1
|
Ruczyński J, Prochera K, Kaźmierczak N, Kosznik-Kwaśnicka K, Piechowicz L, Mucha P, Rekowski P. New Conjugates of Vancomycin with Cell-Penetrating Peptides-Synthesis, Antimicrobial Activity, Cytotoxicity, and BBB Permeability Studies. Molecules 2024; 29:5519. [PMID: 39683678 DOI: 10.3390/molecules29235519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/17/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Vancomycin (Van) is a glycopeptide antibiotic commonly used as a last resort for treating life-threatening infections caused by multidrug-resistant bacterial strains, such as Staphylococcus aureus and Enterococcus spp. However, its effectiveness is currently limited due to the rapidly increasing number of drug-resistant clinical strains and its inherent cytotoxicity and poor penetration into cells and specific regions of the body, such as the brain. One of the most promising strategies to enhance its efficacy appears to be the covalent attachment of cell-penetrating peptides (CPPs) to the Van structure. In this study, a series of vancomycin conjugates with CPPs-such as TP10, Tat (47-57), PTD4, and Arg9-were designed and synthesized. These conjugates were tested for antimicrobial activity against four reference strains (Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa) and two clinical drug-resistant strains: methicillin-resistant S. aureus and vancomycin-resistant E. faecium. In addition, cytotoxicity tests (using a human fibroblast cell line) and blood-brain barrier (BBB) permeability tests (using a parallel artificial membrane permeability assay-PAMPA-BBB assay) were conducted for selected compounds. Our research demonstrated that conjugation of Van with CPPs, particularly with Tat (47-57), Arg9, or TP10, significantly enhances its antimicrobial activity against Gram-positive bacteria such as S. aureus and Enterococcus spp., reduces its cytotoxicity, and improves its access to brain tissues. We conclude that these findings provide a strong foundation for the design of novel antimicrobial agents effective in treating infections caused by drug-resistant staphylococcal and enterococcal strains, while also being capable of crossing the BBB.
Collapse
Affiliation(s)
- Jarosław Ruczyński
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Prochera
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Natalia Kaźmierczak
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdańsk, Poland
| | - Katarzyna Kosznik-Kwaśnicka
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdańsk, Poland
| | - Lidia Piechowicz
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdańsk, Dębowa 25, 80-204 Gdańsk, Poland
| | - Piotr Mucha
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Rekowski
- Laboratory of Chemistry of Biologically Active Compounds, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
2
|
Cheng L, Shi C, Li X, Matsui T. Impact of Peptide Transport and Memory Function in the Brain. Nutrients 2024; 16:2947. [PMID: 39275263 PMCID: PMC11396983 DOI: 10.3390/nu16172947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Recent studies have reported the benefits of food-derived peptides for memory dysfunction. Beyond the physiological effects of peptides, their bioavailability to the brain still remains unclear since the blood-brain barrier (BBB) strictly controls the transportation of compounds to the brain. Here, updated transportation studies on BBB transportable peptides are introduced and evaluated using in vitro BBB models, in situ perfusion, and in vivo mouse experiments. Additionally, the mechanisms of action of brain health peptides in relation to the pathogenesis of neurodegenerative diseases, particularly Alzheimer's disease, are discussed. This discussion follows a summary of bioactive peptides with neuroprotective effects that can improve cognitive decline through various mechanisms, including anti-inflammatory, antioxidative, anti-amyloid β aggregation, and neurotransmitter regulation.
Collapse
Affiliation(s)
- Lihong Cheng
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Caiyue Shi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Xixi Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Rusiecka I, Gągało I, Kocić I. Neuroprotective Activity of a Non-Covalent Imatinib+TP10 Conjugate in HT-22 Neuronal Cells In Vitro. Pharmaceutics 2024; 16:778. [PMID: 38931899 PMCID: PMC11207969 DOI: 10.3390/pharmaceutics16060778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
This study evaluated the probable relevance of a non-covalent conjugate of imatinib with TP10 in the context of a neuroprotective effect in Parkinson's disease. Through the inhibition of c-Abl, which is a non-receptor tyrosine kinase and an indicator of oxidative stress, imatinib has shown promise in preclinical animal models of this disease. The poor distribution of imatinib within the brain tissue triggered experiments in which a conjugate was obtained by mixing the drug with TP10, which is known for exhibiting high translocation activity across the cell membrane. The conjugate was tested on the HT-22 cell line with respect to its impact on MPP+-induced oxidative stress, apoptosis, necrosis, cytotoxicity, and mortality. Additionally, it was checked whether the conjugate activated the ABCB1 protein. The experiments indicated that imatinib+PEG4+TP10 reduced the post-MPP+ oxidative stress, apoptosis, and mortality, and these effects were more prominent than those obtained after the exposition of the HT-22 cells to imatinib alone. Its cytotoxicity was similar to that of imatinib itself. In contrast to imatinib, the conjugate did not activate the ABCB1 protein. These favorable qualities of imatinib+PEG4+TP10 make it a potential candidate for further in vivo research, which would confirm its neuroprotective action in PD-affected brains.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdańsk, Dębowa 23, 80-204 Gdańsk, Poland
| | | | | |
Collapse
|
4
|
Dai X, Li Y, Liu X, Zhang Y, Gao F. Intracellular infection-responsive macrophage-targeted nanoparticles for synergistic antibiotic immunotherapy of bacterial infection. J Mater Chem B 2024; 12:5248-5260. [PMID: 38712662 DOI: 10.1039/d4tb00409d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Intracellular bacteria are considered to play a key role in the failure of bacterial infection therapy and increase of antibiotic resistance. Nanotechnology-based drug delivery carriers have been receiving increasing attention for improving the intracellular antibacterial activity of antibiotics, but are accompanied by disadvantages such as complex preparation procedures, lack of active targeting, and monotherapy, necessitating further design improvements. Herein, nanoparticles targeting bacteria-infected macrophages are fabricated to eliminate intracellular bacterial infections via antibiotic release and upregulation of intracellular reactive oxygen species (ROS) levels and proinflammatory responses. These nanoparticles were formed through the reaction of the amino group on selenocystamine dihydrochloride and the aldehyde group on oxidized dextran (ox-Dex), which encapsulates vancomycin (Van) through hydrophobic interactions. These nanoparticles could undergo targeted uptake by macrophages via endocytosis and respond to the bacteria-infected intracellular microenvironment (ROS and glutathione (GSH)) for controlled release of antibiotics. Furthermore, these nanoparticles could consume intracellular GSH and promote a significant increase in the level of ROS in macrophages, subsequently up-regulating the proinflammatory response to reinforce antibacterial activity. These nanoparticles can accelerate bacteria-infected wound healing. In this work, nanoparticles were fabricated for bacteria-infected macrophage-targeted and microenvironment-responsive antibiotic delivery, cellular ROS generation, and proinflammatory up-regulation activity to eliminate intracellular bacteria, which opens up a new possibility for multifunctional drug delivery against intracellular infection.
