potentials that were normal compared with wildtype and heterozygous control mice and 3) summating potentials that were reduced in amplitude compared to control mice. Scanning electron microscopy showed that Klhl18lowf mutant mice had abnormally tapering of the tips of inner hair cell stereocilia in the apical half of the cochlea while their synapses appeared normal. These results suggest that Klhl18 is necessary to maintain inner hair cell stereocilia and normal inner hair cell function at low frequencies.
Collapse
Affiliation(s)
- Neil J. Ingham
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Navid Banafshe
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Clarisse Panganiban
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Julia L. Crunden
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Jing Chen
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Morag A. Lewis
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Karen P. Steel
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| |
Collapse
|
18
|
Ehinger R, Kuret A, Matt L, Frank N, Wild K, Kabagema-Bilan C, Bischof H, Malli R, Ruth P, Bausch AE, Lukowski R. Slack K + channels attenuate NMDA-induced excitotoxic brain damage and neuronal cell death. FASEB J 2021; 35:e21568. [PMID: 33817875 DOI: 10.1096/fj.202002308rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
The neuronal Na+ -activated K+ channel Slack (aka Slo2.2, KNa 1.1, or Kcnt1) has been implicated in setting and maintaining the resting membrane potential and defining excitability and firing patterns, as well as in the generation of the slow afterhyperpolarization following bursts of action potentials. Slack activity increases significantly under conditions of high intracellular Na+ levels, suggesting this channel may exert important pathophysiological functions. To address these putative roles, we studied whether Slack K+ channels contribute to pathological changes and excitotoxic cell death caused by glutamatergic overstimulation of Ca2+ - and Na+ -permeable N-methyl-D-aspartic acid receptors (NMDAR). Slack-deficient (Slack KO) and wild-type (WT) mice were subjected to intrastriatal microinjections of the NMDAR agonist NMDA. NMDA-induced brain lesions were significantly increased in Slack KO vs WT mice, suggesting that the lack of Slack renders neurons particularly susceptible to excitotoxicity. Accordingly, excessive neuronal cell death was seen in Slack-deficient primary cerebellar granule cell (CGC) cultures exposed to glutamate and NMDA. Differences in neuronal survival between WT and Slack KO CGCs were largely abolished by the NMDAR antagonist MK-801, but not by NBQX, a potent and highly selective competitive antagonist of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, NMDAR-evoked Ca2+ signals did not differ with regard to Slack genotype in CGCs. However, real-time monitoring of K+ following NMDAR activation revealed a significant contribution of this channel to the intracellular drop in K+ . Finally, TrkB and TrkC neurotrophin receptor transcript levels were elevated in NMDA-exposed Slack-proficient CGCs, suggesting a mechanism by which this K+ channel contributes to the activation of the extracellular-signal-regulated kinase (Erk) pathway and thereby to neuroprotection. Combined, our findings suggest that Slack-dependent K+ signals oppose the NMDAR-mediated excitotoxic neuronal injury by promoting pro-survival signaling via the BDNF/TrkB and Erk axis.
Collapse
Affiliation(s)
- Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anna Kuret
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Nadine Frank
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Katharina Wild
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Clement Kabagema-Bilan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Roland Malli
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Anne E Bausch
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Cole BA, Clapcote SJ, Muench SP, Lippiat JD. Targeting K Na1.1 channels in KCNT1-associated epilepsy. Trends Pharmacol Sci 2021; 42:700-713. [PMID: 34074526 DOI: 10.1016/j.tips.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Gain-of-function (GOF) pathogenic variants of KCNT1, the gene encoding the largest known potassium channel subunit, KNa1.1, are associated with developmental and epileptic encephalopathies accompanied by severe psychomotor and intellectual disabilities. Blocking hyperexcitable KNa1.1 channels with quinidine, a class I antiarrhythmic drug, has shown variable success in patients in part because of dose-limiting off-target effects, poor blood-brain barrier (BBB) penetration, and low potency. In recent years, high-resolution cryogenic electron microscopy (cryo-EM) structures of the chicken KNa1.1 channel in different activation states have been determined, and animal models of the diseases have been generated. Alongside increasing information about the functional effects of GOF pathogenic variants on KNa1.1 channel behaviour and how they lead to hyperexcitability, these tools will facilitate the development of more effective treatment strategies. We review the range of KCNT1 variants and their functional effects, the challenges posed by current treatment strategies, and recent advances in finding more potent and selective therapeutic interventions for KCNT1-related epilepsies.
