1
|
Blaze J, Chen S, Heissel S, Alwaseem H, Landinez Macias MP, Peter C, Molina H, Storkebaum E, Turecki G, Goodarzi H, Akbarian S. Altered tRNA expression profile associated with codon-specific proteomic changes in the suicide brain. Mol Psychiatry 2025:10.1038/s41380-025-02891-8. [PMID: 39809846 DOI: 10.1038/s41380-025-02891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/10/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Suicide is a major public health concern, and the number of deaths by suicide has been increasing in recent years in the US. There are various biological risk factors for suicide, but causal molecular mechanisms remain unknown, suggesting that investigation of novel mechanisms and integrative approaches are necessary. Transfer (t)RNAs and their modifications, including cytosine methylation (m5C), have received little attention regarding their role in normal or diseased brain function, though they are dynamic mediators of protein synthesis. tRNA regulation is highly interconnected with proteomic and metabolomic outcomes, suggesting that investigating these multiple levels of molecular regulation together may elucidate more information on neural function and suicide risk. In the current study, we used an integrative 'omics' approach to probe tRNA dysregulation, including tRNA expression and tRNA m5C, proteomics, and amino acid metabolomics in prefrontal cortex from 98 subjects who died by suicide during an episode of major depressive disorder (MDD) and neurotypical controls. While no changes were detected in amino acid content, results showed increased tRNAGlyGCC expression in the suicide brain that is not driven by changes in m5C. Proteomics revealed increased expression of proteins with high glycine codon GGC content, demonstrating a strong association between isoacceptor-specific tRNA expression and proteomic outcomes in the suicide brain, which is in line with previous work linking tRNAGly with alterations in glycine-rich proteins in a translational rodent model of depression. Further, we confirmed using a rodent model that tRNAGlyGCC overexpression was sufficient to increase the expression of proteins with high glycine codon GGC content that were upregulated in the suicide brain. By characterizing the effects of MDD-suicide in human PFC tissue, we now begin to elucidate a novel molecular signature with downstream consequences for psychiatric outcomes.
Collapse
Affiliation(s)
- J Blaze
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - S Chen
- Department of Biochemistry and Biophysics, Department of Urology, Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - S Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - H Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - M P Landinez Macias
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - C Peter
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - E Storkebaum
- Molecular Neurobiology Laboratory, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - G Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - H Goodarzi
- Department of Biochemistry and Biophysics, Department of Urology, Helen Diller Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Arc Institute, Palo Alto, CA, USA
| | - S Akbarian
- Department of Psychiatry, Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Unadkat P, Rebeiz T, Ajmal E, De Souza V, Xia A, Jinu J, Powell K, Li C. Neurobiological Mechanisms Underlying Psychological Dysfunction After Brain Injuries. Cells 2025; 14:74. [PMID: 39851502 PMCID: PMC11763422 DOI: 10.3390/cells14020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Despite the presentation of similar psychological symptoms, psychological dysfunction secondary to brain injury exhibits markedly lower treatment efficacy compared to injury-independent psychological dysfunction. This gap remains evident, despite extensive research efforts. This review integrates clinical and preclinical evidence to provide a comprehensive overview of the neurobiological mechanisms underlying neuropsychological disorders, focusing on the role of key brain regions in emotional regulation across various forms of brain injuries. It examines therapeutic interventions and mechanistic targets, with the primary goal of identifying pathways for targeted treatments. The review highlights promising therapeutic avenues for addressing injury-associated psychological dysfunction, emphasizing Nrf2, neuropeptides, and nonpharmacological therapies as multi-mechanistic interventions capable of modulating upstream mediators to address the complex interplay of factors underlying psychological dysfunction in brain injury. Additionally, it identifies sexually dimorphic factors as potential areas for further exploration and advocates for detailed investigations into sex-specific patterns to uncover additional contributors to these disorders. Furthermore, it underscores significant gaps, particularly the inadequate consideration of interactions among causal factors, environmental influences, and individual susceptibilities. By addressing these gaps, this review provides new insights and calls for a paradigm shift toward a more context-specific and integrative approach to developing targeted therapies for psychological dysfunction following brain injuries.
Collapse
Affiliation(s)
- Prashin Unadkat
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Tania Rebeiz
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Erum Ajmal
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- SUNY Downstate College of Medicine, Brooklyn, NY 11225, USA
| | - Vincent De Souza
- Department of Neurosurgery, Staten Island University Hospital at Northwell Health, Staten Island, NY 10305, USA
| | - Angela Xia
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
| | - Julia Jinu
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Biology Department, Adelphi University, Garden City, NY 11530, USA
| | - Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Department of Neurosurgery, North Shore University Hospital at Northwell Health, Manhasset, NY 11030, USA
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
3
|
Mok J, Park DY, Han JC. Differential protein expression and metabolite profiling in glaucoma: Insights from a multi-omics analysis. Biofactors 2024; 50:1220-1235. [PMID: 38818964 PMCID: PMC11627470 DOI: 10.1002/biof.2079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/04/2024] [Indexed: 06/01/2024]
Abstract
Various substances within the aqueous humor (AH) can directly or indirectly impact intraocular tissues associated with intraocular pressure (IOP), a critical factor in glaucoma development. This study aims to investigate individual changes in these AH substances and the interactions among altered components through a multi-omics approach. LC/MS analysis was conducted on AH samples from patients with exfoliation syndrome (XFS, n = 5), exfoliation glaucoma (XFG, n = 4), primary open-angle glaucoma (POAG, n = 11), and cataracts (control group, n = 7). Subsequently, differentially expressed proteins and metabolites among groups, alterations in their network interactions, and their biological functions were examined. Both data-independent acquisition and data-dependent acquisition methods were employed to analyze the AH proteome and metabolome, and the results were integrated for a comprehensive analysis. In the proteomics analysis, proteins upregulated in both the XFG and POAG groups were associated with lipid metabolism, complement activation, and extracellular matrix regulation. Metabolomic analysis highlighted significant changes in amino acids related to antioxidant processes in the glaucoma groups. Notably, VTN, APOA1, C6, and L-phenylalanine exhibited significant alterations in the glaucoma groups. Integration of individual omics analyses demonstrated that substances associated with inflammation and lipid metabolism, altered in the glaucoma groups, showed robust interactions within a complex network involving PLG, APOA1, and L-phenylalanine or C3, APOD, and L-valine. These findings offer valuable insights into the molecular mechanisms governing IOP regulation and may contribute to the development of new biomarkers for managing glaucoma.
