1
|
Daniūtė G, Pranckėnienė L, Pakerys J, Kloviņš J, Kučinskas V, Urnikytė A. Populations of Latvia and Lithuania in the context of some Indo-European and non-Indo-European speaking populations of Europe and India: insights from genetic structure analysis. Front Genet 2024; 15:1493270. [PMID: 39634275 PMCID: PMC11614816 DOI: 10.3389/fgene.2024.1493270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The aim of this study was to investigate the relationship among Lithuanian, Latvian, Indian, and some other populations through a genome-wide data analysis of single nucleotide polymorphisms (SNPs). Limited data of Baltic populations were mostly compared with geographically closer modern and ancient populations in the past, but no previous investigation has explored their genetic relationships with distant populations, like the ones of India, in detail. To address this, we collected and merged genome-wide SNP data from diverse publicly available sources to create a comprehensive dataset with a substantial sample size especially from Lithuanians and Latvians. Principal component analysis (PCA) and admixture analysis methods were employed to assess the genetic structure and relationship among the populations under investigation. Additionally, we estimated an effective population size (Ne) and divergence time to shed light on potential past events between the Baltic and Indian populations. To gain a broader perspective, we also incorporated ancient and modern populations from different continents into our analyses. Our findings revealed that the Balts, unsurprisingly, have a closer genetic affinity with individuals from Indian population who speak Indo-European languages, compared to other Indian linguistic groups (such as speakers of Dravidian, Austroasiatic, and Sino-Tibetan languages). However, when compared to other populations from the European continent, which also speak Indo-European and some Uralic languages, the Balts did not exhibit a stronger resemblance to Indo-European-speaking Indians. In conclusion, this study provides an overview of the genetic relationship and structure of the populations investigated, along with insights into their divergence times.
Collapse
Affiliation(s)
- Gintė Daniūtė
- Department of Human and Medical Genetics, Biomedical Science Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Laura Pranckėnienė
- Faculty of Medicine Population Genomics Laboratory, Translational health research Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Jurgis Pakerys
- Department of Baltic Studies, Institute for the Languages and Cultures of the Baltic, Vilnius University, Vilnius, Lithuania
| | - Jānis Kloviņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Vaidutis Kučinskas
- Faculty of Medicine Population Genomics Laboratory, Translational health research Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Alina Urnikytė
- Faculty of Medicine Population Genomics Laboratory, Translational health research Institute, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Ahlawat B, Dewangan H, Pasupuleti N, Dwivedi A, Rajpal R, Pandey S, Kumar L, Thangaraj K, Rai N. Investigating linguistic and genetic shifts in East Indian tribal groups. Heliyon 2024; 10:e34354. [PMID: 39082022 PMCID: PMC11284423 DOI: 10.1016/j.heliyon.2024.e34354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
South Asia is home to almost a quarter of the world's total population and is home to significant ethnolinguistic diversity. Previous studies of linguistic and genetic affiliations of Indian populations suggest that the formation of these distinct groups was a protracted and complex phenomenon involving multiple waves of migration, cultural assimilation, and genetic admixture. The evolutionary processes of migration, mixing and merging of populations thus impact the culture and linguistic diversity of different groups, some of which may retain their linguistic affinities despite genetic admixture with other groups, or vice versa. Our study examines the relationship of genetic and linguistic affinities between Austroasiatic and Indo-European speakers in adjacent geographical regions of Eastern India. We analyzed 224 mitogenomes and 0.65 million SNP genotypes from 40 unrelated individuals belonging to the Bathudi, Bhumij, Ho, and Mahali ethnic groups from the Eastern Indian state of Odisha. These four groups are speakers of Austroasiatic languages who have adopted elements from Indo-European languages spoken in neighbouring regions. Our results suggest that these groups have the greatest maternal genetic affinity with other Austroasiatic-speaking groups in India. Allele frequency-based analyses, genome-wide SNPs, haplotype-based methods and IBD sharing further support the genetic similarity of these East Indian groups to Austroasiatic speakers of South Asia rather than regional populations speaking Indo-European and Dravidian languages. Our study shows that these populations experienced linguistic mixing, likely due to industrialization and modernization that brought them into close cultural contact with neighbouring Indo-European-speaking groups. However, linguistic change in these groups is not reflected in genetic mixing in these populations, as they appear to maintain strict genetic boundaries while simultaneously experiencing cultural mixing.
Collapse
Affiliation(s)
- Bhavna Ahlawat
- Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
- Department of Anthropology, Panjab University, Chandigarh, 160014, India
| | - Hemlata Dewangan
- Shreyanshi Health Care Private Limited, Raipur, Chattisgarh, 492001, India
| | - Nagarjuna Pasupuleti
- CSIR—Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Aparna Dwivedi
- Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Richa Rajpal
- Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Pandey
- Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
| | - Lomous Kumar
- Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
| | - Kumarasamy Thangaraj
- CSIR—Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Lucknow, 226007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Sequeira JJ, Panda M, Dixit S, Kumawat R, Mustak MS, Sharma AN, Chaubey G, Shrivastava P. Forensic Characterization, Genomic Variability and Ancestry Analysis of Six Populations from Odisha Using mtDNA SNPs and Autosomal STRs. Biochem Genet 2024:10.1007/s10528-024-10887-2. [PMID: 39039324 DOI: 10.1007/s10528-024-10887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Located on India's eastern coast, Odisha is known for its diverse tribes and castes. In the early days of genome sequencing technology, researchers primarily studied the Austroasiatic communities inhabiting this region to reconstruct the ancient origins and dispersal of this broad linguistic group. However, current research has shifted towards identifying population and individual-specific genome variation for forensic applications. This study aims to analyze the forensic efficiency and ancestry of six populations from Odisha. We assessed the SF mtDNA-SNP60™ PCR Amplification Kit by comparing it with PowerPlex® Fusion 6C System, a widely used autosomal STR (aSTR) kit, in an Indian cohort. Although the mtDNA SNP kit showed low discriminating power for individuals of a diverse population, it could identify deep lineage divergence. Also, we utilized mitochondrial and autosomal variation information to analyze the ancestry of six endogamous ethnic groups in Odisha. We observe two extremities-populations with higher West Asian affinity and those with East Asian affinity. This observation is in congruence with the existing information of their tribal and non-tribal affiliation. When compared with neighbouring populations from Central and Eastern India, multivariate analysis showed that the Brahmins clustered separately or with the Gopala, Kaibarta appeared as an intermediate, Pana and Kandha clustered with the Gonds, and Savara with the Munda tribes. Our findings indicate significant deep lineage stratification in the ethnic populations of Odisha and a gene flow from West and East Asia. The artefacts of unique deep lineage in such a diverse population will help in improving forensic identification. In addition, we conclude that the SF mtDNA-SNP60 PCR Amplification Kit may be used only as a supplementary tool for forensic analysis.
