1
|
Wang Q, Munteanu B, Marker A, Luo Y, Holz C, Kane JL, Kuntzweiler T, Poulton EJ, Sedic M, Jayyosi Z, Riedel J, Fretland J. The Simultaneous Inhibition of Solute Carrier Family 6 Member 19 and Breast Cancer Resistance Protein Transporters Leads to an Increase of Indoxyl Sulfate (a Uremic Toxin) in Plasma and Kidney. Drug Metab Dispos 2024; 52:1288-1296. [PMID: 39251367 DOI: 10.1124/dmd.124.001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
Solute carrier family 6 member 19 (SLC6A19) inhibitors are being studied as therapeutic agents for phenylketonuria. In this work, a potent SLC6A19 inhibitor (RA836) elevated rat kidney uremic toxin indoxyl sulfate (IDS) levels by intensity (arbitrary unit) of 13.7 ± 7.7 compared with vehicle 0.3 ± 0.1 (P = 0.01) as determined by tissue mass spectrometry imaging analysis. We hypothesized that increased plasma and kidney levels of IDS could be caused by the simultaneous inhibition of both Slc6a19 and a kidney IDS transporter responsible for excretion of IDS into urine. To test this, we first confirmed the formation of IDS through tryptophan metabolism by feeding rats a Trp-free diet. Inhibiting Slc6a19 with RA836 led to increased IDS in these rats. Next, RA836 and its key metabolites were evaluated in vitro for inhibiting kidney transporters such as organic anion transporter (OAT)1, OAT3, and breast cancer resistance protein (BCRP). RA836 inhibits BCRP with an IC50 of 0.045 μM but shows no significant inhibition of OAT1 or OAT3. Finally, RA836 analogs with either potent or no inhibition of SLC6A19 and/or BCRP were synthesized and administered to rats fed a normal diet. Plasma and kidney samples were collected to quantify IDS using liquid chromatography-mass spectrometry. Neither a SLC6A19 inactive but potent BCRP inhibitor nor a SLC6A19 active but weak BCRP inhibitor raised IDS levels, whereas compounds inhibiting both transporters caused IDS accumulation in rat plasma and kidney, supporting the hypothesis that rat Bcrp contributes to the excretion of IDS. In summary, we identified that inhibiting Slc6a19 increases IDS formation, while simultaneously inhibiting Bcrp results in IDS accumulation in the kidney and plasma. SIGNIFICANCE STATEMENT: This is the first publication to decipher the mechanism for accumulation of indoxyl sulfate (IDS) (a uremic toxin) in rats via inhibition of both Slc6a19 and Bcrp. Specifically, inhibition of Slc6a19 in the gastrointestinal track increases IDS formation, and inhibition of Bcrp in the kidney blocks IDS excretion. Therefore, we should avoid inhibiting both solute carrier family 6 member 19 and breast cancer resistance protein simultaneously in humans to prevent accumulation of IDS, a known risk factor for cardiovascular disease, psychic anxiety, and mortality in chronic kidney disease patients.
Collapse
Affiliation(s)
- Qingping Wang
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Bogdan Munteanu
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Alexander Marker
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Yongyi Luo
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Constanze Holz
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - John L Kane
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Theresa Kuntzweiler
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Emma-Jane Poulton
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Maja Sedic
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Zaid Jayyosi
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Jens Riedel
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| | - Jennifer Fretland
- Department of Drug Metabolism and Pharmacokinetics (Q.W., Y.L., J.F.), Integrated Drug Discovery (J.L.K., T.K.), and Preclinical Safety Research (E.-J.P., M.S., Z.J.), Sanofi, Cambridge, Massachusetts; Department of Drug Metabolism and Pharmacokinetics, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany (B.M., A.M., C.H., J.R.)
| |
Collapse
|
2
|
Pitchai A, Buhman K, Shannahan JH. Lipid mediators of inhalation exposure-induced pulmonary toxicity and inflammation. Inhal Toxicol 2024; 36:57-74. [PMID: 38422051 PMCID: PMC11022128 DOI: 10.1080/08958378.2024.2318389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.