Collapse
Affiliation(s)
- Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yu Li
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xiaojun Liu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Yongjie Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
5
|
Kharga K, Jha S, Vishwakarma T, Kumar L. Current developments and prospects of the antibiotic delivery systems. Crit Rev Microbiol 2024:1-40. [PMID: 38425122 DOI: 10.1080/1040841x.2024.2321480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Antibiotics have remained the cornerstone for the treatment of bacterial infections ever since their discovery in the twentieth century. The uproar over antibiotic resistance among bacteria arising from genome plasticity and biofilm development has rendered current antibiotic therapies ineffective, urging the development of innovative therapeutic approaches. The development of antibiotic resistance among bacteria has further heightened the clinical failure of antibiotic therapy, which is often linked to its low bioavailability, side effects, and poor penetration and accumulation at the site of infection. In this review, we highlight the potential use of siderophores, antibodies, cell-penetrating peptides, antimicrobial peptides, bacteriophages, and nanoparticles to smuggle antibiotics across impermeable biological membranes to achieve therapeutically relevant concentrations of antibiotics and combat antimicrobial resistance (AMR). We will discuss the general mechanisms via which each delivery system functions and how it can be tailored to deliver antibiotics against the paradigm of mechanisms underlying antibiotic resistance.
Collapse
Affiliation(s)
- Kusum Kharga
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Shubhang Jha
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Tanvi Vishwakarma
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| | - Lokender Kumar
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Himachal Pradesh, India
| |
Collapse
|
6
|
Chosy MB, Sun J, Rahn HP, Liu X, Brčić J, Wender PA, Cegelski L. Vancomycin-Polyguanidino Dendrimer Conjugates Inhibit Growth of Antibiotic-Resistant Gram-Positive and Gram-Negative Bacteria and Eradicate Biofilm-Associated S. aureus. ACS Infect Dis 2024; 10:384-397. [PMID: 38252999 PMCID: PMC11646489 DOI: 10.1021/acsinfecdis.3c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The global challenge of antibiotic resistance necessitates the introduction of more effective antibiotics. Here we report a potentially general design strategy, exemplified with vancomycin, that improves and expands antibiotic performance. Vancomycin is one of the most important antibiotics in use today for the treatment of Gram-positive infections. However, it fails to eradicate difficult-to-treat biofilm populations. Vancomycin is also ineffective in killing Gram-negative bacteria due to its inability to breach the outer membrane. Inspired by our seminal studies on cell penetrating guanidinium-rich transporters (e.g., octaarginine), we recently introduced vancomycin conjugates that effectively eradicate Gram-positive biofilm bacteria, persister cells and vancomycin-resistant enterococci (with V-r8, vancomycin-octaarginine), and Gram-negative pathogens (with V-R, vancomycin-arginine). Having shown previously that the spatial array (linear versus dendrimeric) of multiple guanidinium groups affects cell permeation, we report here for the first time vancomycin conjugates with dendrimerically displayed guanidinium groups that exhibit superior efficacy and breadth, presenting the best activity of V-r8 and V-R in single broad-spectrum compounds active against ESKAPE pathogens. Mode-of-action studies reveal cell-surface activity and enhanced vancomycin-like killing. The vancomycin-polyguanidino dendrimer conjugates exhibit no acute mammalian cell toxicity or hemolytic activity. Our study introduces a new class of broad-spectrum vancomycin derivatives and a general strategy to improve or expand antibiotic performance through combined mode-of-action and function-oriented design studies.
Collapse
Affiliation(s)
- Madeline B. Chosy
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Harrison P. Rahn
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Xinyu Liu
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Jasna Brčić
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
7
|
Lica JJ, Gucwa K, Heldt M, Stupak A, Maciejewska N, Ptaszyńska N, Łęgowska A, Pradhan B, Gitlin-Domagalska A, Dębowski D, Jakóbkiewicz-Banecka J, Rolka K. Lactoferricin B Combined with Antibiotics Exhibits Leukemic Selectivity and Antimicrobial Activity. Molecules 2024; 29:678. [PMID: 38338422 PMCID: PMC10856415 DOI: 10.3390/molecules29030678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field. Specific AMPs, such as lactoferricin B (LfcinB), have demonstrated strong antibacterial, antifungal, and antiparasitic activity, as well as valuable anticancer activity, proving beneficial in the development of anticancer conjugates. The resulting conjugates offer potential dual functionality, acting as both an anticancer and an antimicrobial agent. This is especially necessary in cancer treatment, where microbial infections pose a critical risk. Leukemic cells frequently exhibit altered outer lipid membranes compared to healthy cells, making them more sensitive to compounds that interfere with their membrane. In this study, we revisited and reanalyzed our earlier research on LfcinB and its conjugates. Furthermore, we carried out new experiments with a specific focus on cell proliferation, changes in membrane asymmetric phosphatidylserine location, intracellular reactive oxygen species (ROS) generation, mitochondrial functions, and in vitro bacterial topoisomerase inhibition.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Katarzyna Gucwa
- Department of Microbiology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Anna Stupak
- Polpharma Biologics S.A., Gdansk Science & Technology Park, 80-172 Gdansk, Poland
| | - Natalia Maciejewska
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Bhaskar Pradhan
- Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| | | | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdansk, Poland
| |
Collapse
|
8
|
Shin HJ, Lee BK, Kang HA. Transdermal Properties of Cell-Penetrating Peptides: Applications and Skin Penetration Mechanisms. ACS APPLIED BIO MATERIALS 2024; 7:1-16. [PMID: 38079575 DOI: 10.1021/acsabm.3c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cell-penetrating peptides (CPPs) consist of 5-30 amino acids with intracellular transduction abilities and diverse physicochemical properties, origins, and sequences. Although recent developments in bioinformatics have facilitated the prediction of CPP candidates with the potential for transduction into cells, the mechanisms by which CPPs penetrate cells and various tissues have not yet been elucidated at the molecular interaction level. Recently, the skin-penetrating ability of CPPs has gained wide attention and emerged as a simple and effective strategy for the delivery of macromolecules into the skin. Studies on the skin structure have suggested that the penetration potential of CPPs is based on the molecular interactions and characteristics of the lipid lamellar structure between corneocytes in the stratum corneum. This review provides a brief overview of the general properties, transduction mechanisms, applications, and safety issues of CPPs, focusing on CPPs with transdermal properties, that are currently being used to develop therapeutics and cosmetics.