Collapse
Affiliation(s)
- Jaison Jeevan Sequeira
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, 574199, India
| | - Muktikanta Panda
- Department of Anthropology, Model Degree College, Malkangiri, Odisha, 764045, India
- Department of Anthropology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Shivani Dixit
- DNA Division, Central Forensic Science Laboratory, Chandigarh, 160036, India
| | - Ramkishan Kumawat
- DNA Division, State Forensic Science Laboratory, Jaipur, Rajasthan, India
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Mangalore, 574199, India
| | - Awdhesh Narayan Sharma
- Department of Anthropology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India
| | - Gyaneshwer Chaubey
- DNA Division, Central Forensic Science Laboratory, Chandigarh, 160036, India
- Department of Zoology, Banaras Hindu University (BHU), Varanasi, India
| | - Pankaj Shrivastava
- Department of Anthropology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, 470003, India.
- Regional Forensic Science Laboratory, Government of MP, Gwalior, Madhya Pradesh, India.
| |
Collapse
|
4
|
Biddanda A, Bandyopadhyay E, de la Fuente Castro C, Witonsky D, Urban Aragon JA, Pasupuleti N, Moots HM, Fonseca R, Freilich S, Stanisavic J, Willis T, Menon A, Mustak MS, Kodira CD, Naren AP, Sikdar M, Rai N, Raghavan M. Distinct positions of genetic and oral histories: Perspectives from India. HGG ADVANCES 2024; 5:100305. [PMID: 38720459 PMCID: PMC11153255 DOI: 10.1016/j.xhgg.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/04/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024] Open
Abstract
Over the past decade, genomic data have contributed to several insights on global human population histories. These studies have been met both with interest and critically, particularly by populations with oral histories that are records of their past and often reference their origins. While several studies have reported concordance between oral and genetic histories, there is potential for tension that may stem from genetic histories being prioritized or used to confirm community-based knowledge and ethnography, especially if they differ. To investigate the interplay between oral and genetic histories, we focused on the southwestern region of India and analyzed whole-genome sequence data from 156 individuals identifying as Bunt, Kodava, Nair, and Kapla. We supplemented limited anthropological records on these populations with oral history accounts from community members and historical literature, focusing on references to non-local origins such as the ancient Scythians in the case of Bunt, Kodava, and Nair, members of Alexander the Great's army for the Kodava, and an African-related source for Kapla. We found these populations to be genetically most similar to other Indian populations, with the Kapla more similar to South Indian tribal populations that maximize a genetic ancestry related to Ancient Ancestral South Indians. We did not find evidence of additional genetic sources in the study populations than those known to have contributed to many other present-day South Asian populations. Our results demonstrate that oral and genetic histories may not always provide consistent accounts of population origins and motivate further community-engaged, multi-disciplinary investigations of non-local origin stories in these communities.
Collapse
Affiliation(s)
- Arjun Biddanda
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Esha Bandyopadhyay
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Constanza de la Fuente Castro
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David Witonsky
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | | | - Nagarjuna Pasupuleti
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka 574199, India
| | - Hannah M Moots
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Institute for the Study of Ancient Cultures Museum, University of Chicago, Chicago, IL, USA
| | - Renée Fonseca
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Suzanne Freilich
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Evolutionary Anthropology, University of Vienna, Vienna 1090, Austria
| | - Jovan Stanisavic
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tabitha Willis
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Anoushka Menon
- Department of Archaeology, University of Cambridge, Cambridge CB2 3DZ, UK
| | - Mohammed S Mustak
- Department of Applied Zoology, Mangalore University, Mangalagangothri, Karnataka 574199, India
| | | | - Anjaparavanda P Naren
- Division of Pulmonary Medicine, Cystic Fibrosis Research Center, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mithun Sikdar
- Anthropological Survey of India, Mysore, Karnataka 570026, India
| | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Uttar Pradesh, Lucknow, Uttar Pradesh 226007, India.
| | - Maanasa Raghavan
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
5
|
Kumar S, Singh PP, Pasupuleti N, Tripathy VM, Chauley MK, Chaubey G, Rai N. The genetic admixture and assimilation of Ahom: a historic migrant from Thailand to India. Hum Mol Genet 2024; 33:1015-1019. [PMID: 38538568 DOI: 10.1093/hmg/ddae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/02/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
The Northeastern region of India is considered a gateway for modern humans' dispersal throughout Asia. This region is a mixture of various ethnic and indigenous populations amalgamating multiple ancestries. One reason for such amalgamation is that, South Asia experienced multiple historic migrations from various parts of the world. A few examples explored genetically are Jews, Parsis and Siddis. Ahom is a dynasty that historically migrated to India during the 12th century. However, this putative migration has not been studied genetically at high resolution. Therefore, to validate this historical evidence, we genotyped autosomal data of the Modern Ahom population residing in seven sister states of India. Principal Component and Admixture analyses haave suggested a substantial admixture of the Ahom population with the local Tibeto-Burman populations. Moreover, the haplotype-based analysis has linked these Ahom individuals mainly with the Kusunda (a language isolated from Nepal) and Khasi (an Austroasiatic population of Meghalaya). Such unexpected presence of widespread population affinities suggests that Ahom mixed and assimilated a wide variety of Trans-Himalayan populations inhabiting this region after the migration. In summary, we observed a significant deviation of Ahom from their ancestral homeland (Thailand) and extensive admixture and assimilation with the local South Asian populations.