Collapse
Affiliation(s)
- Jeong‐hun Mok
- Department of Medical Device Management and ResearchSAIHST, Sungkyunkwan UniversitySeoulKorea
| | - Do Young Park
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
| | - Jong Chul Han
- Department of Medical Device Management and ResearchSAIHST, Sungkyunkwan UniversitySeoulKorea
- Department of OphthalmologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulKorea
| |
Collapse
|
4
|
Xu QH, Yang T, Jiang KY, Liu JD, Guo HH, Xia EQ. The association between the number of food kinds and risk of depression in U.S. adults. BMC Public Health 2024; 24:2575. [PMID: 39304862 PMCID: PMC11414104 DOI: 10.1186/s12889-024-19344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/02/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The association between the number of food kinds and the risk of depression in adults was examined. METHODS According to the inclusion and exclusion criteria, a total of 4593 adults were included in the study. The number of food kinds was collected via 24‒hour dietary recalls. Depression was assessed using the Patient Health Questionnaire‒9. Logistic regression and restricted cubic spline models were applied to assess the association between the number of food kinds and the risk of depression. RESULTS This study included 4593 study participants, 451 of whom were diagnosed with depression. The revised advantage ratios (with corresponding confidence intervals) for the prevalence of depression among individuals in the fourth quartiles of the number of food kinds (Q4) in comparison to the lowest quartile (Q1) were determined to be 0.59 (0.36‒0.96), respectively. According to our subgroup analyses, the number of food kinds was negatively associated with the risk of depression in females, participants aged 18‒45 and 45‒65 years, and participants with a body mass index (BMI) of 25 to 24.9 kg/m2. According to our dose‒response analysis, the number of food kinds was linearly associated with the risk of depression (Pfor nonlinear=0.5896). CONCLUSION The risk of depression exhibited a linear and negative correlation with the number of food kinds. The results indicated that a diversified diet was an effective nonpharmacological approach that deserved further generalization.
Collapse
Affiliation(s)
- Qiu-Hui Xu
- School of Public Health, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, 524003, China
| | - Ting Yang
- School of Public Health, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, 524003, China
| | - Ke-Yu Jiang
- School of Public Health, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, 524003, China
| | - Jin-Dong Liu
- School of Public Health, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, 524003, China
| | - Hong-Hui Guo
- School of Public Health, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, 524003, China
| | - En-Qin Xia
- School of Public Health, Shunde Women and Children's Hospital, Guangdong Medical University, Guangdong, 524003, China.
| |
Collapse
|
5
|
Zhang Y, Li XJ, Wang XR, Wang X, Li GH, Xue QY, Zhang MJ, Ao HQ. Integrating Metabolomics and Network Pharmacology to Explore the Mechanism of Xiao-Yao-San in the Treatment of Inflammatory Response in CUMS Mice. Pharmaceuticals (Basel) 2023; 16:1607. [PMID: 38004472 PMCID: PMC10675308 DOI: 10.3390/ph16111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Depression can trigger an inflammatory response that affects the immune system, leading to the development of other diseases related to inflammation. Xiao-Yao-San (XYS) is a commonly used formula in clinical practice for treating depression. However, it remains unclear whether XYS has a modulating effect on the inflammatory response associated with depression. The objective of this study was to examine the role and mechanism of XYS in regulating the anti-inflammatory response in depression. A chronic unpredictable mild stress (CUMS) mouse model was established to evaluate the antidepressant inflammatory effects of XYS. Metabolomic assays and network pharmacology were utilized to analyze the pathways and targets associated with XYS in its antidepressant inflammatory effects. In addition, molecular docking, immunohistochemistry, Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR), and Western Blot were performed to verify the expression of relevant core targets. The results showed that XYS significantly improved depressive behavior and attenuated the inflammatory response in CUMS mice. Metabolomic analysis revealed the reversible modulation of 21 differential metabolites by XYS in treating depression-related inflammation. Through the combination of liquid chromatography and network pharmacology, we identified seven active ingredients and seven key genes. Furthermore, integrating the predictions from network pharmacology and the findings from metabolomic analysis, Vascular Endothelial Growth Factor A (VEGFA) and Peroxisome Proliferator-Activated Receptor-γ (PPARG) were identified as the core targets. Molecular docking and related molecular experiments confirmed these results. The present study employed metabolomics and network pharmacology analyses to provide evidence that XYS has the ability to alleviate the inflammatory response in depression through the modulation of multiple metabolic pathways and targets.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Xiao-Jun Li
- School of Chinese Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 511400, China;
| | - Xin-Rong Wang
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Xiao Wang
- Department of Basic Theory of TCM, Guangzhou University of Chinese Medicine, Guangzhou 511400, China;
| | - Guo-Hui Li
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Qian-Yin Xue
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| | - Ming-Jia Zhang
- Department of Basic Theory of TCM, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Hai-Qing Ao
- Department of Psychology, School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 511400, China; (Y.Z.); (X.-R.W.); (G.-H.L.); (Q.-Y.X.)