Collapse
Affiliation(s)
- Arjun Pitchai
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Kimberly Buhman
- Department of Nutrition, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jonathan H. Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Thakrar FJ, Koladiya GA, Singh SP. Heterologous Expression and Structural Elucidation of a Highly Thermostable Alkaline Serine Protease from Haloalkaliphilic Actinobacterium, Nocardiopsis sp. Mit-7. Appl Biochem Biotechnol 2023; 195:7583-7602. [PMID: 37060510 DOI: 10.1007/s12010-023-04472-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 04/16/2023]
Abstract
A highly thermostable alkaline serine protease gene (SPSPro, MN429015) obtained from haloalkaliphilic actinobacteria, Nocardiopsis sp. Mit-7 (NCIM-5746), was successfully cloned and overexpressed in Escherichia coli BL21 under the control of the T7 promoter in the pET Blue1 vector leading to a 20-kDa gene product. The molecular weight of the recombinant alkaline protease, as determined by SDS-PAGE and the Mass Spectrometer (MALDI-TOF), was 34 kDa. The structural and functional attributes of the recombinant thermostable alkaline serine protease were analyzed by Bioinformatic tools. 3D Monomeric Model and Molecular Docking established the role of the amino acid residues, aspartate, serine, and tryptophan, in the active site of thealkaline protease.The activity of the recombinant alkaline protease was optimal at 65 °C, 5 °C higher than its native protease. The recombinant protease was also active over a wide range of pH 7.0-13.0, with a maximal activity of 6050.47 U/mg at pH 9. Furthermore, the thermodynamic parameters of the immobilized recombinant alkaline protease suggested its reduced vulnerability against adverse conditions under which the enzyme has to undergo varied applications.
Collapse
Affiliation(s)
- Foram J Thakrar
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India.
| |
Collapse
|
4
|
Feucherolles M, Le W, Bour J, Jacques C, Duplan H, Frache G. A Comprehensive Comparison of Tissue Processing Methods for High-Quality MALDI Imaging of Lipids in Reconstructed Human Epidermis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2469-2480. [PMID: 37843012 PMCID: PMC10623569 DOI: 10.1021/jasms.3c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has become an important tool for skin analysis, as it allows the simultaneous detection and localization of diverse molecular species within a sample. The use of in vivo and ex vivo human skin models is costly and presents ethical issues; therefore, reconstructed human epidermis (RHE) models, which mimic the upper part of native human skin, represent a suitable alternative to investigate adverse effects of chemicals applied to the skin. However, there are few publications investigating the feasibility of using MALDI MSI on RHE models. Therefore, the aim of this study was to investigate the effect of sample preparation techniques, i.e., substrate, sample thickness, washing, and matrix recrystallization, on the quality of MALDI MSI for lipids analysis of the SkinEthic RHE model. Images were generated using an atmospheric pressure MALDI source coupled to a high-resolution mass spectrometer with a pixel size of 5 μm. Masses detected in a defined region of interest were analyzed and annotated using the LipostarMSI platform. The results indicated that the combination of (1) coated metallic substrates, such as APTES-coated stainless-steel plates, (2) tissue sections of 6 μm thickness, and (3) aqueous washing before HCCA matrix spraying (without recrystallization), resulted in images with a significant signal intensity as well as numerous m/z values. This refined methodology using AP-MALDI coupled to a high-resolution mass spectrometer should improve the current sample preparation workflow to evaluate changes in skin composition after application of dermatocosmetics.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - William Le
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Jérôme Bour
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Carine Jacques
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Hélène Duplan
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| |
Collapse
|
5
|