Collapse
Affiliation(s)
- Sachin Kumar
- Ancient DNA Lab, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226607, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | | | - Veena Mushrif Tripathy
- Department of Archaeology, Deccan College Post-Graduate and Research Institute, Pune, Maharashtra 411006, India
| | - Milan Kumar Chauley
- Archaeological Survey of India, Nagpur Circle, Seminary Hills, Nagpur, Maharashtra 440001, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Niraj Rai
- Ancient DNA Lab, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226607, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Pandey RK, Srivastava A, Mishra RK, Singh PP, Chaubey G. Novel genetic association of the Furin gene polymorphism rs1981458 with COVID-19 severity among Indian populations. Sci Rep 2024; 14:7822. [PMID: 38570613 PMCID: PMC10991378 DOI: 10.1038/s41598-024-54607-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/14/2024] [Indexed: 04/05/2024] Open
Abstract
SARS CoV-2, the causative agent for the ongoing COVID-19 pandemic, it enters the host cell by activating the ACE2 receptor with the help of two proteasesi.e., Furin and TMPRSS2. Therefore, variations in these genes may account for differential susceptibility and severity between populations. Previous studies have shown that the role of ACE2 and TMPRSS2 gene variants in understanding COVID-19 susceptibility among Indian populations. Nevertheless, a knowledge gap exists concerning the COVID-19 susceptibility of Furin gene variants among diverse South Asian ethnic groups. Investigating the role of Furin gene variants and their global phylogeographic structure is essential to comprehensively understanding COVID-19 susceptibility in these populations. We have used 450 samples from diverse Indian states and performed linear regression to analyse the Furin gene variant's with COVID-19 Case Fatality Rate (CFR) that could be epidemiologically associated with disease severity outcomes. Associated genetic variants were further evaluated for their expression and regulatory potential through various Insilco analyses. Additionally, we examined the Furin gene using next-generation sequencing (NGS) data from 393 diverse global samples, with a particular emphasis on South Asia, to investigate its Phylogeographic structure among diverse world populations. We found a significant positive association for the SNP rs1981458 with COVID-19 CFR (p < 0.05) among diverse Indian populations at different timelines of the first and second waves. Further, QTL and other regulatory analyses showed various significant associations for positive regulatory roles of rs1981458 and Furin gene, mainly in Immune cells and virus infection process, highlighting their role in host immunity and viral assembly and processing. The Furin protein-protein interaction suggested that COVID-19 may contribute to Pulmonary arterial hypertension via a typical inflammation mechanism. The phylogeographic architecture of the Furin gene demonstrated a closer genetic affinity of South Asia with West Eurasian populations. Therefore, it is worth proposing that for the Furin gene, the COVID-19 susceptibility of South Asians will be more similar to the West Eurasian population. Our previous studies on the ACE2 and TMPRSS2 genes showed genetic affinity of South Asian with East Eurasians and West Eurasians, respectively. Therefore, with the collective information from these three important genes (ACE2, TMPRSS2 and Furin) we modelled COVID-19 susceptibilityof South Asia in between these two major ancestries with an inclination towards West Eurasia. In conclusion, this study, for the first time, concluded the role of rs1981458 in COVID-19 severity among the Indian population and outlined its regulatory potential.This study also highlights that the genetic structure for COVID-19 susceptibilityof South Asia is distinct, however, inclined to the West Eurasian population. We believe this insight may be utilised as a genetic biomarker to identify vulnerable populations, which might be directly relevant for developing policies and allocating resources more effectively during an epidemic.
Collapse
Affiliation(s)
- Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| | - Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Rahul Kumar Mishra
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Herrick N, Walsh S. ILIAD: a suite of automated Snakemake workflows for processing genomic data for downstream applications. BMC Bioinformatics 2023; 24:424. [PMID: 37940870 PMCID: PMC10633908 DOI: 10.1186/s12859-023-05548-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Processing raw genomic data for downstream applications such as imputation, association studies, and modeling requires numerous third-party bioinformatics software tools. It is highly time-consuming and resource-intensive with computational demands and storage limitations that pose significant challenges that increase cost. The use of software tools independent of one another, in a disjointed stepwise fashion, increases the difficulty and sets forth higher error rates because of fragmented job executions in alignment, variant calling, and/or build conversion complications. As sequencing data availability grows, the ability for biologists to process it using stable, automated, and reproducible workflows is paramount as it significantly reduces the time to generate clean and reliable data. RESULTS The Iliad suite of genomic data workflows was developed to provide users with seamless file transitions from raw genomic data to a quality-controlled variant call format (VCF) file for downstream applications. Iliad benefits from the efficiency of the Snakemake best practices framework coupled with Singularity and Docker containers for repeatability, portability, and ease of installation. This feat is accomplished from the onset with download acquisitions of any raw data type (FASTQ, CRAM, IDAT) straight through to the generation of a clean merged data file that can combine any user-preferred datasets using robust programs such as BWA, Samtools, and BCFtools. Users can customize and direct their workflow with one straightforward configuration file. Iliad is compatible with Linux, MacOS, and Windows platforms and scalable from a local machine to a high-performance computing cluster. CONCLUSION Iliad offers automated workflows with optimized time and resource management that are comparable to other workflows available but generates analysis-ready VCF files from the most common datatypes using a single command. The storage footprint challenge of genomic data is overcome by utilizing temporary intermediate files before the final VCF is generated. This file is ready for use in imputation, genome-wide association study (GWAS) pipelines, high-throughput population genetics studies, select gene candidate studies, and more. Iliad was developed to be portable, compatible, scalable, robust, and repeatable with a simplistic setup, so biologists that are less familiar with programming can manage their own big data with this open-source suite of workflows.