| |
Collapse
|
6
|
Qin Q, Li Z, Zhang M, Dai Y, Li S, Wu H, Zhang Z, Chen P. Effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in heat-stressed quails. Poult Sci 2023; 102:102713. [PMID: 37540950 PMCID: PMC10407909 DOI: 10.1016/j.psj.2023.102713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 08/06/2023] Open
Abstract
The purpose of this study was to investigate the effects of melittin on production performance, antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota of heat-stressed quails. A total of 120 (30-day-old) male quails were randomly divided into 3 groups. Each group consisted of 4 replicates with 10 birds per replicate. The ambient temperature of the control group (group W) was 24°C ± 2°C. The heat stress group (group WH) and the heat stress + melittin group (group WHA2) were subjected to heat stress for 4 h from 12:00 to 16:00 every day, and the temperature was 36°C ± 2°C for 10 d. The results showed that compared with the group W, heat stress significantly decreased growth performance, serum and liver antioxidative function, immune function, intestinal villus height (VH) and villus height-to-crypt depth ratio (VH/CD), and cecal microbiota Chao and ACE index (P < 0.05). The crypt depth (CD) in the small intestine, and HSP70 and HSP90 mRNA levels in the heart, liver, spleen, and kidney were significantly increased (P < 0.05). Dietary melittin significantly increased growth performance, serum and liver antioxidative function, immune function, intestinal VH and VH/CD, and cecal microbiota Shannon index in heat-stressed quails (P < 0.05). Melittin significantly decreased small intestinal CD, and HSP70 and HSP90 mRNA levels in the viscera (P < 0.05). Furthermore, dietary melittin could have balanced the disorder of cecal microbiota caused by heat stress and increased the abundance and diversity of beneficial microbiota (e.g., Firmicutes were significantly increased). PICRUSt2 functional prediction revealed that most of the KEGG pathways with differential abundance caused by high temperature were related to metabolism, and melittin could have restored them close to normal levels. Spearman correlation analysis showed that the beneficial intestinal bacteria Anaerotruncus, Bacteroidales_S24-7_group_norank, Lachnospiraceae_unclassified, Shuttleworthia, and Ruminococcaceae_UCG-014 increased by melittin were positively correlated with average daily feed intake, the average daily gain, serum and liver superoxide dismutase, IgG, IgA, bursa of Fabricius index, and ileum VH and VH/CD. In sum, our results demonstrate for the first time that dietary melittin could improve the adverse effects of heat stress on antioxidant function, immune function, heat shock protein, intestinal morphology, and cecal microbiota in quails, consequently improving their production performance under heat stress.
Collapse
Affiliation(s)
- Qingming Qin
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Min Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Yaqi Dai
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Shuohan Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Zifu Zhang
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, Henan Province 464000, PR China.
| |
Collapse
|
7
|
Zielińska M, Łuszczki E, Dereń K. Dietary Nutrient Deficiencies and Risk of Depression (Review Article 2018-2023). Nutrients 2023; 15:nu15112433. [PMID: 37299394 DOI: 10.3390/nu15112433] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Depression is classified as one of the most common mental disorders. Its prevalence has recently increased, becoming a growing public health threat. This review focuses on clarifying the role and importance of individual nutrients in the diet and the impact of nutrient deficiencies on the risk of depression. Deficiencies in nutrients such as protein, B vitamins, vitamin D, magnesium, zinc, selenium, iron, calcium, and omega-3 fatty acids have a significant impact on brain and nervous system function, which can affect the appearance of depressive symptoms. However, it is important to remember that diet in itself is not the only factor influencing the risk of or helping to treat depression. There are many other aspects, such as physical activity, sleep, stress management, and social support, that also play an important role in maintaining mental health. The data review observed that most of the available analyses are based on cross-sectional studies. Further studies, including prospective cohort, case-control studies, are recommended to draw more reliable conclusions.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Edyta Łuszczki
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Katarzyna Dereń
- Institute of Health Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| |
Collapse
|
8
|
Zakaria F, Akhtar MT, Wan Norhamidah WI, Noraini AB, Muhamad A, Shohaimi S, Ahmad H, Ismail IS, Ismail NH, Shaari K. Centella asiatica (L.) Urb. Extract ameliorates branched-chain amino acid (BCAA) metabolism in acute reserpine-induced stress zebrafish model via 1H Nuclear Magnetic Resonance (NMR)-based metabolomics approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109501. [PMID: 36336330 DOI: 10.1016/j.cbpc.2022.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/05/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Depression is a common mental disorder that can adversely affect psychosocial function and quality of life. However, the exact aetiology and pathogenesis of depression are still unclear. Stress plays a major role in the pathogenesis of depression. The use of currently prescribed antidepressants has many side effects. Centella asiatica (C. asiatica) has shown promising antidepressant activity in rodent models. Here, we developed a reserpine-induced zebrafish stress-like model and performed behavioural analysis, cortisol measurement and 1H-Nuclear Magnetic Resonance (1H NMR) spectroscopy-based metabolomics analysis to test the anti-stress activity of ethanolic extract of C. asiatica (RECA). A significant increase in total distance travelled (F(8,8) = 8.905, p = 0.0054) and a reduction in freezing duration (F(9, 9) = 10.38, p = 0.0018) were found in the open field test (OFT). Asiaticoside, one of tested C.asiatica's triterpenoid gives a significant increase in contact duration (F(5,5) = 142.3, (p = 0.0330) at 2.5 mg/kg). Eight biomarkers were found, i.e. ß-hydroxyisovaleric acid, leucine, threonine, scylloinositol, lactate, betaine, valine, choline and l-fucose, to be responsible for the class separation between stress and RECA-treated groups. Metabolic pathway alteration in zebrafish brain upon treatment with RECA was identified as valine, leucine and isoleucine biosynthesis, while alanine, aspartate, glutamate and glycerophospholipid metabolism was involved after fluoxetine treatment.