Collapse
Affiliation(s)
- Hee Je Shin
- ProCell R&D Center, ProCell Therapeutics, Inc., #1009 Ace-Twin Tower II, 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
- Department of Life Science, College of Natural Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Byung Kyu Lee
- ProCell R&D Center, ProCell Therapeutics, Inc., #1009 Ace-Twin Tower II, 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
9
|
Lica JJ, Heldt M, Wieczór M, Chodnicki P, Ptaszyńska N, Maciejewska N, Łęgowska A, Brankiewicz W, Gucwa K, Stupak A, Pradhan B, Gitlin-Domagalska A, Dębowski D, Milewski S, Bieniaszewska M, Grabe GJ, Hellmann A, Rolka K. Dual-Activity Fluoroquinolone-Transportan 10 Conjugates Offer Alternative Leukemia Therapy during Hematopoietic Cell Transplantation. Mol Pharmacol 2023; 105:39-53. [PMID: 37977824 DOI: 10.1124/molpharm.123.000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/01/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Hematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10). Here, we demonstrate that the resultant compounds display promising biologic activities in preclinical studies. These novel conjugates not only exhibit potent antimicrobial effects but are also selective against leukemia cells. The cytotoxic mechanism involves rapid disruption of cell membrane asymmetry leading to membrane damage. Importantly, these conjugates penetrated mammalian cells, accumulating within the nuclear membrane without significant effect on cellular architecture or mitochondrial function. Molecular simulations elucidated the aggregation tendencies of TP10 conjugates within lipid bilayers, resulting in membrane disruption and permeabilization. Moreover, mass spectrometry analysis confirmed efficient reduction of disulfide bonds within TP10 conjugates, facilitating release and activation of the fluoroquinolone derivatives. Intriguingly, these compounds inhibited human topoisomerases, setting them apart from traditional fluoroquinolones. Remarkably, TP10 conjugates generated lower intracellular levels of reactive oxygen species compared with CIP and LVX. The combination of antibacterial and antileukemic properties, coupled with selective cytostatic effects and minimal toxicity toward healthy cells, positions TP10 derivatives as promising candidates for innovative therapeutic approaches in the context of antileukemic HCT. This study highlights their potential in search of more effective leukemia treatments. SIGNIFICANCE STATEMENT: Fluoroquinolones are commonly used antibiotics, while transportan 10 (TP10) is a cell-penetrating peptide (CPP) with anticancer properties. In HCT, microbial infections are the primary cause of illness and death. Combining TP10 with fluoroquinolones enhanced their effects on different cell types. The dual pharmacological action of these conjugates offers a promising proof-of-concept solution for leukemic patients undergoing HCT. Strategically designed therapeutics, incorporating CPPs with antibacterial properties, have the potential to reduce microbial infections in the treatment of malignancies.
Collapse
Affiliation(s)
- Jan Jakub Lica
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Mateusz Heldt
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Milosz Wieczór
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Pawel Chodnicki
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Natalia Ptaszyńska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Natalia Maciejewska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Anna Łęgowska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Wioletta Brankiewicz
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Katarzyna Gucwa
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Anna Stupak
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Bhaskar Pradhan
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Agata Gitlin-Domagalska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Dawid Dębowski
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Sławomir Milewski
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Maria Bieniaszewska
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Grzegorz Jan Grabe
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Andrzej Hellmann
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| | - Krzysztof Rolka
- Department of Regenerative Medicine, Faculty of Medicine, Medical University of Warsaw, Poland (J.J.L.); Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry (M.H., N.M., S.M.) and Department of Physical Chemistry, Faculty of Chemistry, (M.W., P.C.) Gdansk University of Technology, Poland; Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, Poland (J.J.L., N.P., A.Ł., A.G.-D., D.D., K.R.); Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo, Norway (W.B.); Department of Microbiology, Faculty of Biology, University of Gdansk, Poland (K.G.); Polpharma Biologics S.A. Gdansk Science and Technology Park, Poland (A.S.); Department of Biochemistry, Faculty of Pharmacy, Medical University of Warsaw, Poland (B.P.); Medical University of Gdansk, Faculty of Medicine, Department of Hematology and Transplantology, Poland (M.B., A.H.); and Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Poland (G.J.G.)
| |
Collapse
|
10
|
Lennard PR, Hiemstra PS, Nibbering PH. Complementary Activities of Host Defence Peptides and Antibiotics in Combating Antimicrobial Resistant Bacteria. Antibiotics (Basel) 2023; 12:1518. [PMID: 37887219 PMCID: PMC10604037 DOI: 10.3390/antibiotics12101518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
Due to their ability to eliminate antimicrobial resistant (AMR) bacteria and to modulate the immune response, host defence peptides (HDPs) hold great promise for the clinical treatment of bacterial infections. Whereas monotherapy with HDPs is not likely to become an effective first-line treatment, combinations of such peptides with antibiotics can potentially provide a path to future therapies for AMR infections. Therefore, we critically reviewed the recent literature regarding the antibacterial activity of combinations of HDPs and antibiotics against AMR bacteria and the approaches taken in these studies. Of the 86 studies compiled, 56 featured a formal assessment of synergy between agents. Of the combinations assessed, synergistic and additive interactions between HDPs and antibiotics amounted to 84.9% of the records, while indifferent and antagonistic interactions accounted for 15.1%. Penicillin, aminoglycoside, fluoro/quinolone, and glycopeptide antibiotic classes were the most frequently documented as interacting with HDPs, and Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecium were the most reported bacterial species. Few studies formally evaluated the effects of combinations of HDPs and antibiotics on bacteria, and even fewer assessed such combinations against bacteria within biofilms, in animal models, or in advanced tissue infection models. Despite the biases of the current literature, the studies suggest that effective combinations of HDPs and antibiotics hold promise for the future treatment of infections caused by AMR bacteria.
Collapse
Affiliation(s)
- Patrick R. Lennard
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
- Institute of Immunology and Infection, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FE, UK
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| | - Pieter S. Hiemstra
- PulmoScience Lab, Department of Pulmonology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | - Peter H. Nibbering
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden 2333, The Netherlands;
| |
Collapse
|
11
|
Gong L, Zhao H, Liu Y, Wu H, Liu C, Chang S, Chen L, Jin M, Wang Q, Gao Z, Huang W. Research advances in peptide‒drug conjugates. Acta Pharm Sin B 2023; 13:3659-3677. [PMID: 37719380 PMCID: PMC10501876 DOI: 10.1016/j.apsb.2023.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Peptide‒drug conjugates (PDCs) are drug delivery systems consisting of a drug covalently coupled to a multifunctional peptide via a cleavable linker. As an emerging prodrug strategy, PDCs not only preserve the function and bioactivity of the peptides but also release the drugs responsively with the cleavable property of the linkers. Given the ability to significantly improve the circulation stability and targeting of drugs in vivo and reduce the toxic side effects of drugs, PDCs have already been extensively applied in drug delivery. Herein, we review the types and mechanisms of peptides, linkers and drugs used to construct PDCs, and summarize the clinical applications and challenges of PDC drugs.