Collapse
Affiliation(s)
- Noah Herrick
- Department of Biology, Indiana University Indianapolis, 723 W. Michigan Street, Indianapolis, IN, USA.
| | - Susan Walsh
- Department of Biology, Indiana University Indianapolis, 723 W. Michigan Street, Indianapolis, IN, USA
| |
Collapse
|
8
|
Woravatin W, Stoneking M, Srikummool M, Kampuansai J, Arias L, Kutanan W. South Asian maternal and paternal lineages in southern Thailand and the role of sex-biased admixture. PLoS One 2023; 18:e0291547. [PMID: 37708147 PMCID: PMC10501589 DOI: 10.1371/journal.pone.0291547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Previous genome-wide studies have reported South Asian (SA) ancestry in several Mainland Southeast Asian (MSEA) populations; however, additional details concerning population history, in particular the role of sex-specific aspects of the SA admixture in MSEA populations can be addressed with uniparental markers. Here, we generated ∼2.3 mB sequences of the male-specific portions of the Y chromosome (MSY) of a Tai-Kadai (TK)-speaking Southern Thai group (SouthernThai_TK), and complete mitochondrial (mtDNA) genomes of the SouthernThai_TK and an Austronesian (AN)-speaking Southern Thai (SouthernThai_AN) group. We identified new mtDNA haplogroups, e.g. Q3, E1a1a1, B4a1a and M7c1c3 that have not previously reported in Thai populations, but are frequent in Island Southeast Asia and Oceania, suggesting interactions between MSEA and these regions. SA prevalent mtDNA haplogroups were observed at frequencies of ~35-45% in the Southern Thai groups; both of them showed more genetic relatedness to Austroasiatic (AA) speaking Mon than to any other group. For MSY, SouthernThai_TK had ~35% SA prevalent haplogroups and exhibited closer genetic affinity to Central Thais. We also analyzed published data from other MSEA populations and observed SA ancestry in some additional MSEA populations that also reflects sex-biased admixture; in general, most AA- and AN-speaking groups in MSEA were closer to SA than to TK groups based on mtDNA, but the opposite pattern was observed for the MSY. Overall, our results of new genetic lineages and sex-biased admixture from SA to MSEA groups attest to the additional value that uniparental markers can add to studies of genome-wide variation.
Collapse
Affiliation(s)
- Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Biométrie et Biologie Évolutive, UMR 5558, CNRS & Université de Lyon, Lyon, France
| | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Leonardo Arias
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Centre for Linguistics, Faculty of Humanities, Leiden University, Leiden, The Netherlands
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
9
|
Prehistoric human migration between Sundaland and South Asia was driven by sea-level rise. Commun Biol 2023; 6:150. [PMID: 36739308 PMCID: PMC9899273 DOI: 10.1038/s42003-023-04510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 01/20/2023] [Indexed: 02/06/2023] Open
Abstract
Rapid sea-level rise between the Last Glacial Maximum (LGM) and the mid-Holocene transformed the Southeast Asian coastal landscape, but the impact on human demography remains unclear. Here, we create a paleogeographic map, focusing on sea-level changes during the period spanning the LGM to the present-day and infer the human population history in Southeast and South Asia using 763 high-coverage whole-genome sequencing datasets from 59 ethnic groups. We show that sea-level rise, in particular meltwater pulses 1 A (MWP1A, ~14,500-14,000 years ago) and 1B (MWP1B, ~11,500-11,000 years ago), reduced land area by over 50% since the LGM, resulting in segregation of local human populations. Following periods of rapid sea-level rises, population pressure drove the migration of Malaysian Negritos into South Asia. Integrated paleogeographic and population genomic analysis demonstrates the earliest documented instance of forced human migration driven by sea-level rise.
Collapse
|
10
|
Changmai P, Pinhasi R, Pietrusewsky M, Stark MT, Ikehara-Quebral RM, Reich D, Flegontov P. Ancient DNA from Protohistoric Period Cambodia indicates that South Asians admixed with local populations as early as 1st-3rd centuries CE. Sci Rep 2022; 12:22507. [PMID: 36581666 PMCID: PMC9800559 DOI: 10.1038/s41598-022-26799-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Indian cultural influence is remarkable in present-day Mainland Southeast Asia (MSEA), and it may have stimulated early state formation in the region. Various present-day populations in MSEA harbor a low level of South Asian ancestry, but previous studies failed to detect such ancestry in any ancient individual from MSEA. In this study, we discovered a substantial level of South Asian admixture (ca. 40-50%) in a Protohistoric individual from the Vat Komnou cemetery at the Angkor Borei site in Cambodia. The location and direct radiocarbon dating result on the human bone (95% confidence interval is 78-234 calCE) indicate that this individual lived during the early period of Funan, one of the earliest states in MSEA, which shows that the South Asian gene flow to Cambodia started about a millennium earlier than indicated by previous published results of genetic dating relying on present-day populations. Plausible proxies for the South Asian ancestry source in this individual are present-day populations in Southern India, and the individual shares more genetic drift with present-day Cambodians than with most present-day East and Southeast Asian populations.
Collapse
Affiliation(s)
- Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria
| | | | - Miriam T Stark
- Department of Anthropology, University of Hawai'i-Mānoa, Honolulu, HI, USA
| | - Rona Michi Ikehara-Quebral
- Department of Anthropology, University of Hawai'i-Mānoa, Honolulu, HI, USA
- International Archaeological Research Institute, Inc., Honolulu, HI, USA
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA.
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Kalmykia, Russia.
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| |
Collapse
|
11
|
Than KZ, Muisuk K, Woravatin W, Suwannapoom C, Srikummool M, Srithawong S, Lorphengsy S, Kutanan W. Genetic Structure and Forensic Utility of 23 Autosomal STRs of the Ethnic Lao Groups From Laos and Thailand. Front Genet 2022; 13:954586. [PMID: 35873476 PMCID: PMC9300924 DOI: 10.3389/fgene.2022.954586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
The Lao Isan and Laotian are the major groups in the area of present-day northeastern Thailand and Laos, respectively. Several previous genetic and forensic studies indicated an admixed genetic structure of Lao Isan with the local Austroasiatic speaking groups, e.g. Khmer, whereas there is a paucity of reporting Laotian’s forensic short tandem repeats (STRs). Here, we newly generated 451 genotypes of seven Lao Isan and three Laotian populations (two Lao Lum and one Lao Thoeng) using 23 autosomal STRs embedded in VerifilerTM plus PCR Amplification kit. We reported allelic frequency and forensic parameters in different dataset: combined ethnic Lao groups, combined Lao Isan populations and combined Laotians. Overall, the forensic parameter results indicate that this set of STRs is suitable for forensic investigation. The anthropological results revealed the genetic homogeneity of Tai-Kadai speaking Lao groups from Thailand and Laos, consistent with previous studies, while the Austroasiatic speaking groups from southern Laos showed genetic relatedness to both Lao Isan and Khmer. In sum, STRs allelic frequency results can provide the genetic backgrounds of populations which is useful for anthropological research and also strengthens the regional forensic database in both countries.