Collapse
Affiliation(s)
- Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia; Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Muhammad Tayyab Akhtar
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Wan Ibrahim Wan Norhamidah
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Faculty of Science, Biology Department, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Abu Bakar Noraini
- Faculty of Science, Biology Department, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Azira Muhamad
- National Institutes of Biotechnology Malaysia (NIBM), Malaysia Genome Institute, Bangi, Selangor, Malaysia.
| | - Shamarina Shohaimi
- Faculty of Science, Biology Department, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hafandi Ahmad
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Intan Safinar Ismail
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hadiani Ismail
- Attar-Ur-Rahman Institute for Natural Products Discovery, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Sheikhi A, Siassi F, Djazayery A, Guilani B, Azadbakht L. Plant and animal protein intake and its association with depression, anxiety, and stress among Iranian women. BMC Public Health 2023; 23:161. [PMID: 36694166 PMCID: PMC9872399 DOI: 10.1186/s12889-023-15100-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Mental disorders are conditions that affect the usual function of the brain, causing a huge burden on societies. The causes are often unclear, but previous research has pointed out, as is the case with many other diseases, that nutrition could have a major role in it. Amino acids, the building blocks of proteins, are the main precursor of neurotransmitters (the chemical messengers in the brain) malfunction of which is heavily associated with a wide range of brain disorders. METHODS We assumed different sources of dietary protein could have different impacts on mental well-being. Hence, we decided to collect the nutritional data (with a validated and reliable semi-quantitative food-frequency questionnaire) from a sample of 489 Iranian women and investigate the association between animal and plant protein sources and the risk of depression, anxiety, and stress. Symptoms of these mental disorders were assessed using a validated Depression, Anxiety, and Stress Scales (DASS) questionnaire with 21 items. RESULTS After multivariable adjustment, it was shown that women in the highest tertile of animal protein intake were more likely to show symptoms of depression (OR: 2.63; 95% CI: 1.45, 4.71; P = 0.001), anxiety (OR: 1.83; 95% CI: 1.04, 3.22; P = 0.03), and stress (OR: 3.66; 95% CI: 2.06, 6.50; p < 0.001). While no significant association was seen between plant protein and any of the studied mental disorders. CONCLUSION Overall, our findings suggest that a diet high in animal protein could predispose individuals to mental illnesses.
Collapse
Affiliation(s)
- Ali Sheikhi
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran
| | - Fereydoun Siassi
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran
| | - Abolghassem Djazayery
- grid.411705.60000 0001 0166 0922Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran
| | - Bijan Guilani
- grid.46072.370000 0004 0612 7950Department of Clinical Psychology, University of Tehran, Tehran, Iran
| | - Leila Azadbakht
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, P. O. Box: 1416643931, Tehran, Iran. .,Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, IR, Iran.
| |
Collapse
|
10
|
Gu S, Mou T, Chen J, Wang J, Zhang Y, Cui M, Hao W, Zhang C, Sun Y, Zhao T, Wei B. Develop a stepwise integrated method to screen biomarkers of Baihe-Dihuang Tang on the treatment of depression in Rats Applying with composition screened, untargeted and targeted metabolomics analysis. J Sep Sci 2022; 45:1656-1671. [PMID: 35234356 DOI: 10.1002/jssc.202100841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 11/10/2022]
Abstract
Baihe-Dihuang Tang is a commonly prescribed remedy for depression. In this study, component screening with untargeted and targeted metabolomics was used to to identify potential biomarkers for depression in chronic unpredictable mildly-stressed rats. Using this novel identification method, the screening of organic acids, lily saponins, iridoids, and other ingredients formed the basis for subsequent metabolomics research. Baihe-Dihuang Tang supplementation in chronic unpredictable mild-stress -induced depression models, increased their body weight, sucrose preference, brain-derived neurotrophic factor deposition, and spatial exploring. Untargeted metabolomics revealed that Baihe-Dihuang Tang exerts its antidepressant effects by regulating the levels of lipids, organic acids and its derivatives, and benzenoids in the brain, plasma, and urine of the depressed rats. Moreover, it also modulates the D-glutamine and D-glutamate metabolism and purine metabolism. Targeted metabolomics demonstrated significant reduction in L-glutamate levels in the brains of depressed rats. This could be a potential biomarker for depression. Baihe-Dihuang Tang alleviated depression by regulating the levels of L-glutamate, xanthine, and adenine in the brains of depressed rats. Together, these findings conclusively established the promising therapeutic effect of Baihe-Dihuang Tang on depression and also unraveled the underlying molecular mechanism of its potential antidepressant function. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuo Gu
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Tingting Mou
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Jian Chen
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Jing Wang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Ying Zhang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Meirong Cui