Collapse
Affiliation(s)
- Bethan A Cole
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen P Muench
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
20
|
Reijntjes DOJ, Breitzler JL, Persic D, Pyott SJ. Preparation of the intact rodent organ of Corti for RNAscope and immunolabeling, confocal microscopy, and quantitative analysis. STAR Protoc 2021; 2:100544. [PMID: 34195667 PMCID: PMC8233256 DOI: 10.1016/j.xpro.2021.100544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This protocol describes the preparation of the mouse organ of Corti for RNAscope, immunolabeling, confocal microscopy, and quantitative image analysis to examine transcript and protein localization, sensory hair cells, and synapses. This protocol can be applied to mice and other rodents (juvenile and adult) and can be adapted for other techniques, including electrophysiology and RNA sequencing. This protocol features minimal tissue processing to preserve viability for downstream assays, while isolating the organ of Corti is the most challenging step. For additional details on the use and execution of this protocol, please refer to McLean et al. (2009); Schuth et al. (2014); Lingle et al. (2019); Pyott et al. (2020).
Collapse
Affiliation(s)
- Daniel O J Reijntjes
- The Center for Hearing and Balance, Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MA 21201, USA
| | - J Lukas Breitzler
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Dora Persic
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9713GZ Groningen, the Netherlands
| |
Collapse
|
21
|
Rutherford MA, von Gersdorff H, Goutman JD. Encoding sound in the cochlea: from receptor potential to afferent discharge. J Physiol 2021; 599:2527-2557. [PMID: 33644871 PMCID: PMC8127127 DOI: 10.1113/jp279189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Ribbon-class synapses in the ear achieve analog to digital transformation of a continuously graded membrane potential to all-or-none spikes. In mammals, several auditory nerve fibres (ANFs) carry information from each inner hair cell (IHC) to the brain in parallel. Heterogeneity of transmission among synapses contributes to the diversity of ANF sound-response properties. In addition to the place code for sound frequency and the rate code for sound level, there is also a temporal code. In series with cochlear amplification and frequency tuning, neural representation of temporal cues over a broad range of sound levels enables auditory comprehension in noisy multi-speaker settings. The IHC membrane time constant introduces a low-pass filter that attenuates fluctuations of the receptor potential above 1-2 kHz. The ANF spike generator adds a high-pass filter via its depolarization-rate threshold that rejects slow changes in the postsynaptic potential and its phasic response property that ensures one spike per depolarization. Synaptic transmission involves several stochastic subcellular processes between IHC depolarization and ANF spike generation, introducing delay and jitter that limits the speed and precision of spike timing. ANFs spike at a preferred phase of periodic sounds in a process called phase-locking that is limited to frequencies below a few kilohertz by both the IHC receptor potential and the jitter in synaptic transmission. During phase-locking to periodic sounds of increasing intensity, faster and facilitated activation of synaptic transmission and spike generation may be offset by presynaptic depletion of synaptic vesicles, resulting in relatively small changes in response phase. Here we review encoding of spike-timing at cochlear ribbon synapses.