Wang X, Zhang L, Xiang Y, Ye N, Liu K. Systematic study of tissue section thickness for MALDI MS profiling and imaging. Analyst 2023; 148:888-897. [PMID: 36661109 DOI: 10.1039/d2an01739c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) has become a powerful method for studying the spatial distribution of molecules. Preparation of tissue sections is a critical step for obtaining high-quality imaging data. The thickness of the slice of tissue affects the feature quality of MALDI MSI. However, few studies involved in-depth and systematic examination of slice thickness. Herein, we investigate the effect of tissue slice thickness on MALDI MSI detection. We found that the thicker the slice, the worse the results obtained by MALDI MS, which we attributed to the charging effect. The optimal slice thickness of brain tissue obtained in this work is 2-6 μm. Comparisons of the effects of slice thickness on atmospheric pressure and vacuum MALDI assays indicated that the ion signals and imaging quality of vacuum MALDI were more seriously affected by the thickness, with atmospheric pressure (AP) MALDI having a greater tolerance for slice thickness than vacuum MALDI. The MALDI MSI of peptides after enzymatic digestion of tissue sections of different thicknesses was also studied, revealing that the most suitable tissue thickness for enzyme digestion is about 10 μm. Finally, we optimized the slice thicknesses of six tissues in mice to provide a reference for MALDI MSI studies. It is worth mentioning that in our study the values of slice thickness range from the nanometer level (400 nm) at the minimum to 150 μm at the maximum, values which were unprecedented. Detailed in-depth and systematic studies of slice thickness will promote the development of sample preparation technology of AP and vacuum MALDI MSI, which will provide important references for the selection of tissue section thickness.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Kehui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101 Beijing, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Gitta S, Márk L, Szentpéteri JL, Szabó É. Lipid Changes in the Peri-Implantation Period with Mass Spectrometry Imaging: A Systematic Review. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010169. [PMID: 36676119 PMCID: PMC9866151 DOI: 10.3390/life13010169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/17/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Mass spectrometry imaging is a sensitive method for detecting molecules in tissues in their native form. Lipids mainly act as energy stores and membrane constituents, but they also play a role in lipid signaling. Previous studies have suggested an important role of lipids in implantation; therefore, our aim was to investigate the lipid changes during this period based on the available literature. The systematic literature search was performed on Ovid MEDLINE, Cochrane Library, Embase, and LILACS. We included studies about lipid changes in the early embryonal stage of healthy mammalian development published as mass spectrometry imaging. The search retrieved 917 articles without duplicates, and five articles were included in the narrative synthesis of the results. Two articles found a different spatial distribution of lipids in the early bovine embryo and receptive uterus. Three articles investigated lipids in mice in the peri-implantation period and found a different spatial distribution of several glycerophospholipids in both embryonic and maternal tissues. Although only five studies from three different research groups were included in this systematic review, it is clear that the spatial distribution of lipids is diverse in different tissues and their distribution varies from day to day. This may be a key factor in successful implantation, but further studies are needed to elucidate the exact mechanism.
Collapse
Affiliation(s)
- Stefánia Gitta
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - László Márk
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- National Human Reproduction Laboratory, University of Pécs, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Research Group, University of Pécs, 7624 Pécs, Hungary
| | - József L. Szentpéteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Éva Szabó
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
7
|
Dong C, Richardson LT, Solouki T, Murray KK. Infrared Laser Ablation Microsampling with a Reflective Objective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:463-470. [PMID: 35104132 PMCID: PMC8895455 DOI: 10.1021/jasms.1c00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A Schwarzschild reflective objective with a numerical aperture of 0.3 and working distance of 10 cm was used for laser ablation sampling of tissue for off-line mass spectrometry. The objective focused the laser to a diameter of 5 μm and produced 10 μm ablation spots on thin ink films and tissue sections. Rat brain tissue sections 50 μm thick were ablated in transmission geometry, and the ablated material was captured in a microcentrifuge tube containing solvent. Proteins from ablated tissue sections were quantified with a Bradford assay, which indicated that approximately 300 ng of protein was captured from a 1 mm2 area of ablated tissue. Areas of tissue ranging from 0.01 to 1 mm2 were ablated and captured for bottom-up proteomics. Proteins were extracted from the captured tissue and digested for liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis for peptide and protein identification.