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Wenqian Hao
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Chengqin Zhang
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Yue Sun
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Tiantian Zhao
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| | - Binbin Wei
- Pharmacy Teaching Experimental Center, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang, 110122, PR China
| |
Collapse
|
11
|
Ong SK, Husain SF, Wee HN, Ching J, Kovalik JP, Cheng MS, Schwarz H, Tang TB, Ho CS. Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics (Basel) 2021; 11:diagnostics11111978. [PMID: 34829325 PMCID: PMC8617819 DOI: 10.3390/diagnostics11111978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/02/2023] Open
Abstract
Background: Major depressive disorder (MDD) is a debilitating condition with a high disease burden and medical comorbidities. There are currently few to no validated biomarkers to guide the diagnosis and treatment of MDD. In the present study, we evaluated the differences between MDD patients and healthy controls (HCs) in terms of cortical haemodynamic responses during a verbal fluency test (VFT) using functional near-infrared spectroscopy (fNIRS) and serum amino acid profiles, and ascertained if these parameters were correlated with clinical characteristics. Methods: Twenty-five (25) patients with MDD and 25 age-, gender-, and ethnicity-matched HCs were recruited for the study. Real-time monitoring of the haemodynamic response during completion of a VFT was quantified using a 52-channel NIRS system. Serum samples were analysed and quantified by liquid chromatography-mass spectrometry for amino acid profiling. Receiver-operating characteristic (ROC) curves were used to classify potential candidate biomarkers. Results: The MDD patients had lower prefrontal and temporal activation during completion of the VFT than HCs. The MDD patients had lower mean concentrations of oxy-Hb in the left orbitofrontal cortex (OFC), and lower serum histidine levels. When the oxy-haemoglobin response was combined with the histidine concentration, the sensitivity and specificity of results improved significantly from 66.7% to 73.3% and from 65.0% to 90.0% respectively, as compared to results based only on the NIRS response. Conclusions: These findings demonstrate the use of combination biomarkers to aid in the diagnosis of MDD. This technique could be a useful approach to detect MDD with greater precision, but additional studies are required to validate the methodology.
Collapse
Affiliation(s)
- Samantha K. Ong
- Department of Psychological Medicine, National University Health System, Singapore 119228, Singapore;
| | - Syeda F. Husain
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119276, Singapore;
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Jean-Paul Kovalik
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Graduate Medical School, Singapore 169609, Singapore; (H.N.W.); (J.C.); (J.-P.K.)
| | - Man Si Cheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.C.); (H.S.)
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (M.S.C.); (H.S.)
| | - Tong Boon Tang
- Centre for Intelligent Signal and Imaging Research (CISIR), University Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak, Malaysia;
| | - Cyrus S. Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: ; Tel.: +65-67795555
| |
Collapse
|
12
|
Hüfner K, Giesinger JM, Gostner JM, Egeter J, Koudouovoh-Tripp P, Vill T, Fuchs D, Sperner-Unterweger B. Neurotransmitter Precursor Amino Acid Ratios Show Differential, Inverse Correlations with Depression Severity in the Low and High Depression Score Range. Int J Tryptophan Res 2021; 14:11786469211039220. [PMID: 34483668 PMCID: PMC8414612 DOI: 10.1177/11786469211039220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/20/2021] [Indexed: 12/28/2022] Open
Abstract
The immunomodulatory capacity of mental stress is one of the basic concepts of
psychoneuroimmunology. The current prospective longitudinal study was designed
to evaluate the effect of acute mental stress on neurotransmitter precursor
amino acid levels in individuals with depression at 2 time points. Ten
physically healthy patients with a diagnosis of major depressive episode and
Montgomery–Åsberg Depression Rating Scale scores (MADRAS) ⩾20 points at
inclusion were assessed on 2 study days (once with higher MADRAS scores, once
with lower MADRAS scores; median 34.5 days apart) and subjected to a
standardized acute mental stress test on each study day. Blood was collected at
4 time points: once prior to and at 3 time points (0, 30 minutes, 60 minutes)
following mental stress. Neurotransmitter precursor amino acid levels, that is
kynurenine/tryptophan (KYN/TRP) and phenylalanine/tyrosine (PHE/TYR), as well as
neopterin and nitrite were analyzed in a total of 80 individual blood samples.
Regression and correlation analyses were performed. Regression analyses of
PHE/TYR (R2 = .547) and KYN/TRP
(R2 = .440) in relation to MADRAS depression
severity showed a quadratic curve fit. This was reflected by a negative linear
correlation between MADRAS scores and PHE/TYR as well as KYN/TRP in the lower
score range (r = −.805, P < .001 and
r = −.586, P < .001 respectively) and a
positive correlation in the higher MADRAS score range
(r = .713, P < .001 and
r = .379, P = .016 respectively). No effect of
acute mental stress was found. This analysis exemplifies the implications of
sampling as well as data distributions on results. The crosstalk of biological
mechanisms that orchestrate metabolic and immunological signaling may vary
depending on depression severity resulting in non-linear associations that may
explain the heterogeneity of results found in the literature.