Collapse
Affiliation(s)
- Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Henrique von Gersdorff
- Vollum Institute, Oregon Hearing Research Center, Oregon Health and Sciences University, Portland, Oregon 97239
| | | |
Collapse
|
22
|
Kao SY, Katsumi S, Han D, Bizaki-Vallaskangas AJ, Vasilijic S, Landegger LD, Kristiansen AG, McKenna MJ, Stankovic KM. Postnatal expression and possible function of RANK and RANKL in the murine inner ear. Bone 2021; 145:115837. [PMID: 33385614 DOI: 10.1016/j.bone.2020.115837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/28/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
The bone encasing the inner ear, known as the otic capsule, is unique because it remodels little postnatally compared to other bones in the body. Previous studies established that osteoprotegerin (OPG) in the inner ear inhibits otic capsule remodeling. OPG acts as a decoy receptor of receptor activator of nuclear factor κB ligand (RANKL) to disrupt the interaction between RANKL and RANK, the primary regulators of bone metabolism. Here we studied the expression and function of RANK and RANKL in the murine cochlea. Using a combination of in situ hybridization, real-time quantitative RT-PCR, and western blot, we demonstrate that Rankl and Rank genes and their protein products are expressed in the intracochlear soft tissues and the otic capsule in a developmentally regulated manner. Using a culture of neonatal murine cochlear neurons, we show that the interaction between RANK and RANKL inhibits neurite outgrowth in these neurons, and is associated with upregulation of NOGO-A expression. Taken together, our results suggest that, in addition to regulating otic capsule bone remodeling, RANK and RANKL expressed by intracochlear soft tissues may also regulate spiral ganglion neuron function by affecting neurite outgrowth.
Collapse
Affiliation(s)
- Shyan-Yuan Kao
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Sachiyo Katsumi
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Dongjun Han
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | | | - Sasa Vasilijic
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Lukas D Landegger
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Arthur G Kristiansen
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA
| | - Michael J McKenna
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantina M Stankovic
- Department of Otolaryngology - Head and Neck Surgery, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Speech and Hearing Bioscience and Technology Program, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Program in Therapeutic Science, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Liu W, Luque M, Li H, Schrott-Fischer A, Glueckert R, Tylstedt S, Rajan G, Ladak H, Agrawal S, Rask-Andersen H. Spike Generators and Cell Signaling in the Human Auditory Nerve: An Ultrastructural, Super-Resolution, and Gene Hybridization Study. Front Cell Neurosci 2021; 15:642211. [PMID: 33796009 PMCID: PMC8008129 DOI: 10.3389/fncel.2021.642211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: The human auditory nerve contains 30,000 nerve fibers (NFs) that relay complex speech information to the brain with spectacular acuity. How speech is coded and influenced by various conditions is not known. It is also uncertain whether human nerve signaling involves exclusive proteins and gene manifestations compared with that of other species. Such information is difficult to determine due to the vulnerable, "esoteric," and encapsulated human ear surrounded by the hardest bone in the body. We collected human inner ear material for nanoscale visualization combining transmission electron microscopy (TEM), super-resolution structured illumination microscopy (SR-SIM), and RNA-scope analysis for the first time. Our aim was to gain information about the molecular instruments in human auditory nerve processing and deviations, and ways to perform electric modeling of prosthetic devices. Material and Methods: Human tissue was collected during trans-cochlear procedures to remove petro-clival meningioma after ethical permission. Cochlear neurons were processed for electron microscopy, confocal microscopy (CM), SR-SIM, and high-sensitive in situ hybridization for labeling single mRNA transcripts to detect ion channel and transporter proteins associated with nerve signal initiation and conductance. Results: Transport proteins and RNA transcripts were localized at the subcellular level. Hemi-nodal proteins were identified beneath the inner hair cells (IHCs). Voltage-gated ion channels (VGICs) were expressed in the spiral ganglion (SG) and axonal initial segments (AISs). Nodes of Ranvier (NR) expressed Nav1.6 proteins, and encoding genes critical for inter-cellular coupling were disclosed. Discussion: Our results suggest that initial spike generators are located beneath the IHCs in humans. The first NRs appear at different places. Additional spike generators and transcellular communication may boost, sharpen, and synchronize afferent signals by cell clusters at different frequency bands. These instruments may be essential for the filtering of complex sounds and may be challenged by various pathological conditions.