Collapse
Affiliation(s)
- Chao Dong
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Luke T. Richardson
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Touradj Solouki
- Department
of Chemistry and Biochemistry, Baylor University, Waco, Texas 76706, United States
| | - Kermit K. Murray
- Department
of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
Garikapati V, Colasante C, Baumgart-Vogt E, Spengler B. Sequential lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue specimens from peroxisomal biogenesis factor 11α knockout mice. Anal Bioanal Chem 2022; 414:2235-2250. [PMID: 35083512 PMCID: PMC8821073 DOI: 10.1007/s00216-021-03860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 11/25/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022]
Abstract
Peroxisomes are versatile single membrane-enclosed cytoplasmic organelles, involved in reactive oxygen species (ROS) and lipid metabolism and diverse other metabolic processes. Peroxisomal disorders result from mutations in Pex genes-encoded proteins named peroxins (PEX proteins) and single peroxisomal enzyme deficiencies. The PEX11 protein family (α, β, and γ isoforms) plays an important role in peroxisomal proliferation and fission. However, their specific functions and the metabolic impact caused by their deficiencies have not been precisely characterized. To understand the systemic molecular alterations caused by peroxisomal defects, here we utilized untreated peroxisomal biogenesis factor 11α knockout (Pex11α KO) mouse model and performed serial relative-quantitative lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue homogenates. We demonstrated significant specific changes in the abundances of multiple lipid species, polar metabolites, and proteins and dysregulated metabolic pathways in distinct biological specimens of the Pex11α KO adult mice in comparison to the wild type (WT) controls. Overall, the present study reports comprehensive semi-quantitative molecular omics information of the Pex11α KO mice, which might serve in the future as a reference for a better understanding of the roles of Pex11α and underlying pathophysiological mechanisms of peroxisomal biogenesis disorders.
Collapse
Affiliation(s)
- Vannuruswamy Garikapati
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany.,Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Claudia Colasante
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany
| | - Eveline Baumgart-Vogt
- Institute for Anatomy and Cell Biology II, Division of Medical Cell Biology, Justus Liebig University Giessen, 35392, Giessen, Germany.
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, 35392, Giessen, Germany.
| |
Collapse
|
9
|
Knodel A, Marggraf U, Hoffmann-Posorske E, Burhenn S, Brandt S, Ahlmann N, Foest D, Lorenz K, Franzke J. Pulsed Blue Laser Diode Thermal Desorption Microplasma Imaging Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:45-53. [PMID: 34856796 DOI: 10.1021/jasms.1c00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An ambient air laser desorption, plasma ionization imaging method is developed and presented using a microsecond pulsed laser diode for desorption and a flexible microtube plasma for ionization of the neutral desorbate. Inherent parameters such as the laser repetition rate and pulse width are optimized to the imaging application. For the desorption substrate, copper spots on a copper-glass sandwich structure are used. This novel design enables imaging without ablating the metal into the mass spectrometer. On this substrate, fixed calibration markers are used to decrease the positioning error in the imaging process, featuring a 3D offset correction within the experiment. The image is both screened spot-by-spot and per line scanning at a constant speed, which allows direct comparison. In spot-by-spot scanning, a novel algorithm is presented to unfold and to reconstruct the imaging data. This approach significantly decreases the time required for the imaging process, which allows imaging even at decreased sampling rates and thus higher mass resolution. After the experiment, the raw data is automatically converted and interpreted by a second algorithm, which allows direct visualization of the image from the data, even on low-intensity signals. Mouse liver microtome cuts have been screened for dehydrated cholesterol, proving good agreement of the unfolded data with the morphology of the tissue. The method optically resolves 30 μm, with 30 μm diameter copper spots and a 10 μm gap. No conventional chemical matrices or vacuum conditions are required.
Collapse
Affiliation(s)
- Alexander Knodel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Ulrich Marggraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Edeltraut Hoffmann-Posorske
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Burhenn
- Experimental Physics II, Faculty of Physics and Astronomy, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Norman Ahlmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Daniel Foest
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Kristina Lorenz
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
- Institute of Pharmacology and Toxicology, University of Würzburg, 97078 Würzburg, Germany
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
10
|
Unsihuay D, Yin R, Sanchez DM, Yang M, Li Y, Sun X, Dey SK, Laskin J. High-resolution imaging and identification of biomolecules using Nano-DESI coupled to ion mobility spectrometry. Anal Chim Acta 2021; 1186:339085. [PMID: 34756271 DOI: 10.1016/j.aca.2021.339085] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
Simultaneous spatial localization and structural characterization of molecules in complex biological samples currently represents an analytical challenge for mass spectrometry imaging (MSI) techniques. In this study, we describe a novel experimental platform, which substantially expands the capabilities and enhances the depth of chemical information obtained in high spatial resolution MSI experiments performed using nanospray desorption electrospray ionization (nano-DESI). Specifically, we designed and constructed a portable nano-DESI MSI platform and coupled it with a drift tube ion mobility (IM) spectrometer-mass spectrometer. We demonstrate imaging of drift time-separated ions with a high spatial resolution of better than ∼25 μm using uterine tissues on day 4 of pregnancy in mice. Collision cross-section measurements provide unique molecular descriptors of molecules observed in nano-DESI-IM-MSI necessary for their unambiguous identification by comparison with databases. Meanwhile, isomer-specific imaging reveals variations in the isomeric composition across the tissue. Furthermore, IM separation efficiently eliminates isobaric and isomeric interferences originating from solvent peaks, overlapping isotopic peaks of endogenous molecules extracted from the tissue, and products of in-source fragmentation, which is critical to obtaining accurate concentration gradients in the sample using MSI. The structural information provided by the IM separation substantially expands the molecular specificity of high-resolution MSI necessary for unraveling the complexity of biological systems.