Collapse
Affiliation(s)
- Khaing Zin Than
- Biological Science Program, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Kanha Muisuk
- Department of Forensic Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Wipada Woravatin
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Suparat Srithawong
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - Sengvilay Lorphengsy
- The Biotechnology and Ecology Institute Ministry of Science and Technology, Vientiane, Laos
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
- *Correspondence: Wibhu Kutanan,
| |
Collapse
|
12
|
Dhar M, Kapoor N, Suastika K, Khamseh ME, Selim S, Kumar V, Raza SA, Azmat U, Pathania M, Rai Mahadeb YP, Singhal S, Naseri MW, Aryana IGPS, Thapa SD, Jacob J, Somasundaram N, Latheef A, Dhakal GP, Kalra S. South Asian Working Action Group on SARCOpenia (SWAG-SARCO) – A consensus document. Osteoporos Sarcopenia 2022; 8:35-57. [PMID: 35832416 PMCID: PMC9263178 DOI: 10.1016/j.afos.2022.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 04/23/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minakshi Dhar
- Department of Internal Medicine, AIIMS, Rishikesh, India
| | - Nitin Kapoor
- Department of Endocrinology, Christian Medical College, Vellore, Tamil Nadu, India
- Non Communicable Disease Unit, The Nossal Institute for Global Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Ketut Suastika
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University Denpasar, Bali, Indonesia
| | - Mohammad E. Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Shahjada Selim
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Vijay Kumar
- Department of Geriatric Medicine AIIMS New Delhi, India
| | - Syed Abbas Raza
- Department of Medicine, Shaukat Khanum Cancer Hospital and Research Center, Lahore, Pakistan
| | - Umal Azmat
- Department of Internal Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Monika Pathania
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | | | - Sunny Singhal
- Department of Geriatric Medicine, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan, India
| | - Mohammad Wali Naseri
- Internal Medicine, Division of Endocrinology Metabolism and Diabetes, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - IGP Suka Aryana
- Geriatric Division of Internal Medicine Department, Udayana University, Bali, Indonesia
| | - Subarna Dhoj Thapa
- Department of Endocrinology and Metabolism, Grande International Hospital, Kathmandu, Nepal
| | - Jubbin Jacob
- Department of Endocrinology, Christian Medical College and Hospital, Ludhiana, Punjab, India
| | - Noel Somasundaram
- Diabetes and Endocrine Unit, National Hospital of Sri Lanka, Colombo, 10, Sri Lanka
| | - Ali Latheef
- Department of Internal Medicine, Indira Gandhi Memorial Hospital, Maldives
| | - Guru Prasad Dhakal
- Department of Gastroenterology, Jigme Dorji Wangchuk National Referral Hospital, Thimpu, Bhutan
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
- Corresponding author.
| |
Collapse
|
13
|
Pandey RK, Srivastava A, Singh PP, Chaubey G. Genetic association of TMPRSS2 rs2070788 polymorphism with COVID-19 case fatality rate among Indian populations. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105206. [PMID: 34995811 PMCID: PMC8730738 DOI: 10.1016/j.meegid.2022.105206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
SARS-CoV-2, the causative agent for COVID-19, an ongoing pandemic, engages the ACE2 receptor to enter the host cell through S protein priming by a serine protease, TMPRSS2. Variation in the TMPRSS2 gene may account for the disparity in disease susceptibility between populations. Therefore, in the present study, we have used next-generation sequencing (NGS) data of world populations from 393 individuals and analyzed the TMPRSS2 gene using a haplotype-based approach with a major focus on South Asia to study its phylogenetic structure and their haplotype sharing among various populations worldwide. Our analysis of phylogenetic relatedness showed a closer affinity of South Asians with the West Eurasian populations therefore, host disease susceptibility and severity particularly in the context of TMPRSS2 will be more akin to West Eurasian instead of East Eurasian. This is in contrast to our prior study on the ACE2 gene which shows South Asian haplotypes have a strong affinity towards West Eurasians. Thus ACE2 and TMPRSS2 have an antagonistic genetic relatedness among South Asians. Considering the significance of the TMPRSS2 gene in the SARS-CoV-2 pathogenicity, COVID-19 infection and intensity trends could be directly associated with increased expression therefore, we have also tested the SNPs frequencies of this gene among various Indian state populations with respect to the case fatality rate (CFR). Interestingly, we found a significant positive association between the rs2070788 SNP (G Allele) and the CFR among Indian populations. Further our cis eQTL analysis of rs2070788 shows that the GG genotype of the rs2070788 tends to have a significantly higher expression of TMPRSS2 gene in the lung compared to the AG and AA genotypes thus validating the previous observation and therefore it might play a vital part in determining differential disease vulnerability. We trust that this information will be useful in understanding the role of the TMPRSS2 variant in COVID-19 susceptibility and using it as a biomarker may help to predict populations at risk.