Collapse
Affiliation(s)
- Wei Liu
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | - Maria Luque
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hao Li
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sven Tylstedt
- Department of Olaryngology, Västerviks Hospital, Västervik, Sweden
| | - Gunesh Rajan
- Department of Otolaryngology, Head & Neck Surgery, Luzerner Kantonsspital, Luzern, Switzerland
- Department of Otolaryngology, Head & Neck Surgery, Division of Surgery, Medical School, University of Western Australia, Perth, WA, Australia
| | - Hanif Ladak
- Department of Otolaryngology-Head and Neck Surgery, Department of Medical Biophysics and Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Section of Otolaryngology, Department of Surgical Sciences, Head and Neck Surgery, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
24
|
Greguske EA, Llorens J, Pyott SJ. Assessment of cochlear toxicity in response to chronic 3,3'-iminodipropionitrile in mice reveals early and reversible functional loss that precedes overt histopathology. Arch Toxicol 2021; 95:1003-1021. [PMID: 33495873 PMCID: PMC7904549 DOI: 10.1007/s00204-020-02962-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
The peripheral auditory and vestibular systems rely on sensorineural structures that are vulnerable to ototoxic agents that cause hearing loss and/or equilibrium deficits. Although attention has focused on hair cell loss as the primary pathology underlying ototoxicity, evidence from the peripheral vestibular system indicates that hair cell loss during chronic exposure is preceded by synaptic uncoupling from the neurons and is potentially reversible. To determine if synaptic pathology also occurs in the peripheral auditory system, we examined the extent, time course, and reversibility of functional and morphological alterations in cochleae from mice exposed to 3,3′-iminodipropionitrile (IDPN) in drinking water for 2, 4 or 6 weeks. Functionally, IDPN exposure caused progressive high- to low-frequency hearing loss assessed by measurement of auditory brainstem response wave I absolute thresholds and amplitudes. The extent of hearing loss scaled with the magnitude of vestibular dysfunction assessed behaviorally. Morphologically, IDPN exposure caused progressive loss of outer hair cells (OHCs) and synapses between the inner hair cells (IHCs) and primary auditory neurons. In contrast, IHCs were spared from ototoxic damage. Importantly, hearing loss consistent with cochlear synaptopathy preceded loss of OHCs and synapses and, moreover, recovered if IDPN exposure was stopped before morphological pathology occurred. Our observations suggest that synaptic uncoupling, perhaps as an early phase of cochlear synaptopathy, also occurs in the peripheral auditory system in response to IDPN exposure. These findings identify novel mechanisms that contribute to the earliest stages of hearing loss in response to ototoxic agents and possibly other forms of acquired hearing loss.
Collapse
Affiliation(s)
- Erin A Greguske
- Departament de Ciències Fisiològiques and Institut de Neurociències, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Catalonia, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Jordi Llorens
- Departament de Ciències Fisiològiques and Institut de Neurociències, Universitat de Barcelona, 08907, L'Hospitalet de Llobregat, Catalonia, Spain.,Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907, L'Hospitalet de Llobregat, Catalonia, Spain
| | - Sonja J Pyott
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
25
|
Kim WB, Kang KW, Sharma K, Yi E. Distribution of K v3 Subunits in Cochlear Afferent and Efferent Nerve Fibers Implies Distinct Role in Auditory Processing. Exp Neurobiol 2020; 29:344-355. [PMID: 33154197 PMCID: PMC7649084 DOI: 10.5607/en20043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 11/19/2022] Open
Abstract
Kv3 family K+ channels, by ensuring speedy repolarization of action potential, enable rapid and high frequency neuronal firing and high precision temporal coding of auditory information in various auditory synapses in the brain. Expression of different Kv3 subtypes within the auditory end organ has been reported. Yet, their precise role at the hair cell synaptic transmission has not been fully elucidated. Using immunolabeling and confocal microscopy we examined the expression pattern of different Kv3 family K+ channel subunits in the nerve fibers innervating the cochlear hair cells. Kv3.1b was found in NKA-positive type 1 afferent fibers, exhibiting high signal intensity at the cell body, the unmyelinated dendritic segment, first heminode and nodes of Ranvier. Kv3.3 signal was detected in the cell body and the unmyelinated dendritic segment of NKA-positive type 1 afferent fibers but not in peripherin-positive type 2 afferent. Kv3.4 was found in ChAT-positive LOC and MOC efferent fibers as well as peripherin-positive type 2 afferent fibers. Such segregated expression pattern implies that each Kv3 subunits participate in different auditory tasks, for example, Kv3.1b and Kv3.3 in ascending signaling while Kv3.4 in feedback upon loud noise exposure.