Collapse
Affiliation(s)
- Daisy Unsihuay
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Ruichuan Yin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Manxi Yang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Yingju Li
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Xiaofei Sun
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Centre and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Comparative lipid profiling of murine and human atherosclerotic plaques using high-resolution MALDI MSI. Pflugers Arch 2021; 474:231-242. [PMID: 34797426 PMCID: PMC8766400 DOI: 10.1007/s00424-021-02643-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022]
Abstract
The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE−/−) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE−/− mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed. Obtained data were subjected to multivariate statistical analysis to identify potential biomarkers. Thirty-one m/z values corresponding to individual lipid species of cholesterol esters, lysophosphatidylcholines, lysophosphatidylethanolamines, and cholesterol derivatives were found to be specific in aortic atherosclerotic plaques of old ApoE−/− mice. The lipid composition at related vessel positions of young ApoE−/− mice was more comparable with wild-type mice. Twenty-six m/z values of the murine lipid markers were found in human atherosclerotic peripheral arteries but also control vessels and showed a more patient-dependent diverse distribution. Extensive data analysis without marker preselection based on mouse data revealed lysophosphatidylcholine and glucosylated cholesterol species, the latter not being detected in the murine atherosclerotic tissue, as specific potential novel human atherosclerotic vessel markers. Despite the heterogeneous lipid profile of atherosclerotic peripheral arteries derived from human patients, we identified lipids specifically colocalized to atherosclerotic human tissue and plaques in ApoE−/− mice. These data highlight species-dependent differences in lipid profiles between peripheral artery disease and aortic atherosclerosis.
Collapse
|
12
|
Doble PA, de Vega RG, Bishop DP, Hare DJ, Clases D. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry Imaging in Biology. Chem Rev 2021; 121:11769-11822. [PMID: 34019411 DOI: 10.1021/acs.chemrev.0c01219] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elemental imaging gives insight into the fundamental chemical makeup of living organisms. Every cell on Earth is comprised of a complex and dynamic mixture of the chemical elements that define structure and function. Many disease states feature a disturbance in elemental homeostasis, and understanding how, and most importantly where, has driven the development of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) as the principal elemental imaging technique for biologists. This review provides an outline of ICP-MS technology, laser ablation cell designs, imaging workflows, and methods of quantification. Detailed examples of imaging applications including analyses of cancers, elemental uptake and accumulation, plant bioimaging, nanomaterials in the environment, and exposure science and neuroscience are presented and discussed. Recent incorporation of immunohistochemical workflows for imaging biomolecules, complementary and multimodal imaging techniques, and image processing methods is also reviewed.