Collapse
Affiliation(s)
- Liming Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Heming Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- Department of Pharmacy, Yanbian University, Yanji 133000, China
| | - Chao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangyan Chang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiming Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Department of Pharmaceutics, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
12
|
Na Y, Zhang N, Zhong X, Gu J, Yan C, Yin S, Lei X, Zhao J, Geng F. Polylactic-co-glycolic acid-based nanoparticles modified with peptides and other linkers cross the blood-brain barrier for targeted drug delivery. Nanomedicine (Lond) 2023; 18:125-143. [PMID: 36916394 DOI: 10.2217/nnm-2022-0287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Because of the blood-brain barrier, only a limited fraction of drugs can penetrate the brain. As a result, there is a need to take larger doses of the drug, which may result in numerous undesirable side effects. Over the past few decades, a plethora of research has been conducted to address this issue. In recent years, the field of nanomedicine research has reported promising findings. Currently, numerous types of polylactic-co-glycolic acid-based drug-delivery systems are being studied, and great progress has been made in the modification of their surfaces with a variety of ligands. In this review, the authors highlight the preparation of polylactic-co-glycolic acid-based nanoparticles and single- and dual-targeted peptide modifications for site-specific drug delivery into the brain.
Collapse
Affiliation(s)
- Yue Na
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Ning Zhang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China.,Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Xinyu Zhong
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Jinlian Gu
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Chang Yan
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Shun Yin
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| | - Xia Lei
- Wuxi Traditional Chinese Medicine Hospital, Wuxi, Jiangsu, 214071, China
| | - Jihui Zhao
- College of Pharmacy, Hunan University of Medicine, Huaihua, Hunan, 418000, China
| | - Fang Geng
- Key Laboratory of Photochemistry Biomaterials & Energy Storage Materials of Heilongjiang Province, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang, 150025, China
| |
Collapse
|
13
|
Anselmo S, Sancataldo G, Baiamonte C, Pizzolanti G, Vetri V. Transportan 10 Induces Perturbation and Pores Formation in Giant Plasma Membrane Vesicles Derived from Cancer Liver Cells. Biomolecules 2023; 13:biom13030492. [PMID: 36979427 PMCID: PMC10046094 DOI: 10.3390/biom13030492] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/30/2023] Open
Abstract
Continuous progress has been made in the development of new molecules for therapeutic purposes. This is driven by the need to address several challenges such as molecular instability and biocompatibility, difficulties in crossing the plasma membrane, and the development of host resistance. In this context, cell-penetrating peptides (CPPs) constitute a promising tool for the development of new therapies due to their intrinsic ability to deliver therapeutic molecules to cells and tissues. These short peptides have gained increasing attention for applications in drug delivery as well as for their antimicrobial and anticancer activity but the general rules regulating the events involved in cellular uptake and in the following processes are still unclear. Here, we use fluorescence microscopy methods to analyze the interactions between the multifunctional peptide Transportan 10 (TP10) and the giant plasma membrane vesicles (GPMVs) derived from cancer cells. This aims to highlight the molecular mechanisms underlying functional interactions which bring its translocation across the membrane or cytotoxic mechanisms leading to membrane collapse and disruption. The Fluorescence Lifetime Imaging Microscopy (FLIM) method coupled with the phasor approach analysis proved to be the winning choice for following highly dynamic spatially heterogeneous events in real-time and highlighting aspects of such complex phenomena. Thanks to the presented approach, we were able to identify and monitor TP10 translocation into the lumen, internalization, and membrane-induced modifications depending on the peptide concentration regime.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento di Fisica e Chimica-Emilio Segré, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento di Fisica e Chimica-Emilio Segré, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Concetta Baiamonte
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, 90128 Palermo, Italy
- AteN Center-Advanced Technologies Network Center, Università degli Studi di Palermo, 90128 Palermo, Italy
| | - Giuseppe Pizzolanti
- AteN Center-Advanced Technologies Network Center, Università degli Studi di Palermo, 90128 Palermo, Italy
- Dipartimento di Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro", Università degli Studi di Palermo, 90127 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica-Emilio Segré, Università degli Studi di Palermo, 90128 Palermo, Italy
- AteN Center-Advanced Technologies Network Center, Università degli Studi di Palermo, 90128 Palermo, Italy
| |
Collapse
|
14
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
15
|
Structure-Activity Relationship of New Chimeric Analogs of Mastoparan from the Wasp Venom Paravespula lewisii. Int J Mol Sci 2022; 23:ijms23158269. [PMID: 35897844 PMCID: PMC9332802 DOI: 10.3390/ijms23158269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Mastoparan (MP) is an antimicrobial cationic tetradecapeptide with the primary structure INLKALAALAKKIL-NH2. This amphiphilic α-helical peptide was originally isolated from the venom of the wasp Paravespula lewisii. MP shows a variety of biological activities, such as inhibition of the growth of Gram-positive and Gram-negative bacteria, as well as hemolytic activity and activation of mast cell degranulation. Although MP appears to be toxic, studies have shown that its analogs have a potential therapeutic application as antimicrobial, antiviral and antitumor agents. In the present study we have designed and synthesized several new chimeric mastoparan analogs composed of MP and other biologically active peptides such as galanin, RNA III inhibiting peptide (RIP) or carrying benzimidazole derivatives attached to the ε-amino side group of Lys residue. Next, we compared their antimicrobial activity against three reference bacterial strains and conformational changes induced by membrane-mimic environments using circular dichroism (CD) spectroscopy. A comparative analysis of the relationship between the activity of peptides and the structure, as well as the calculated physicochemical parameters was also carried out. As a result of our structure-activity study, we have found two analogs of MP, MP-RIP and RIP-MP, with interesting properties. These two analogs exhibited a relatively high antibacterial activity against S. aureus compared to the other MP analogs, making them a potentially attractive target for further studies. Moreover, a comparative analysis of the relationship between peptide activity and structure, as well as the calculated physicochemical parameters, may provide information that may be useful in the design of new MP analogs.