Collapse
Affiliation(s)
- Woo Bin Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kwon-Woo Kang
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
26
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
27
|
Shore AN, Colombo S, Tobin WF, Petri S, Cullen ER, Dominguez S, Bostick CD, Beaumont MA, Williams D, Khodagholy D, Yang M, Lutz CM, Peng Y, Gelinas JN, Goldstein DB, Boland MJ, Frankel WN, Weston MC. Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy. Cell Rep 2020; 33:108303. [PMID: 33113364 PMCID: PMC7712469 DOI: 10.1016/j.celrep.2020.108303] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/06/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023] Open
Abstract
Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - William F Tobin
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erin R Cullen
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Soledad Dominguez
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Michael A Beaumont
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Axion BioSystems, Atlanta, GA 30309, USA
| | - Damian Williams
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10032, USA
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Matthew C Weston
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
28
|
Reijntjes DOJ, Köppl C, Pyott SJ. Volume gradients in inner hair cell-auditory nerve fiber pre- and postsynaptic proteins differ across mouse strains. Hear Res 2020; 390:107933. [PMID: 32203820 DOI: 10.1016/j.heares.2020.107933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
In different animal models, auditory nerve fibers display variation in spontaneous activity and response threshold. Functional and structural differences among inner hair cell ribbon synapses are believed to contribute to this variation. The relative volumes of synaptic proteins at individual synapses might be one such difference. This idea is based on the observation of opposing volume gradients of the presynaptic ribbons and associated postsynaptic glutamate receptor patches in mice along the pillar modiolar axis of the inner hair cell, the same axis along which fibers were shown to vary in their physiological properties. However, it is unclear whether these opposing gradients are expressed consistently across animal models. In addition, such volume gradients observed for separate populations of presynaptic ribbons and postsynaptic glutamate receptor patches suggest different relative volumes of these synaptic structures at individual synapses; however, these differences have not been examined in mice. Furthermore, it is unclear whether such gradients are limited to these synaptic proteins. Therefore, we analyzed organs of Corti isolated from CBA/CaJ, C57BL/6, and FVB/NJ mice using immunofluorescence, confocal microscopy, and quantitative image analysis. We find consistent expression of presynaptic volume gradients across strains of mice and inconsistent expression of postsynaptic volume gradients. We find differences in the relative volume of synaptic proteins, but these are different between CBA/CaJ mice, and C57BL/6 and FVB/NJ mice. We find similar results in C57BL/6 and FVB/NJ mice when using other postsynaptic density proteins (Shank1, Homer, and PSD95). These results have implications for the mechanisms by which volumes of synaptic proteins contribute to variations in the physiology of individual auditory nerve fibers and their vulnerability to excitotoxicity.
Collapse
Affiliation(s)
- Daniël O J Reijntjes
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713 GZ, Groningen, the Netherlands.