Collapse
Affiliation(s)
- Philip A Doble
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Raquel Gonzalez de Vega
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - David P Bishop
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Dominic J Hare
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia.,School of BioSciences, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David Clases
- Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| |
Collapse
|
13
|
Senevirathna JDM, Asakawa S. Multi-Omics Approaches and Radiation on Lipid Metabolism in Toothed Whales. Life (Basel) 2021; 11:364. [PMID: 33923876 PMCID: PMC8074237 DOI: 10.3390/life11040364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022] Open
Abstract
Lipid synthesis pathways of toothed whales have evolved since their movement from the terrestrial to marine environment. The synthesis and function of these endogenous lipids and affecting factors are still little understood. In this review, we focused on different omics approaches and techniques to investigate lipid metabolism and radiation impacts on lipids in toothed whales. The selected literature was screened, and capacities, possibilities, and future approaches for identifying unusual lipid synthesis pathways by omics were evaluated. Omics approaches were categorized into the four major disciplines: lipidomics, transcriptomics, genomics, and proteomics. Genomics and transcriptomics can together identify genes related to unique lipid synthesis. As lipids interact with proteins in the animal body, lipidomics, and proteomics can correlate by creating lipid-binding proteome maps to elucidate metabolism pathways. In lipidomics studies, recent mass spectroscopic methods can address lipid profiles; however, the determination of structures of lipids are challenging. As an environmental stress, the acoustic radiation has a significant effect on the alteration of lipid profiles. Radiation studies in different omics approaches revealed the necessity of multi-omics applications. This review concluded that a combination of many of the omics areas may elucidate the metabolism of lipids and possible hazards on lipids in toothed whales by radiation.
Collapse
Affiliation(s)
- Jayan D. M. Senevirathna
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Shuichi Asakawa
- Laboratory of Aquatic Molecular Biology and Biotechnology, Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan;
| |
Collapse
|
14
|
Vaughn A, DeHoog RJ, Eberlin LS, Appling DR. Metabotype analysis of Mthfd1l-null mouse embryos using desorption electrospray ionization mass spectrometry imaging. Anal Bioanal Chem 2021; 413:3573-3582. [PMID: 33829277 DOI: 10.1007/s00216-021-03308-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 01/07/2023]
Abstract
Mammalian folate-dependent one-carbon (1C) metabolism provides the building blocks essential during development via amino acid interconversion, methyl-donor production, regeneration of redox factors, and de novo purine and thymidylate synthesis. Folate supplementation prevents many neural tube defects (NTDs) that occur during the embryonic process of neurulation. The mechanism by which folate functions during neurulation is not well understood, and not all NTDs are preventable by folate supplementation. Mthfd1l is a mitochondrial 1C metabolism enzyme that produces formate, a 1C donor that fuels biosynthesis and the methyl cycle in the cytoplasm. Homozygous deletion of the Mthfd1l gene in mice (Mthfd1lz/z) causes embryonic lethality, developmental delay, and folate-resistant NTDs. These mice also have defects in cranial mesenchyme formation. In this work, mass spectrometry imaging was used to obtain ion maps of the cranial mesenchyme that identified the spatial distribution and relative abundance of metabolites in wild-type and Mthfd1lz/z embryos. The relative abundances of purine and thymidylate derivatives, as well as amino acids, were diminished in the cranial mesenchyme of Mthfd1lz/z embryos. Loss of Mthfd1l activity in this region also led to abnormal levels of methionine and dysregulated energy metabolism. These alterations in metabolism suggest possible approaches to preventing NTDs in humans.
Collapse
Affiliation(s)
- Amanda Vaughn
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Rachel J DeHoog
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Livia S Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Dean R Appling
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Taylor M, Lukowski JK, Anderton CR. Spatially Resolved Mass Spectrometry at the Single Cell: Recent Innovations in Proteomics and Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:872-894. [PMID: 33656885 PMCID: PMC8033567 DOI: 10.1021/jasms.0c00439] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 05/02/2023]
Abstract
Biological systems are composed of heterogeneous populations of cells that intercommunicate to form a functional living tissue. Biological function varies greatly across populations of cells, as each single cell has a unique transcriptome, proteome, and metabolome that translates to functional differences within single species and across kingdoms. Over the past decade, substantial advancements in our ability to characterize omic profiles on a single cell level have occurred, including in multiple spectroscopic and mass spectrometry (MS)-based techniques. Of these technologies, spatially resolved mass spectrometry approaches, including mass spectrometry imaging (MSI), have shown the most progress for single cell proteomics and metabolomics. For example, reporter-based methods using heavy metal tags have allowed for targeted MS investigation of the proteome at the subcellular level, and development of technologies such as laser ablation electrospray ionization mass spectrometry (LAESI-MS) now mean that dynamic metabolomics can be performed in situ. In this Perspective, we showcase advancements in single cell spatial metabolomics and proteomics over the past decade and highlight important aspects related to high-throughput screening, data analysis, and more which are vital to the success of achieving proteomic and metabolomic profiling at the single cell scale. Finally, using this broad literature summary, we provide a perspective on how the next decade may unfold in the area of single cell MS-based proteomics and metabolomics.