Collapse
|
16
|
Li X, Liu Y, Liu X, Du J, Bhawal UK, Xu J, Guo L, Liu Y. Advances in the Therapeutic Effects of Apoptotic Bodies on Systemic Diseases. Int J Mol Sci 2022; 23:ijms23158202. [PMID: 35897778 PMCID: PMC9331698 DOI: 10.3390/ijms23158202] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
Apoptosis plays an important role in development and in the maintenance of homeostasis. Apoptotic bodies (ApoBDs) are specifically generated from apoptotic cells and can contain a large variety of biological molecules, which are of great significance in intercellular communications and the regulation of phagocytes. Emerging evidence in recent years has shown that ApoBDs are essential for maintaining homeostasis, including systemic bone density and immune regulation as well as tissue regeneration. Moreover, studies have revealed the therapeutic effects of ApoBDs on systemic diseases, including cancer, atherosclerosis, diabetes, hepatic fibrosis, and wound healing, which can be used to treat potential targets. This review summarizes current research on the generation, application, and reconstruction of ApoBDs regarding their functions in cellular regulation and on systemic diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Ujjal Kumar Bhawal
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100006, China
- Correspondence: (L.G.); (Y.L.)
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing 100050, China; (X.L.); (Y.L.); (X.L.); (J.D.); (J.X.)
- Immunology Research Center for Oral and Systematic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Correspondence: (L.G.); (Y.L.)
| |
Collapse
|
17
|
Szabó I, Yousef M, Soltész D, Bató C, Mező G, Bánóczi Z. Redesigning of Cell-Penetrating Peptides to Improve Their Efficacy as a Drug Delivery System. Pharmaceutics 2022; 14:pharmaceutics14050907. [PMID: 35631493 PMCID: PMC9146218 DOI: 10.3390/pharmaceutics14050907] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022] Open
Abstract
Cell-penetrating peptides (CPP) are promising tools for the transport of a broad range of compounds into cells. Since the discovery of the first members of this peptide family, many other peptides have been identified; nowadays, dozens of these peptides are known. These peptides sometimes have very different chemical–physical properties, but they have similar drawbacks; e.g., non-specific internalization, fast elimination from the body, intracellular/vesicular entrapment. Although our knowledge regarding the mechanism and structure–activity relationship of internalization is growing, the prediction and design of the cell-penetrating properties are challenging. In this review, we focus on the different modifications of well-known CPPs to avoid their drawbacks, as well as how these modifications may increase their internalization and/or change the mechanism of penetration.
Collapse
Affiliation(s)
- Ildikó Szabó
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Correspondence: (I.S.); (Z.B.)
| | - Mo’ath Yousef
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Dóra Soltész
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Csaba Bató
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Gábor Mező
- MTA-ELTE Research Group of Peptide Chemistry, Eötvös Loránd Research Network (ELKH), Eötvös Loránd University, 1117 Budapest, Hungary;
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
| | - Zoltán Bánóczi
- Department of Organic Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (M.Y.); (D.S.); (C.B.)
- Correspondence: (I.S.); (Z.B.)
| |
Collapse
|
18
|
de Oliveira ECL, da Costa KS, Taube PS, Lima AH, Junior CDSDS. Biological Membrane-Penetrating Peptides: Computational Prediction and Applications. Front Cell Infect Microbiol 2022; 12:838259. [PMID: 35402305 PMCID: PMC8992797 DOI: 10.3389/fcimb.2022.838259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Peptides comprise a versatile class of biomolecules that present a unique chemical space with diverse physicochemical and structural properties. Some classes of peptides are able to naturally cross the biological membranes, such as cell membrane and blood-brain barrier (BBB). Cell-penetrating peptides (CPPs) and blood-brain barrier-penetrating peptides (B3PPs) have been explored by the biotechnological and pharmaceutical industries to develop new therapeutic molecules and carrier systems. The computational prediction of peptides’ penetration into biological membranes has been emerged as an interesting strategy due to their high throughput and low-cost screening of large chemical libraries. Structure- and sequence-based information of peptides, as well as atomistic biophysical models, have been explored in computer-assisted discovery strategies to classify and identify new structures with pharmacokinetic properties related to the translocation through biomembranes. Computational strategies to predict the permeability into biomembranes include cheminformatic filters, molecular dynamics simulations, artificial intelligence algorithms, and statistical models, and the choice of the most adequate method depends on the purposes of the computational investigation. Here, we exhibit and discuss some principles and applications of these computational methods widely used to predict the permeability of peptides into biomembranes, exhibiting some of their pharmaceutical and biotechnological applications.
Collapse
Affiliation(s)
- Ewerton Cristhian Lima de Oliveira
- Institute of Technology, Federal University of Pará, Belém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Kauê Santana da Costa
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
- *Correspondence: Kauê Santana da Costa, ; Ewerton Cristhian Lima de Oliveira,
| | - Paulo Sérgio Taube
- Laboratory of Computational Simulation, Institute of Biodiversity, Federal University of Western Pará, Santarém, Brazil
| | - Anderson H. Lima
- Laboratório de Planejamento e Desenvolvimento de Fármacos, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | | |
Collapse
|
19
|
Multifunctional building elements for the construction of peptide drug conjugates. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
20
|
Rusiecka I, Gągało I, Kocić I. Cell-penetrating peptides improve pharmacokinetics and pharmacodynamics of anticancer drugs. Tissue Barriers 2022; 10:1965418. [PMID: 34402743 PMCID: PMC8794253 DOI: 10.1080/21688370.2021.1965418] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022] Open
Abstract
This review concentrates on the research concerning conjugates of anticancer drugs with versatile cell-penetrating peptides (CPPs). For a better insight into the relationship between the components of the constructs, it starts with the characteristic of the peptides and considers its following aspects: mechanisms of cellular internalization, interaction with cancer-modified membranes, selectivity against tumor tissue. Also, CPPs with anticancer activity have been distinguished and summarized with their mechanisms of action. With respect to the conjugates, the preclinical studies (in vitro, in vivo) indicated that they possess several merits in comparison to the parent drugs. They concerned not only better cellular internalization but also other improvements in pharmacokinetics (e.g. access to the brain tissue) and pharmacodynamics (e.g. overcoming drug resistance). The anticancer activity of the conjugates was usually superior to that of the unconjugated drug. Certain anticancer CPPs and conjugates entered clinical trials.