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Research Centre Neurosensory Science, Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky University Oldenburg, Germany
| | - Sonja J Pyott
- University of Groningen, University Medical Center Groningen, Groningen, Department of Otorhinolaryngology and Head/Neck Surgery, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
29
|
Lee JH, Kang M, Park S, Perez-Flores MC, Zhang XD, Wang W, Gratton MA, Chiamvimonvat N, Yamoah EN. The local translation of KNa in dendritic projections of auditory neurons and the roles of KNa in the transition from hidden to overt hearing loss. Aging (Albany NY) 2019; 11:11541-11564. [PMID: 31812952 PMCID: PMC6932877 DOI: 10.18632/aging.102553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Local and privileged expression of dendritic proteins allows segregation of distinct functions in a single neuron but may represent one of the underlying mechanisms for early and insidious presentation of sensory neuropathy. Tangible characteristics of early hearing loss (HL) are defined in correlation with nascent hidden hearing loss (HHL) in humans and animal models. Despite the plethora of causes of HL, only two prevailing mechanisms for HHL have been identified, and in both cases, common structural deficits are implicated in inner hair cell synapses, and demyelination of the auditory nerve (AN). We uncovered that Na+-activated K+ (KNa) mRNA and channel proteins are distinctly and locally expressed in dendritic projections of primary ANs and genetic deletion of KNa channels (Kcnt1 and Kcnt2) results in the loss of proper AN synaptic function, characterized as HHL, without structural synaptic alterations. We further demonstrate that the local functional synaptic alterations transition from HHL to increased hearing-threshold, which entails changes in global Ca2+ homeostasis, activation of caspases 3/9, impaired regulation of inositol triphosphate receptor 1 (IP3R1), and apoptosis-mediated neurodegeneration. Thus, the present study demonstrates how local synaptic dysfunction results in an apparent latent pathological phenotype (HHL) and, if undetected, can lead to overt HL. It also highlights, for the first time, that HHL can precede structural synaptic dysfunction and AN demyelination. The stepwise cellular mechanisms from HHL to canonical HL are revealed, providing a platform for intervention to prevent lasting and irreversible age-related hearing loss (ARHL).
Collapse
Affiliation(s)
- Jeong Han Lee
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Mincheol Kang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Maria C Perez-Flores
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Wenying Wang
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| | - Michael Anne Gratton
- Department of Otolaryngology, Head and Neck Surgery, Washington University St. Louis, St. Louis, MO 63110, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California Davis, Davis, CA 95616, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
30
|
Early functional alterations in membrane properties and neuronal degeneration are hallmarks of progressive hearing loss in NOD mice. Sci Rep 2019; 9:12128. [PMID: 31431657 PMCID: PMC6702171 DOI: 10.1038/s41598-019-48376-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Presbycusis or age-related hearing loss (ARHL) is the most common sensory deficit in the human population. A substantial component of the etiology stems from pathological changes in sensory and non-sensory cells in the cochlea. Using a non-obese diabetic (NOD) mouse model, we have characterized changes in both hair cells and spiral ganglion neurons that may be relevant for early signs of age-related hearing loss (ARHL). We demonstrate that hair cell loss is preceded by, or in parallel with altered primary auditory neuron functions, and latent neurite retraction at the hair cell-auditory neuron synapse. The results were observed first in afferent inner hair cell synapse of type I neurites, followed by type II neuronal cell-body degeneration. Reduced membrane excitability and loss of postsynaptic densities were some of the inaugural events before any outward manifestation of hair bundle disarray and hair cell loss. We have identified profound alterations in type I neuronal membrane properties, including a reduction in membrane input resistance, prolonged action potential latency, and a decrease in membrane excitability. The resting membrane potential of aging type I neurons in the NOD, ARHL model, was significantly hyperpolarized, and analyses of the underlying membrane conductance showed a significant increase in K+ currents. We propose that attempts to alleviate some forms of ARHL should include early targeted primary latent neural degeneration for effective positive outcomes.
Collapse
|