Collapse
Affiliation(s)
- Michael
J. Taylor
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jessica K. Lukowski
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher R. Anderton
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Zahraei A, Guo G, Perwick RD, Donaldson PJ, Demarais NJ, Grey AC. Mapping glucose metabolites in the normal bovine lens: Evaluation and optimisation of a matrix-assisted laser desorption/ionisation imaging mass spectrometry method. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 56:e4666. [PMID: 33089566 DOI: 10.1002/jms.4666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/02/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The spatial resolution of microdissection-based analytical methods to detect ocular lens glucose uptake, transport and metabolism are poor, whereas the multiplexing capability of fluorescence microscopy-based approaches to simultaneously detect multiple glucose metabolites is limited in comparison with mass spectrometry-based methods. To better understand lens glucose transport and metabolism, a more highly spatially resolved technique that maintains the fragile ocular lens tissue is required. In this study, a sample preparation method for matrix-assisted laser desorption/ionisation imaging mass spectrometry (MALDI IMS) analysis of ocular lens glucose uptake and metabolism has been evaluated and optimised. Matrix choice, tissue preparation and normalisation strategy were determined using negative ion mode MALDI-Fourier transform-ion cyclotron resonance MS of bovine lens tissue and validation performed using gas chromatography-MS. An internal standard was applied concurrently with N-(1-naphthyl)ethylenediamine dihydrochloride (NEDC) matrix to limit cracking of the fresh frozen lens tissue sections. MALDI IMS data were collected at a variety of spatial resolutions to detect both endogenous lens metabolites and stable isotopically labelled glucose introduced by ex vivo lens culture. Using this approach, initial steps in important metabolic processes that are linked to diabetic cataract formation were spatially mapped in the bovine lens. In the future, this method can be applied to study the dynamics of glucose uptake, transport and metabolic flux to aid in the study of diabetic lens cataract pathophysiology.
Collapse
Affiliation(s)
- Ali Zahraei
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - George Guo
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Rebecca D Perwick
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Paul J Donaldson
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Nicholas J Demarais
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Angus C Grey
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Li N, Nie H, Jiang L, Ruan G, Du F, Liu H. Recent advances of ambient ionization mass spectrometry imaging in clinical research. J Sep Sci 2020; 43:3146-3163. [PMID: 32573988 DOI: 10.1002/jssc.202000273] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/03/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
The structural information and spatial distribution of molecules in biological tissues are closely related to the potential molecular mechanisms of disease origin, transfer, and classification. Ambient ionization mass spectrometry imaging is an effective tool that provides molecular images while describing in situ information of biomolecules in complex samples, in which ionization occurs at atmospheric pressure with the samples being analyzed in the native state. Ambient ionization mass spectrometry imaging can directly analyze tissue samples at a fairly high resolution to obtain molecules in situ information on the tissue surface to identify pathological features associated with a disease, resulting in the wide applications in pharmacy, food science, botanical research, and especially clinical research. Herein, novel ambient ionization techniques, such as techniques based on spray and solid-liquid extraction, techniques based on plasma desorption, techniques based on laser desorption ablation, and techniques based on acoustic desorption were introduced, and the data processing of ambient ionization mass spectrometry imaging was briefly reviewed. Besides, we also highlight recent applications of this imaging technology in clinical researches and discuss the challenges in this imaging technology and the perspectives on the future of the clinical research.
Collapse
Affiliation(s)
- Na Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Honggang Nie
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Liping Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Guihua Ruan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Fuyou Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
- College of Biological and Environmental Engineering, Changsha University, Changsha, P. R. China
| | - Huwei Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| |
Collapse
|
18
|
Bai H, Khodjaniyazova S, Garrard KP, Muddiman DC. Three-Dimensional Imaging with Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:292-297. [PMID: 32031410 PMCID: PMC8284694 DOI: 10.1021/jasms.9b00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging as a field has pushed its frontiers to three dimensions. Most three-dimensional mass spectrometry imaging (3D MSI) approaches require serial sectioning that results in a loss of biological information between analyzed slices and difficulty in reconstruction of 3D images. In this contribution, infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) was demonstrated to be applicable for 3D MSI that does not require sectioning because IR laser ablates material on a micrometer scale. A commercially available over-the-counter pharmaceutical was used as a model to demonstrate the feasibility of IR-MALDESI for 3D MSI. Depth resolution (i.e., z-resolution) as a function of laser energy levels and density of ablated material was investigated. The best achievable depth resolution from a pill was 2.3 μm at 0.3 mJ/pulse. 2D and 3D MSI were performed on the tablet to show the distribution of pill-specific molecules. A 3D MSI analysis on a region of interest of 15 × 15 voxels across 50 layers was performed. Our results demonstrate that IR-MALDESI is feasible with 3D MSI on a pill, and future work will be focused on analyses of biological tissues.