Collapse
Affiliation(s)
- Katharina Hüfner
- University Clinic for Psychiatry II,
Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of
Innsbruck, Austria
- Katharina Hüfner, University Clinic for
Psychiatry II, Department of Psychiatry, Psychotherapy and Psychosomatics,
Medical University of Innsbruck, Anichstr. 35, Innsbruck 6020, Austria.
| | - Johannes M Giesinger
- University Clinic for Psychiatry II,
Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of
Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry,
Biocenter, Medical University of Innsbruck, Austria
| | - Jonas Egeter
- University Clinic for Psychiatry II,
Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of
Innsbruck, Austria
| | - Pia Koudouovoh-Tripp
- University Clinic for Psychiatry II,
Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of
Innsbruck, Austria
- Division of Psychiatry and
Psychotherapeutic Medicine, Hospital St. Vinzenz Zams, Austria
| | - Theresa Vill
- University Clinic for Psychiatry II,
Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of
Innsbruck, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry,
Biocenter, Medical University of Innsbruck, Austria
| | - Barbara Sperner-Unterweger
- University Clinic for Psychiatry II,
Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University of
Innsbruck, Austria
| |
Collapse
|
13
|
Miki T, Eguchi M, Kochi T, Fukunaga A, Chen S, Nanri A, Kabe I, Mizoue T. Prospective study on the association between serum amino acid profiles and depressive symptoms among the Japanese working population. PLoS One 2021; 16:e0256337. [PMID: 34403453 PMCID: PMC8370628 DOI: 10.1371/journal.pone.0256337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Accumulating evidence suggests that amino acids, particularly tryptophan and glutamate, play an important role in the pathology of depression, but prospective epidemiologic data on this issue is scarce. We examined the association between circulating amino acids and the risk of depressive symptoms in a Japanese working population. Methods Participants were 841 workers who were free from depressive symptoms and provided blood at baseline and completed 3-yr follow-up survey. 30 varieties of amino acid concentrations in serum were measured using liquid chromatography/mass spectrometry. Depressive symptoms were defined using the Center for Epidemiologic Studies Depression Scale. Logistic regression was used to calculate the odds ratios of depressive symptoms according to serum amino acids with adjustment for lifestyle factors. Results A total of 151 (18.0%) workers were newly identified as having depressive symptoms at the follow-up. Baseline tryptophan and glutamate concentrations in serum were not appreciably associated with the risk of depressive symptoms. Risk of depressive symptoms tended to increase with increasing arginine concentrations; the multivariable-adjusted odds ratio for the highest versus lowest tertile of serum arginine was 1.65 (95% confidence interval: 0.96–2.83; P for trend = 0.07). No clear association was found for other amino acids. Conclusions Results of the present study do not support a significant role of circulating amino acids in the development of depressive symptoms among Japanese.
Collapse
Affiliation(s)
- Takako Miki
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
- * E-mail:
| | - Masafumi Eguchi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | - Takeshi Kochi
- Department of Health Administration, Furukawa Electric Corporation, Tokyo, Japan
| | - Ami Fukunaga
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sanmei Chen
- Department of Global Health Nursing, Graduate School of Biomedical and Nursing Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiko Nanri
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women’s University, Fukuoka, Japan
| | | | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
14
|
The Potential of Parsley Polyphenols and Their Antioxidant Capacity to Help in the Treatment of Depression and Anxiety: An In Vivo Subacute Study. Molecules 2021; 26:molecules26072009. [PMID: 33916097 PMCID: PMC8037343 DOI: 10.3390/molecules26072009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Depression and anxiety are major mental health problems in all parts of the world. These illnesses are associated with a number of risk factors, including oxidative stress. Psychotropic drugs of a chemical nature have demonstrated several side effects that elevated the impact of those illnesses. Faced with this situation, natural products appear to be a promising alternative. The aim of this study was to evaluate the anxiolytic and antidepressant effects of the Petroselinum sativum polyphenols in vivo, as well as its correlated antioxidant properties in vitro. Anxiolytic activity of the extract (50 and 100 mg/kg) was evaluated using the open field and the light-dark chamber tests, while the antidepressant activity was evaluated using the forced swimming test. The antioxidant activity of the extract was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical test and the FRAP (iron-reducing capacity) test. The phenolic extract showed very powerful anxiolytic and antidepressant-like effects, especially at a dose of 100 mg/kg, decreasing the depressive behavior in mice (decreased immobility time) and also the anxiolytic behavior (tendency for discovery in the center and illuminated areas) better even than those of paroxetine and bromazepam (classic drugs) concomitant with those results the extract also showed an important antioxidant capacity. These preliminary results suggest that Petroselinum sativum exhibits anxiolytic and antidepressant potential for use as a complement or independent phytomedicine to treat depression and anxiety.