Collapse
Affiliation(s)
- Izabela Rusiecka
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Iwona Gągało
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| | - Ivan Kocić
- Department of Pharmacology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
21
|
Anselmo S, Sancataldo G, Mørck Nielsen H, Foderà V, Vetri V. Peptide-Membrane Interactions Monitored by Fluorescence Lifetime Imaging: A Study Case of Transportan 10. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13148-13159. [PMID: 34714654 PMCID: PMC8582253 DOI: 10.1021/acs.langmuir.1c02392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The interest on detailed analysis of peptide-membrane interactions is of great interest in both fundamental and applied sciences as these may relate to both functional and pathogenic events. Such interactions are highly dynamic and spatially heterogeneous, making the investigation of the associated phenomena highly complex. The specific properties of membranes and peptide structural details, together with environmental conditions, may determine different events at the membrane interface, which will drive the fate of the peptide-membrane system. Here, we use an experimental approach based on the combination of spectroscopy and fluorescence microscopy methods to characterize the interactions of the multifunctional amphiphilic peptide transportan 10 with model membranes. Our approach, based on the use of suitable fluorescence reporters, exploits the advantages of phasor plot analysis of fluorescence lifetime imaging microscopy measurements to highlight the molecular details of occurring membrane alterations in terms of rigidity and hydration. Simultaneously, it allows following dynamic events in real time without sample manipulation distinguishing, with high spatial resolution, whether the peptide is adsorbed to or inserted in the membrane.
Collapse
Affiliation(s)
- Sara Anselmo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Giuseppe Sancataldo
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| | - Hanne Mørck Nielsen
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Vito Foderà
- Department
of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Valeria Vetri
- Dipartimento
di Fisica e Chimica−Emilio Segré, Università degli Studi di Palermo, Viale delle Scienze ed. 18 90128, Palermo, Italy
| |
Collapse
|
22
|
Ratrey P, Das Mahapatra A, Pandit S, Hadianawala M, Majhi S, Mishra A, Datta B. Emergent antibacterial activity of N-(thiazol-2-yl)benzenesulfonamides in conjunction with cell-penetrating octaarginine. RSC Adv 2021; 11:28581-28592. [PMID: 35478531 PMCID: PMC9038147 DOI: 10.1039/d1ra03882f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/13/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid antimicrobials that combine the effect of two or more agents represent a promising antibacterial therapeutic strategy. In this work, we have synthesized N-(4-(4-(methylsulfonyl)phenyl)-5-phenylthiazol-2-yl)benzenesulfonamide derivatives that combine thiazole and sulfonamide, groups with known antibacterial activity. These molecules are investigated for their antibacterial activity, in isolation and in complex with the cell-penetrating peptide octaarginine. Several of the synthesized compounds display potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Compounds with 4-tert-butyl and 4-isopropyl substitutions exhibit attractive antibacterial activity against multiple strains. The isopropyl substituted derivative displays low MIC of 3.9 μg mL−1 against S. aureus and A. xylosoxidans. The comparative antibacterial behaviour of drug–peptide complex, drug alone and peptide alone indicates a distinctive mode of action of the drug–peptide complex, that is not the simple sum total of its constituent components. Specificity of the drug–peptide complex is evident from comparison of antibacterial behaviour with a synthetic intermediate–peptide complex. The octaarginine–drug complex displays faster killing-kinetics towards bacterial cells, creates pores in the bacterial cell membranes and shows negligible haemolytic activity towards human RBCs. Our results demonstrate that mere attachment of a hydrophobic moiety to a cell penetrating peptide does not impart antibacterial activity to the resultant complex. Conversely, the work suggests distinctive modes of antibiotic activity of small molecules when used in conjunction with a cell penetrating peptide. Hybrid antimicrobials that combine the effect of two or more agents represent a promising antibacterial therapeutic strategy.![]()
Collapse
Affiliation(s)
- Poonam Ratrey
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073
| | - Shiny Pandit
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Murtuza Hadianawala
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073
| | - Sasmita Majhi
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Abhijit Mishra
- Department of Materials Science and Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar Gujarat India +91-79-2397-2622 +91-79-2395-2073.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar Gujarat India
| |
Collapse
|
23
|
Zhou J, Li Y, Huang W, Shi W, Qian H. Source and exploration of the peptides used to construct peptide-drug conjugates. Eur J Med Chem 2021; 224:113712. [PMID: 34303870 DOI: 10.1016/j.ejmech.2021.113712] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/12/2021] [Accepted: 07/17/2021] [Indexed: 12/16/2022]
Abstract
Peptide-drug conjugates (PDCs) are a class of novel molecules widely designed and synthesized for delivering payload drugs. The peptide part plays a vital role in the whole molecule, because they determine the ability of the molecules to penetrate the membrane and target to the specific targets. Here, we introduce the source of different kinds of cell-penetrating peptides (CPPs) and cell-targeting peptides (CTPs) that have been used or could be used in constructing PDCs as well as their latest application in delivering drugs. What's more, the approaches of developing CPPs and CTPs and the techniques to discover novel peptides are focused on and summarized in the review. This review aims to help relevant researchers fast understand the research status of peptides in PDCs and carry forward the process of novel peptides discovery.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Yuanyuan Li
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wenlong Huang
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Wei Shi
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Hai Qian
- Centre of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
24
|
Cell-Penetrating Peptides and Transportan. Pharmaceutics 2021; 13:pharmaceutics13070987. [PMID: 34210007 PMCID: PMC8308968 DOI: 10.3390/pharmaceutics13070987] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
In the most recent 25–30 years, multiple novel mechanisms and applications of cell-penetrating peptides (CPP) have been demonstrated, leading to novel drug delivery systems. In this review, I present a brief introduction to the CPP area with selected recent achievements. This is followed by a nostalgic journey into the research in my own laboratories, which lead to multiple CPPs, starting from transportan and paving a way to CPP-based therapeutic developments in the delivery of bio-functional materials, such as peptides, proteins, vaccines, oligonucleotides and small molecules, etc.
Collapse
|
25
|
Rádis-Baptista G. Cell-Penetrating Peptides Derived from Animal Venoms and Toxins. Toxins (Basel) 2021; 13:147. [PMID: 33671927 PMCID: PMC7919042 DOI: 10.3390/toxins13020147] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-penetrating peptides (CPPs) comprise a class of short polypeptides that possess the ability to selectively interact with the cytoplasmic membrane of certain cell types, translocate across plasma membranes and accumulate in the cell cytoplasm, organelles (e.g., the nucleus and mitochondria) and other subcellular compartments. CPPs are either of natural origin or de novo designed and synthesized from segments and patches of larger proteins or designed by algorithms. With such intrinsic properties, along with membrane permeation, translocation and cellular uptake properties, CPPs can intracellularly convey diverse substances and nanomaterials, such as hydrophilic organic compounds and drugs, macromolecules (nucleic acids and proteins), nanoparticles (nanocrystals and polyplexes), metals and radionuclides, which can be covalently attached via CPP N- and C-terminals or through preparation of CPP complexes. A cumulative number of studies on animal toxins, primarily isolated from the venom of arthropods and snakes, have revealed the cell-penetrating activities of venom peptides and toxins, which can be harnessed for application in biomedicine and pharmaceutical biotechnology. In this review, I aimed to collate examples of peptides from animal venoms and toxic secretions that possess the ability to penetrate diverse types of cells. These venom CPPs have been chemically or structurally modified to enhance cell selectivity, bioavailability and a range of target applications. Herein, examples are listed and discussed, including cysteine-stabilized and linear, α-helical peptides, with cationic and amphipathic character, from the venom of insects (e.g., melittin, anoplin, mastoparans), arachnids (latarcin, lycosin, chlorotoxin, maurocalcine/imperatoxin homologs and wasabi receptor toxin), fish (pardaxins), amphibian (bombesin) and snakes (crotamine and cathelicidins).