Collapse
Affiliation(s)
- Hongxia Bai
- FTMS Laboratory for Human Health Research, Department of Chemistry
| | | | - Kenneth P. Garrard
- FTMS Laboratory for Human Health Research, Department of Chemistry
- Precision Engineering Consortium
| | - David C. Muddiman
- FTMS Laboratory for Human Health Research, Department of Chemistry
- Molecular Education, Technology, and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
19
|
Bredehöft J, Bhandari DR, Pflieger FJ, Schulz S, Kang JX, Layé S, Roth J, Gerstberger R, Mayer K, Spengler B, Rummel C. Visualizing and Profiling Lipids in the OVLT of Fat-1 and Wild Type Mouse Brains during LPS-Induced Systemic Inflammation Using AP-SMALDI MSI. ACS Chem Neurosci 2019; 10:4394-4406. [PMID: 31513369 DOI: 10.1021/acschemneuro.9b00435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lipids, including omega-3 polyunsaturated fatty acids (n-3-PUFAs), modulate brain-intrinsic inflammation during systemic inflammation. The vascular organ of the lamina terminalis (OVLT) is a brain structure important for immune-to-brain communication. We, therefore, aimed to profile the distribution of several lipids (e.g., phosphatidyl-choline/ethanolamine, PC/PE), including n-3-PUFA-carrying lipids (esterified in phospholipids), in the OVLT during systemic lipopolysaccharide(LPS)-induced inflammation. We injected wild type and endogenously n-3-PUFA producing fat-1 transgenic mice with LPS (i.p., 2.5 mg/kg) or PBS. Brain samples were analyzed using immunohistochemistry and high-resolution atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization orbital trapping mass spectrometry imaging (AP-SMALDI-MSI) for spatial resolution of lipids. Depending on genotype and treatment, several distinct distribution patterns were observed for lipids [e.g., lyso(L)PC (16:0)/(18:0)] proposed to be involved in inflammation. The distribution patterns ranged from being homogeneously disseminated [LPC (18:1)], absent/reduced signaling within the OVLT relative to adjacent preoptic tissue [PE (38:6)], either treatment- and genotype-dependent or independent low signal intensities [LPC (18:0)], treatment- and genotype-dependent [PC 38:6)] or independent accumulation in the OVLT [PC (38:7)], and accumulation in commissures, e.g., nerve fibers like the optic nerve [LPE (18:1)]. Overall, screening of lipid distribution patterns revealed distinct inflammation-induced changes in the OVLT, highlighting the prominent role of lipid metabolism in brain inflammation. Moreover, known and novel candidates for brain inflammation and immune-to-brain communication were detected specifically within this pivotal brain structure, a window between the periphery and the brain. The biological significance of these newly identified lipids abundant in the OVLT and the adjacent preoptic area remains to be further analyzed.
Collapse
Affiliation(s)
- Janne Bredehöft
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Fabian Johannes Pflieger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Sabine Schulz
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Jing X. Kang
- Laboratory for Lipid Medicine and Technology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, United States
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux 33076, France
| | - Joachim Roth
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| | - Rüdiger Gerstberger
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
| | - Konstantin Mayer
- University of Giessen and Marburg Lung Center (UGMLC), Justus Liebig University Giessen, Klinikstrasse 33, Giessen D-35392, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392 Giessen, Germany
| | - Christoph Rummel
- Institute of Veterinary Physiology and Biochemistry, Justus Liebig University Giessen, Frankfurter Strasse 100, D-35392 Giessen, Germany
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg 35032, Germany
| |
Collapse
|