Collapse
Affiliation(s)
- Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | - Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Changmai P, Jaisamut K, Kampuansai J, Kutanan W, Altınışık NE, Flegontova O, Inta A, Yüncü E, Boonthai W, Pamjav H, Reich D, Flegontov P. Indian genetic heritage in Southeast Asian populations. PLoS Genet 2022; 18:e1010036. [PMID: 35176016 PMCID: PMC8853555 DOI: 10.1371/journal.pgen.1010036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
Collapse
Affiliation(s)
- Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kitipong Jaisamut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - N Ezgi Altınışık
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Worrawit Boonthai
- Research Unit in Physical Anthropology and Health Science, Thammasat University, Pathum thani, Thailand
| | - Horolma Pamjav
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, Budapest, Hungary
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Kalmykia, Russia
| |
Collapse
|
15
|
Dash HR, Avila E, Jena SR, Kaitholia K, Agarwal R, Alho CS, Srivastava A, Singh AK. Forensic characterization of 124 SNPs in the central Indian population using precision ID Identity Panel through next-generation sequencing. Int J Legal Med 2021; 136:465-473. [PMID: 34748086 DOI: 10.1007/s00414-021-02742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
With the advent of next-generation sequencing technology, SNP markers are being explored as a useful alternative to conventional capillary electrophoresis-based STR typing. Low mutation rate and short-sized amplicons are added advantages of SNP markers over the STRs. However, to achieve a sufficient level of discrimination among individuals, a higher number of SNPs need to be characterized simultaneously. Hence, the NGS technique is highly useful to analyze a sufficiently higher number of SNPs simultaneously. Though the technique is in its nascent stage, an attempt has been made to assess its usability in the central Indian population by analyzing 124 SNPs (90 autosomal and 34 Y-chromosome) in 95 individuals. Various quality parameters such as locus balance, locus strand balance, heterozygosity balance, and noise level showed a good quality sequence obtained from the Ion GeneStudio S5 instrument. Obtained frequency of SNP alleles ranged from 0.001 to 0.377 in autosomal SNPs. rs9951171 was found to be the most informative SNP in the studied population with the highest PD and lowest MP value. The cumulative MP of 90 SNPs was found to be 4.76698 × 10-37. Analysis of 34 Y-chromosome SNPs reveals 11 unique haplogroups in 54 male samples with R1a1 as the most frequent haplogroup found in 22.22% of samples. Interpopulation comparison by FST analysis, PCA plot, and STRUCTURE analysis showed genetic stratification of the studied population suggesting the utility of SNP markers present in the Precision ID Identity Panel for forensic demands of the Indian population.
Collapse
Affiliation(s)
- Hirak Ranjan Dash
- DNA Fingerprinting Unit, Forensic Science Laboratory, Bhopal, Madhya Pradesh, India.
| | - Eduardo Avila
- Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Soumya Ranjan Jena
- Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
| | - Kamlesh Kaitholia
- DNA Fingerprinting Unit, Forensic Science Laboratory, Bhopal, Madhya Pradesh, India
| | - Radhika Agarwal
- DNA Fingerprinting Unit, Forensic Science Laboratory, Bhopal, Madhya Pradesh, India
| | | | - Ankit Srivastava
- Institute of Forensic Science and Criminology, Bundelkhand University, Jhansi, UP, India
| | - Anil Kumar Singh
- DNA Fingerprinting Unit, Forensic Science Laboratory, Bhopal, Madhya Pradesh, India
| |
Collapse
|
16
|
The major genetic risk factor for severe COVID-19 does not show any association among South Asian populations. Sci Rep 2021; 11:12346. [PMID: 34117310 PMCID: PMC8196069 DOI: 10.1038/s41598-021-91711-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
With the growing evidence on the variable human susceptibility against COVID-19, it is evident that some genetic loci modulate the severity of the infection. Recent studies have identified several loci associated with greater severity. More recently, a study has identified a 50 kb genomic segment introgressed from Neanderthal adding a risk for COVID-19, and this genomic segment is present among 16% and 50% people of European and South Asian descent, respectively. Our studies on ACE2 identified a haplotype present among 20% and 60% of European and South Asian populations, respectively, which appears to be responsible for the low case fatality rate among South Asian populations. This result was also consistent with the real-time infection rate and case fatality rate among various states of India. We readdressed this issue using both of the contrasting datasets and compared them with the real-time infection rates and case fatality rate in India. We found that the polymorphism present in the 50 kb introgressed genomic segment (rs10490770) did not show any significant correlation with the infection and case fatality rate in India.
Collapse
|
17
|
Bose A, Platt DE, Parida L, Drineas P, Paschou P. Integrating Linguistics, Social Structure, and Geography to Model Genetic Diversity within India. Mol Biol Evol 2021; 38:1809-1819. [PMID: 33481022 PMCID: PMC8097304 DOI: 10.1093/molbev/msaa321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
India represents an intricate tapestry of population substructure shaped by geography, language, culture, and social stratification. Although geography closely correlates with genetic structure in other parts of the world, the strict endogamy imposed by the Indian caste system and the large number of spoken languages add further levels of complexity to understand Indian population structure. To date, no study has attempted to model and evaluate how these factors have interacted to shape the patterns of genetic diversity within India. We merged all publicly available data from the Indian subcontinent into a data set of 891 individuals from 90 well-defined groups. Bringing together geography, genetics, and demographic factors, we developed Correlation Optimization of Genetics and Geodemographics to build a model that explains the observed population genetic substructure. We show that shared language along with social structure have been the most powerful forces in creating paths of gene flow in the subcontinent. Furthermore, we discover the ethnic groups that best capture the diverse genetic substructure using a ridge leverage score statistic. Integrating data from India with a data set of additional 1,323 individuals from 50 Eurasian populations, we find that Indo-European and Dravidian speakers of India show shared genetic drift with Europeans, whereas the Tibeto-Burman speaking tribal groups have maximum shared genetic drift with East Asians.
Collapse
Affiliation(s)
- Aritra Bose
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Daniel E Platt
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Laxmi Parida
- Computational Genomics, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
| | - Petros Drineas
- Computer Science Department, Purdue University, West Lafayette, IN, USA
| | - Peristera Paschou
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
18
|
Tagore D, Aghakhanian F, Naidu R, Phipps ME, Basu A. Insights into the demographic history of Asia from common ancestry and admixture in the genomic landscape of present-day Austroasiatic speakers. BMC Biol 2021; 19:61. [PMID: 33781248 PMCID: PMC8008685 DOI: 10.1186/s12915-021-00981-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/12/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The demographic history of South and Southeast Asia (S&SEA) is complex and contentious, with multiple waves of human migration. Some of the earliest footfalls were of the ancestors of modern Austroasiatic (AA) language speakers. Understanding the history of the AA language family, comprising of over 150 languages and their speakers distributed across broad geographical region in isolated small populations of various sizes, can help shed light on the peopling of S&SEA. Here we investigated the genetic relatedness of two AA groups, their relationship with other ethno-linguistically distinct populations, and the relationship of these groups with ancient genomes of individuals living in S&SEA at different time periods, to infer about the demographic history of this region. RESULTS We analyzed 1451 extant genomes, 189 AAs from India and Malaysia, and 43 ancient genomes from S&SEA. Population structure analysis reveals neither language nor geography appropriately correlates with genetic diversity. The inconsistency between "language and genetics" or "geography and genetics" can largely be attributed to ancient admixture with East Asian populations. We estimated a pre-Neolithic origin of AA language speakers, with shared ancestry between Indian and Malaysian populations until about 470 generations ago, contesting the existing model of Neolithic expansion of the AA culture. We observed a spatio-temporal transition in the genetic ancestry of SEA with genetic contribution from East Asia significantly increasing in the post-Neolithic period. CONCLUSION Our study shows that contrary to assumptions in many previous studies and despite having linguistic commonality, Indian AAs have a distinct genomic structure compared to Malaysian AAs. This linguistic-genetic discordance is reflective of the complex history of population migration and admixture shaping the genomic landscape of S&SEA. We postulate that pre-Neolithic ancestors of today's AAs were widespread in S&SEA, and the fragmentation and dissipation of the population have largely been a resultant of multiple migrations of East Asian farmers during the Neolithic period. It also highlights the resilience of AAs in continuing to speak their language in spite of checkered population distribution and possible dominance from other linguistic groups.