Collapse
Affiliation(s)
- Gandhi Rádis-Baptista
- Laboratory of Biochemistry and Biotechnology, Institute for Marine Sciences, Federal University of Ceara, Fortaleza 60165-081, Brazil
| |
Collapse
|
26
|
Ratrey P, Dalvi SV, Mishra A. Enhancing Aqueous Solubility and Antibacterial Activity of Curcumin by Complexing with Cell-Penetrating Octaarginine. ACS OMEGA 2020; 5:19004-19013. [PMID: 32775902 PMCID: PMC7408183 DOI: 10.1021/acsomega.0c02321] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 05/27/2023]
Abstract
Bacterial resistance to antimicrobial drugs is one of the biggest threats to human health and novel drugs, and strategies are needed to obviate this resistance crisis. An innovative strategy for designing novel antimicrobial drugs is based on the hybridization of an antimicrobial agent with a second functional entity. Here, we use a cell-penetrating peptide-octaarginine (R8) as the second functional entity and develop a complex or hybrid of R8 and curcumin that possibly targets the bacterial cell membrane. Minimum inhibitory concentration assays show that the antibacterial activity of the complex is enhanced in a synergistic manner and rapid killing kinetics are obtained, emphasizing a bactericidal mode of action. In addition, electron microscopy images reveal bacterial membrane disruption by the complex. The R8-curcumin complex also displays activity against HeLa cells.
Collapse
Affiliation(s)
- Poonam Ratrey
- Materials
Science and Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Sameer V. Dalvi
- Chemical
Engineering, Indian Institute of Technology
Gandhinagar, Palaj, Gandhinagar 382355, India
| | - Abhijit Mishra
- Materials
Science and Engineering, Indian Institute
of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
| |
Collapse
|
27
|
Bose RJC, Tharmalingam N, Garcia Marques FJ, Sukumar UK, Natarajan A, Zeng Y, Robinson E, Bermudez A, Chang E, Habte F, Pitteri SJ, McCarthy JR, Gambhir SS, Massoud TF, Mylonakis E, Paulmurugan R. Reconstructed Apoptotic Bodies as Targeted "Nano Decoys" to Treat Intracellular Bacterial Infections within Macrophages and Cancer Cells. ACS NANO 2020; 14:5818-5835. [PMID: 32347709 PMCID: PMC9116903 DOI: 10.1021/acsnano.0c00921] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Staphylococcus aureus (S. aureus) is a highly pathogenic facultative anaerobe that in some instances resides as an intracellular bacterium within macrophages and cancer cells. This pathogen can establish secondary infection foci, resulting in recurrent systemic infections that are difficult to treat using systemic antibiotics. Here, we use reconstructed apoptotic bodies (ReApoBds) derived from cancer cells as "nano decoys" to deliver vancomycin intracellularly to kill S. aureus by targeting inherent "eat me" signaling of ApoBds. We prepared ReApoBds from different cancer cells (SKBR3, MDA-MB-231, HepG2, U87-MG, and LN229) and used them for vancomycin delivery. Physicochemical characterization showed ReApoBds size ranges from 80 to 150 nm and vancomycin encapsulation efficiency of 60 ± 2.56%. We demonstrate that the loaded vancomycin was able to kill intracellular S. aureus efficiently in an in vitro model of S. aureus infected RAW-264.7 macrophage cells, and U87-MG (p53-wt) and LN229 (p53-mt) cancer cells, compared to free-vancomycin treatment (P < 0.001). The vancomycin loaded ReApoBds treatment in S. aureus infected macrophages showed a two-log-order higher CFU reduction than the free-vancomycin treatment group. In vivo studies revealed that ReApoBds can specifically target macrophages and cancer cells. Vancomycin loaded ReApoBds have the potential to kill intracellular S. aureus infection in vivo in macrophages and cancer cells.
Collapse
Affiliation(s)
- Rajendran J C Bose
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Nagendran Tharmalingam
- Infectious Disease Division, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Brown University, Providence, Rhode Island 02903, United States
| | - Fernando J Garcia Marques
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Uday Kumar Sukumar
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Arutselvan Natarajan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Yitian Zeng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Elise Robinson
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Abel Bermudez
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Frezghi Habte
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Sharon J Pitteri
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Jason R McCarthy
- Masonic Medical Research Institute, 2150 Bleecker Street, Utica, New York 13501, United States
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Tarik F Massoud
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| | - Eleftherios Mylonakis
- Infectious Disease Division, Department of Medicine, Rhode Island Hospital and Alpert Medical School of Brown University, Brown University, Providence, Rhode Island 02903, United States
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, 3155 Porter Drive, Palo Alto, California 94305, United States
| |
Collapse
|
28
|
Röhrig C, Huemer M, Lorgé D, Luterbacher S, Phothaworn P, Schefer C, Sobieraj AM, Zinsli LV, Mairpady Shambat S, Leimer N, Keller AP, Eichenseher F, Shen Y, Korbsrisate S, Zinkernagel AS, Loessner MJ, Schmelcher M. Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus. mBio 2020; 11:e00209-20. [PMID: 32291298 PMCID: PMC7157818 DOI: 10.1128/mbio.00209-20] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Staphylococcus aureus is a major concern in human health care, mostly due to the increasing prevalence of antibiotic resistance. Intracellular localization of S. aureus plays a key role in recurrent infections by protecting the pathogens from antibiotics and immune responses. Peptidoglycan hydrolases (PGHs) are highly specific bactericidal enzymes active against both drug-sensitive and -resistant bacteria. However, PGHs able to effectively target intracellular S. aureus are not yet available. To overcome this limitation, we first screened 322 recombineered PGHs for staphylolytic activity under conditions found inside eukaryotic intracellular compartments. The most active constructs were modified by fusion to different cell-penetrating peptides (CPPs), resulting in increased uptake and enhanced intracellular killing (reduction by up to 4.5 log units) of various S. aureus strains (including methicillin-resistant S. aureus [MRSA]) in different tissue culture infection models. The combined application of synergistic PGH-CPP constructs further enhanced their intracellular efficacy. Finally, synergistically active PGH-CPP cocktails reduced the total S. aureus by more than 2.2 log units in a murine abscess model after peripheral injection. Significantly more intracellular bacteria were killed by the PGH-CPPs than by the PGHs alone. Collectively, our findings show that CPP-fused PGHs are effective novel protein therapeutics against both intracellular and drug-resistant S. aureusIMPORTANCE The increasing prevalence of antibiotic-resistant bacteria is one of the most urgent problems of our time. Staphylococcus aureus is an important human pathogen that has acquired several mechanisms to evade antibiotic treatment. In addition, S. aureus is able to invade and persist within human cells, hiding from the immune response and antibiotic therapies. For these reasons, novel antibacterial strategies against these pathogens are needed. Here, we developed lytic enzymes which are able to effectively target drug-resistant and intracellular S. aureus Fusion of these so-called enzybiotics to cell-penetrating peptides enhanced their uptake and intracellular bactericidal activity in cell culture and in an abscess mouse model. Our results suggest that cell-penetrating enzybiotics are a promising new class of therapeutics against staphylococcal infections.