Collapse
|
15
|
Zhao L, Guo R, Cao N, Lin Y, Yang W, Pei S, Ma X, Zhang Y, Li Y, Song Z, Du W, Xiao X, Liu C. An Integrative Pharmacology-Based Pattern to Uncover the Pharmacological Mechanism of Ginsenoside H Dripping Pills in the Treatment of Depression. Front Pharmacol 2021; 11:590457. [PMID: 33658934 PMCID: PMC7917282 DOI: 10.3389/fphar.2020.590457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
Objectives: To evaluate the pharmacodynamical effects and pharmacological mechanism of Ginsenoside H dripping pills (GH) in chronic unpredictable mild stress (CUMS) model rats. Methods: First, the CUMS-induced rat model was established to assess the anti-depressant effects of GH (28, 56, and 112 mg/kg) by the changes of the behavioral indexes (sucrose preference, crossing score, rearing score) and biochemical indexes (serotonin, dopamine, norepinephrine) in Hippocampus. Then, the components of GH were identified by ultra-performance liquid chromatography-iron trap-time of flight-mass spectrometry (UPLC/IT-TOF MS). After network pharmacology analysis, the active ingredients of GH were further screened out based on OB and DL, and the PPI network of putative targets of active ingredients of GH and depression candidate targets was established based on STRING database. The PPI network was analyzed topologically to obtain key targets, so as to predict the potential pharmacological mechanism of GH acting on depression. Finally, some major target proteins involved in the predictive signaling pathway were validated experimentally. Results: The establishment of CUMS depression model was successful and GH has antidepressant effects, and the middle dose of GH (56 mg/kg) showed the best inhibitory effects on rats with depressant-like behavior induced by CUMS. Twenty-eight chemical components of GH were identified by UPLC/IT-TOF MS. Subsequently, 20(S)-ginsenoside Rh2 was selected as active ingredient and the PPI network of the 43 putative targets of 20(S)-ginsenoside Rh2 containing in GH and the 230 depression candidate targets, was established based on STRING database, and 47 major targets were extracted. Further network pharmacological analysis indicated that the cAMP signaling pathway may be potential pharmacological mechanism regulated by GH acting on depression. Among the cAMP signaling pathway, the major target proteins, namely, cAMP, PKA, CREB, p-CREB, BDNF, were used to verify in the CUMS model rats. The results showed that GH could activate the cAMP-PKA-CREB-BDNF signaling pathway to exert antidepressant effects. Conclusions: An integrative pharmacology-based pattern was used to uncover that GH could increase the contents of DA, NE and 5-HT, activate cAMP-PKA-CREB-BDNF signaling pathway exert antidepressant effects.
Collapse
Affiliation(s)
- Libin Zhao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Zhendong Research Institute, Shanxi Zhendong Pharmaceutical Co., Ltd, Beijing, China
| | - Rui Guo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Ningning Cao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingxian Lin
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjing Yang
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, TCM Research Center, Tianjin Tasly Pharmaceutical CO., LTD., Tianjin, China
| | - Shuai Pei
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaowei Ma
- Shandong Huayu University of Technology, Shandong, China
| | - Yu Zhang
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Song
- State Key Laboratory of Critical Technology in Innovative Chinese Medicine, TCM Research Center, Tianjin Tasly Pharmaceutical CO., LTD., Tianjin, China
| | - Wuxun Du
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Changxiao Liu
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| |
Collapse
|
16
|
Post-inflammatory behavioural despair in male mice is associated with reduced cortical glutamate-glutamine ratios, and circulating lipid and energy metabolites. Sci Rep 2020; 10:16857. [PMID: 33033375 PMCID: PMC7545201 DOI: 10.1038/s41598-020-74008-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/10/2020] [Indexed: 12/13/2022] Open
Abstract
Post-inflammatory behaviours in rodents are widely used to model human depression and to test the efficacy of novel anti-depressants. Mice injected with lipopolysaccharide (LPS) display a depressive-like phenotype twenty-four hours after endotoxin administration. Despite the widespread use of this model, the mechanisms that underlie the persistent behavioural changes after the transient peripheral inflammatory response remain elusive. The study of the metabolome, the collection of all the small molecule metabolites in a sample, combined with multivariate statistical techniques provides a way of studying biochemical pathways influenced by an LPS challenge. Adult male CD-1 mice received an intraperitoneal injection of either LPS (0.83 mg/kg) or saline, and were assessed for depressive-like behaviour 24 h later. In a separate mouse cohort, pro-inflammatory cytokine gene expression and 1H nuclear magnetic resonance (NMR) metabolomics measurements were made in brain tissue and blood. Statistical analyses included Independent Sample t-tests for gene expression data, and supervised multi-variate analysis using orthogonal partial least squares discriminant analysis for metabolomics. Both plasma and brain metabolites in male mice were altered following a single peripheral LPS challenge that led to depressive-like behaviour in the forced swim test. The plasma metabolites altered by LPS are involved in energy metabolism, including lipoproteins, glucose, creatine, and isoleucine. In the brain, glutamate, serine, and N-acetylaspartate (NAA) were reduced after LPS, whereas glutamine was increased. Serine-modulated glutamatergic signalling and changes in bioenergetics may mediate the behavioural phenotype induced by LPS. In light of other data supporting a central imbalance of glutamate-glutamine cycling in depression, our results suggest that aberrant central glutaminergic signalling may underpin the depressive-like behaviours that result from both inflammation and non-immune pathophysiology. Normalising glutaminergic signalling, rather than seeking to increase serotonergic signalling, might prove to be a more coherent approach to the development of new treatments for mood disorder.
Collapse
|
17
|
Soni VK, Sharma K, Mehta A, Ratre YK, Kumar S, Shukla D, Vishvakarma NK. A physiological link for psychiatric symptoms in COVID-19: Role of amino acid deficiency. Asian J Psychiatr 2020; 53:102426. [PMID: 33264844 PMCID: PMC7518799 DOI: 10.1016/j.ajp.2020.102426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Vivek Kumar Soni
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Krishna Sharma
- Department of Psychology, Government Bilasa Girls Post Graduate Autonomous College, Bilaspur, 495001, Chhattisgarh, India
| | - Arundhati Mehta
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Yashwant Kumar Ratre
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Sujeet Kumar
- Department of Education, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India
| | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India.
| | - Naveen Kumar Vishvakarma
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, 495009, Chhattisgarh, India.