Collapse
Affiliation(s)
- Debashree Tagore
- National Institute of Biomedical Genomics, Kalyani, 741251, India
| | - Farhang Aghakhanian
- Oklahoma Medical Research Foundation, Genes and Human Disease Program, 825 NE 13th Street, Oklahoma City, OK, 73104, USA
- Genomics Facility, School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Analabha Basu
- National Institute of Biomedical Genomics, Kalyani, 741251, India.
| |
Collapse
|
19
|
Dissecting the paternal founders of Mundari (Austroasiatic) speakers associated with the language dispersal in South Asia. Eur J Hum Genet 2020; 29:528-532. [PMID: 33087879 DOI: 10.1038/s41431-020-00745-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 08/06/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022] Open
Abstract
The phylogenetic analysis of Y chromosomal haplogroup O2a-M95 was crucial to determine the nested structure of South Asian branches within the larger tree, predominantly present in East and Southeast Asia. However, it had previously been unclear that how many founders brought the haplogroup O2a-M95 to South Asia. On the basis of the updated Y chromosomal tree for haplogroup O2a-M95, we analysed 1437 male samples from South Asia for various novel downstream markers, carefully selected from the extant phylogenetic tree. With this increased resolution of genetic markers, we were able to identify at least three founders downstream to haplogroup O2a-M95, who are likely to have been associated with the dispersal of Austroasiatic languages to South Asia. The fourth founder was exclusively present amongst Tibeto-Burman speakers of Manipur and Bangladesh. In sum, our new results suggest the arrival of Austroasiatic languages in South Asia during last 5000 years.
Collapse
|
20
|
Srivastava A, Bandopadhyay A, Das D, Pandey RK, Singh V, Khanam N, Srivastava N, Singh PP, Dubey PK, Pathak A, Gupta P, Rai N, Sultana GNN, Chaubey G. Genetic Association of ACE2 rs2285666 Polymorphism With COVID-19 Spatial Distribution in India. Front Genet 2020; 11:564741. [PMID: 33101387 PMCID: PMC7545580 DOI: 10.3389/fgene.2020.564741] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Studies on host-pathogen interaction have identified human ACE2 as a host cell receptor responsible for mediating infection by coronavirus (COVID-19). Subsequent studies have shown striking difference of allele frequency among Europeans and Asians for a polymorphism rs2285666, present in ACE2. It has been revealed that the alternate allele (TT-plus strand or AA-minus strand) of rs2285666 elevate the expression level of this gene upto 50%, hence may play a significant role in SARS-CoV-2 susceptibility. Therefore, we have first looked the phylogenetic structure of rs2285666 derived haplotypes in worldwide populations and compared the spatial frequency of this particular allele with respect to the COVID-19 infection as well as case-fatality rate in India. For the first time, we ascertained a significant positive correlation for alternate allele (T or A) of rs2285666, with the lower infection as well as case-fatality rate among Indian populations. We trust that this information will be useful to understand the role of ACE2 in COVID-19 susceptibility.
Collapse
Affiliation(s)
- Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Audditiya Bandopadhyay
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Debashurti Das
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Rudra Kumar Pandey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Vanya Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Nargis Khanam
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Nikhil Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| | - Pavan Kumar Dubey
- Prosthodontics Unit, Faculty of Dental Sciences, Institute of Medical Sciences, Varanasi, India
| | - Abhishek Pathak
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | | | - Niraj Rai
- Birbal Sahni Institute of Palaeosciences, Lucknow, India
| | - Gazi Nurun Nahar Sultana
- Centre for Advanced Research in Sciences (CARS), Genetic Engineering and Biotechnology Research Laboratory, University of Dhaka, Dhaka, Bangladesh
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
21
|
Chaubey G. Coronavirus (SARS-CoV-2) and Mortality Rate in India: The Winning Edge. Front Public Health 2020; 8:397. [PMID: 32850604 PMCID: PMC7396667 DOI: 10.3389/fpubh.2020.00397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Branco C, Ray N, Currat M, Arenas M. Influence of Paleolithic range contraction, admixture and long-distance dispersal on genetic gradients of modern humans in Asia. Mol Ecol 2020; 29:2150-2159. [PMID: 32436243 DOI: 10.1111/mec.15479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Cavalli-Sforza and coauthors originally explored the genetic variation of modern humans throughout the world and observed an overall east-west genetic gradient in Asia. However, the specific environmental and population genetics processes causing this gradient were not formally investigated and promoted discussion in recent studies. Here we studied the influence of diverse environmental and population genetics processes on Asian genetic gradients and identified which could have produced the observed gradient. To do so, we performed extensive spatially-explicit computer simulations of genetic data under the following scenarios: (a) variable levels of admixture between Paleolithic and Neolithic populations, (b) migration through long-distance dispersal (LDD), (c) Paleolithic range contraction induced by the last glacial maximum (LGM), and (d) Neolithic range expansions from one or two geographic origins (the Fertile Crescent and the Yangzi and Yellow River Basins). Next, we estimated genetic gradients from the simulated data and we found that they were sensible to the analysed processes, especially to the range contraction induced by LGM and to the number of Neolithic expansions. Some scenarios were compatible with the observed east-west genetic gradient, such as the Paleolithic expansion with a range contraction induced by the LGM or two Neolithic range expansions from both the east and the west. In general, LDD increased the variance of genetic gradients among simulations. We interpreted the obtained gradients as a consequence of both allele surfing caused by range expansions and isolation by distance along the vast east-west geographic axis of this continent.