Collapse
Affiliation(s)
- Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Markus Huemer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Dominique Lorgé
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Samuel Luterbacher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Preeda Phothaworn
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Anna M Sobieraj
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Srikanth Mairpady Shambat
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Nadja Leimer
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anja P Keller
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Fritz Eichenseher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Yang Shen
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Annelies S Zinkernagel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Wang Y, Li H, Xie X, Wu X, Li X, Zhao Z, Luo S, Wan Z, Liu J, Fu L, Li X. In vitro and in vivo assessment of the antibacterial activity of colistin alone and in combination with other antibiotics against Acinetobacter baumannii and Escherichia coli. J Glob Antimicrob Resist 2019; 20:351-359. [PMID: 31557565 DOI: 10.1016/j.jgar.2019.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022] Open
Abstract
OBJECTIVES Limited therapeutic options exist for treating severe infections caused by multidrug-resistant (MDR) and extensively drug-resistant Gram-negative bacteria (GNB). In this study, the activity of colistin (COL) as monotherapy and in combination with other antibiotics against Acinetobacter baumannii in vitro was investigated. In addition, the efficacy of intravenous colistimethate sodium (CMS) was evaluated in a murine model of urinary tract infection (UTI) induced by MDR Escherichia coli. METHODS Minimum inhibitory concentration (MIC), Monte Carlo simulation, fractional inhibitory concentration index (FICI), time-kill study and erythrocyte lysis assay were applied to evaluate the effect and cytotoxicity of COL, meropenem, imipenem, doripenem (DOR) and sulbactam alone and in combination. For the in vivo experiment, determination of the bacterial burden and histopathological examination were performed to evaluate the efficacy of CMS against UTI. RESULTS Of 106 A. baumannii isolates, 104 (98.1%) were susceptible to COL. In the chequerboard assay, COL + DOR showed the highest rate of synergism (60%). No antagonism or cytotoxicity was observed. All COL-based combinations were able to inhibit or slow bacterial re-growth in a time-kill assay. In an in vivo activity study, intravenous CMS reduced not only the bacterial load but also inflammation and maintained structural integrity of infected bladders and kidneys. CONCLUSION The effectiveness of COL alone in vitro and in vivo suggested that intravenous CMS will be an effective and available therapeutic strategy for UTI due to MDR-GNB. In-depth in vitro tests demonstrated that COL + DOR could be an attractive option, especially when the COL MIC is ≥1 μg/mL.
Collapse
Affiliation(s)
- Yale Wang
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - He Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China; Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaoqian Xie
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - XiaoHan Wu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xinxin Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Zeyue Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Shasha Luo
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Zhijie Wan
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Jingjing Liu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lei Fu
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Xiaotian Li
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
30
|
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309:106-124. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site. Cell penetrating peptides (CPPs) are a group of short peptides harnessed in this condition, possessing a significant capacity for membrane transduction and could be exploited to transfer various biologically active cargoes into the cells. Since their discovery, CPPs have been employed for delivery of a wide variety of therapeutic molecules to treat various disorders including cranial nerve involvement, ocular inflammation, myocardial ischemia, dermatosis and cancer. The promising results of CPPs-derived therapeutics in various tumor models demonstrated a potential and worthwhile scope of CPPs in chemotherapy. This review describes the detailed description of CPPs and CPPs-assisted molecular delivery against various tissues and organs disorders. An emphasis is focused on summarizing the novel insights and achievements of CPPs in surmounting the natural membrane barriers during the last 5 years.
Collapse
Affiliation(s)
- Jiangkang Xu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Manfei Fu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rujuan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
31
|
Hasan M, Moghal MMR, Saha SK, Yamazaki M. The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranes. Biophys Rev 2019; 11:431-448. [PMID: 31093936 DOI: 10.1007/s12551-019-00542-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/29/2019] [Indexed: 12/28/2022] Open
Abstract
For antimicrobial peptides (AMPs) with antimicrobial and bactericidal activities and cell-penetrating peptides (CPPs) with activity to permeate through plasma membrane, their interactions with lipid bilayer region in plasma membrane play important roles in these functions. However, the elementary processes and mechanisms of their functions have not been clear. The single giant unilamellar vesicle (GUV) method has revealed the details of elementary processes of interaction of some AMPs and CPPs with lipid vesicles. In this review, we summarize the mode of action of AMPs such as magainin 2 (Mag) and CPPs such as transportan 10 (TP10), revealed by the single GUV methods, and especially we focus on the role of membrane tension in actions of Mag and TP10 and the mechanisms of their actions. First, we explain the characteristics of the single GUV method briefly. Next, we summarize the recent view on the effect of tension on physical properties of lipid bilayers and describe the role of tension in actions of Mag and TP10. Some experimental results indicate that Mag-induced pore is a stretch-activated pore. The effect of packing of transbilayer asymmetric lipid on Mag-induced pore formation is described. On the other hand, entry of fluorescent dye, carboxyfluorescein (CF)-labeled TP10 (i.e., CF-TP10), into single GUVs without pore formation is affected by tension and high concentration of cholesterol. Pre-pore model for translocation of CF-TP10 across lipid bilayer is described. The experimental methods and their analysis described here are useful for investigation of functions of the other types of AMPs, CPPs, and proteins.
Collapse
Affiliation(s)
- Moynul Hasan
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.,Department of Pharmacy, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Mizanur Rahman Moghal
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Samiron Kumar Saha
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Masahito Yamazaki
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan. .,Nanomaterials Research Division, Research Institute of Electronics, Shizuoka University, 836 Oya, Suruga-ku, Shizuoka, 422-8529, Japan. .,Department of Physics, Faculty of Science, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|