| |
Collapse
|
18
|
Baranovicova E, Kalenska D, Tomascova A, Holubcikova S, Lehotsky J. Time-related metabolomics study in the rat plasma after global cerebral ischemia and reperfusion: Effect of ischemic preconditioning. IUBMB Life 2020; 72:2010-2023. [PMID: 32663378 DOI: 10.1002/iub.2340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 01/09/2023]
Abstract
Cardiac arrest is one of the major causes of death and disability. The aim of the study was to identify dynamic time-dependent metabolomic changes reflected in rat plasma induced by cerebral ischemia and reperfusion with the focus on the protective effect of ischemic preconditionig. Global cerebral ischemia in rats was induced by the four-vessel occlusion. Blood plasma was collected in three reperfusion times: an early post-acute 3 hr, then 24 hr, as an incipient time for delayed neuronal death induction and 72 hr as prolonged reperfusion period. The metabolomic measurements were conducted via untargeted nuclear magnetic resonance spectroscopy. Plasma of ischemized rats manifested dynamic metabolomic changes over the reperfusion time, such as increased levels of ketone bodies, decreased levels of pyruvate, alanine, and citrate. All three branched chain amino acids showed common pattern during reperfusion time: a decrease in 3 hr compared to sham, then a highest level in 24 hr and decrease in 72 hr reperfusion time, similar to their corresponding ketoacids. The protective effect of ischemic preconditioning was demonstrated by a faster tendency of plasma metabolites to normalize. Results also proved the remarkable metabolomic differences between the control (naïve) and sham-operated anesthetized animals, what warrants for critical evaluation of surgery/anaesthesy in the algorithm of metabolomic animal studies.
Collapse
Affiliation(s)
- Eva Baranovicova
- Biomedical Center BioMed, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dagmar Kalenska
- Department of Anatomy, Jessenius Faculty of Medicinein Martin, Comenius University in Bratislava, Martin, Slovakia.,Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Anna Tomascova
- Biomedical Center BioMed, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.,Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Simona Holubcikova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Lehotsky
- Department of Medical Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
19
|
Islam MR, Ali S, Karmoker JR, Kadir MF, Ahmed MU, Nahar Z, Islam SMA, Islam MS, Hasnat A, Islam MS. Evaluation of serum amino acids and non-enzymatic antioxidants in drug-naïve first-episode major depressive disorder. BMC Psychiatry 2020; 20:333. [PMID: 32580709 PMCID: PMC7315550 DOI: 10.1186/s12888-020-02738-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The alterations of biological markers are thought to be effective tools to understand the pathophysiology and management of major depressive disorder (MDD). A lot of researches has implied many markers for depression, but any of them fully discovered the association between the markers and depression. The present study investigated the serum levels of amino acids and non-enzymatic antioxidants in major depression, and also explained their association with depression. METHODS This study examined 247 MDD patients and 248 healthy controls (HCs) matched by age and sex. The Hamilton Depression Rating Scale (Ham-D) was used to all the participants to measure the severity of depression. Quantification of serum amino acids, vitamin A and E were carried out using the HPLC system whereas vitamin C levels were measured by UV-spectrophotometer. All the statistical analysis was performed by SPSS statistical software (version 23.0). The independent sample t-test, the Mann-Whitney U test, and the Fisher's exact test were applied to detect the group differences where a Bonferroni correction applied to the p value. RESULTS It was observed that serum levels of four amino acids (methionine, phenylalanine, tryptophan, and tyrosine) along with three non-enzymatic antioxidants (vitamin A, E, and C) were significantly dropped in MDD patients compared to HCs (Cohen's d (d): - 0.45, - 0.50, - 0.68, - 0.21, - 0.27, - 0.65, and - 0.24, respectively). Furthermore, Ham-D scores of cases were negatively correlated with serum levels of methionine (r = - 0.155, p = 0.015) and tyrosine (r = - 0.172, p = 0.007). CONCLUSION The present study suggests that lowered serum methionine, phenylalanine, tryptophan, tyrosine, and non-enzymatic antioxidants are associated with depression. The reduction of these parameters in MDD patients may be the consequence, and not the cause, of major depression.
Collapse
Affiliation(s)
- Md. Rabiul Islam
- grid.8198.80000 0001 1498 6059Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000 Bangladesh ,grid.443051.70000 0004 0496 8043Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205 Bangladesh
| | - Samia Ali
- grid.443051.70000 0004 0496 8043Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205 Bangladesh
| | - James Regun Karmoker
- grid.443051.70000 0004 0496 8043Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205 Bangladesh
| | - Mohammad Fahim Kadir
- grid.443051.70000 0004 0496 8043Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205 Bangladesh
| | - Maizbha Uddin Ahmed
- grid.8198.80000 0001 1498 6059Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Zabun Nahar
- grid.443051.70000 0004 0496 8043Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205 Bangladesh
| | - Sardar Mohammad Ashraful Islam
- grid.443051.70000 0004 0496 8043Department of Pharmacy, University of Asia Pacific, 74/A Green Road, Farmgate, Dhaka, 1205 Bangladesh
| | - Mohammad Safiqul Islam
- grid.449503.f0000 0004 1798 7083Department of Pharmacy, Noakhali Science and Technology University, Sonapur Noakhali, 3814 Bangladesh
| | - Abul Hasnat
- grid.8198.80000 0001 1498 6059Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Md. Saiful Islam
- grid.8198.80000 0001 1498 6059Department of Clinical Pharmacy and Pharmacology, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000 Bangladesh
| |
Collapse
|