Collapse
Affiliation(s)
- Catarina Branco
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Nicolas Ray
- GeoHealth Group, Institute of Global Health, University of Geneva, Geneva, Switzerland.,Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Mathias Currat
- Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| |
Collapse
|
23
|
Chaubey G, van Driem G. Munda languages are father tongues, but Japanese and Korean are not. EVOLUTIONARY HUMAN SCIENCES 2020; 2:e19. [PMID: 37588351 PMCID: PMC10427457 DOI: 10.1017/ehs.2020.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Over two decades ago, it was observed that the linguistic affinity of the language spoken by a particular population tended to correlate with the predominant paternal, i.e. Y-chromosomal, lineage found in that population. Such correlations were found to be ubiquitous but not universal, and the striking exceptions to such conspicuous patterns of correlation between linguistic and genetic phylogeography elicit particular interest and beg for clarification. Within the Austroasiatic language family, the Munda languages are a clear-cut case of father tongues, whereas Japanese and Korean are manifestly not. In this study, the cases of Munda and Japanese are juxtaposed. A holistic understanding of these contrasting cases of ethnolinguistic prehistory with respect to the father tongue correlation will first necessitate a brief exposition of the phylogeography of the Y chromosomal lineage O. Then triangulation discloses some contours and particulars of both long lost episodes of ethnolinguistic prehistory.
Collapse
Affiliation(s)
- Gyaneshwer Chaubey
- Department of Zoology, Benaras Hindu University, Varanasi, Uttar Pradesh221005, India
| | - George van Driem
- Linguistics Institute, University of Bern, Länggassstrasse 49, CH 3012Bern, Switzerland
| |
Collapse
|
24
|
Srivastava A, Singh PP, Bandopadhyay A, Singh P, Das D, Tamang R, Chaubey AK, Shrivastava P, van Driem G, Chaubey G. Genetic and linguistic non-correspondence suggests evidence for collective social climbing in the Kol tribe of South Asia. Sci Rep 2020; 10:5593. [PMID: 32221319 PMCID: PMC7101412 DOI: 10.1038/s41598-020-61941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022] Open
Abstract
Both classical and recent genetic studies have unanimously concluded that the genetic landscape of South Asia is unique. At long distances the ‘isolation-by-distance’ model appears to correspond well with the genetic data, whereas at short distances several other factors, including the caste, have been shown to be strong determinant factors. In addition with these, tribal populations speaking various languages add yet another layer of genetic complexity. The Kol are the third most populous tribal population in India, comprising communities speaking Austroasiatic languages of the Northern Munda branch. Yet, the Kol have not hitherto undergone in-depth genetic analysis. In the present study, we have analysed two Kol groups of central and western India for hundreds thousands of autosomal and several mitochondrial DNA makers to infer their fine genetic structure and affinities to other Eurasian populations. In contrast, with their known linguistic affinity, the Kol share their more recent common ancestry with the Indo-European and Dravidian speaking populations. The geographic-genetic neighbour tests at both the temporal and spatial levels have suggested some degree of excess allele sharing of Kol1 with Kol2, thereby indicating their common stock. Our extensive analysis on the Kol ethnic group shows South Asia to be a living genetics lab, where real-time tests can be performed on existing hypotheses.
Collapse
Affiliation(s)
- Anshika Srivastava
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Prajjval Pratap Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Audditiya Bandopadhyay
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Pooja Singh
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Debashruti Das
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India
| | - Rakesh Tamang
- Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Akhilesh Kumar Chaubey
- Krishi Vigyan Kendra, Singrauli, Jawaharlal Nehru Krishi Vishwavidyalay, Jabalpur, Madhya Pradesh, 462038, India
| | - Pankaj Shrivastava
- DNA Fingerprinting Unit, State Forensic Science Laboratory, Department of Home (Police), Government of MP, Sagar, 470001, India
| | - George van Driem
- Institut für Sprachwissenschaft, Universität Bern, 3012, Bern, Switzerland.,Sydney Social Sciences and Humanities Advanced Research Centre, University of Sydney, Sydney, Australia
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India. .,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, 51010, Estonia.
| |
Collapse
|
25
|
Inferring the population history of Tai-Kadai-speaking people and southernmost Han Chinese on Hainan Island by genome-wide array genotyping. Eur J Hum Genet 2020; 28:1111-1123. [PMID: 32123326 DOI: 10.1038/s41431-020-0599-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 12/19/2019] [Accepted: 02/04/2020] [Indexed: 11/08/2022] Open
Abstract
Hainan Island, located between East Asia and Southeast Asia, represents an ideal region for the study of the genetic architecture of geographically isolated populations. However, the genetic structure and demographic history of the indigenous Tai-Kadai-speaking Hlai people and recent expanded southernmost Han Chinese on this island are poorly characterized due to a lack of genetic data. Thus, we collected and genotyped 36 Qiongzhong Hlai and 48 Haikou Han individuals at 497,637 single nucleotide polymorphisms (SNPs). We applied principal component analysis, ADMIXTURE, symmetrical D-statistics, admixture-f3 statistics, qpWave, and qpAdm analysis to infer the population history. Our results revealed the East Asian populations are characterized by a north-south genetic cline with Hlai at the southernmost end. We have not detected recent gene flow from neighboring populations into Hlai, therefore, we used Hlai as an unadmixed proxy to model the admixture history of mainland Tai-Kadai-speaking populations and southern Han Chinese. The mainland Tai-Kadai-speaking populations are suggested deriving a larger number of their ancestry from Hlai-related lineage, but also having admixture from South Asian-related or other neighboring populations. The Hlai group is also suggested to contribute about half of the ancestry to Han Chinese in Hainan. The complex patterns of genetic structure in East Asia were shaped via language categories, geographical boundaries, and large southward population movements with language dispersal and agriculture propagation.
Collapse
|