1
|
Denisin AK, Kim H, Riedel-Kruse IH, Pruitt BL. Field Guide to Traction Force Microscopy. Cell Mol Bioeng 2024; 17:87-106. [PMID: 38737454 PMCID: PMC11082129 DOI: 10.1007/s12195-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/26/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Traction force microscopy (TFM) is a widely used technique to measure cell contractility on compliant substrates that mimic the stiffness of human tissues. For every step in a TFM workflow, users make choices which impact the quantitative results, yet many times the rationales and consequences for making these decisions are unclear. We have found few papers which show the complete experimental and mathematical steps of TFM, thus obfuscating the full effects of these decisions on the final output. Methods Therefore, we present this "Field Guide" with the goal to explain the mathematical basis of common TFM methods to practitioners in an accessible way. We specifically focus on how errors propagate in TFM workflows given specific experimental design and analytical choices. Results We cover important assumptions and considerations in TFM substrate manufacturing, substrate mechanical properties, imaging techniques, image processing methods, approaches and parameters used in calculating traction stress, and data-reporting strategies. Conclusions By presenting a conceptual review and analysis of TFM-focused research articles published over the last two decades, we provide researchers in the field with a better understanding of their options to make more informed choices when creating TFM workflows depending on the type of cell being studied. With this review, we aim to empower experimentalists to quantify cell contractility with confidence. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00801-6.
Collapse
Affiliation(s)
| | - Honesty Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305 USA
- Present Address: The Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158 USA
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Ingmar H. Riedel-Kruse
- Department of Molecular and Cellular Biology, and (by courtesy) Departments of Biomedical Engineering, Applied Mathematics, and Physics, University of Arizona, Tucson, AZ 85721 USA
| | - Beth L. Pruitt
- Departments of Bioengineering and Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106 USA
| |
Collapse
|
2
|
Nauryzgaliyeva Z, Goux Corredera I, Garreta E, Montserrat N. Harnessing mechanobiology for kidney organoid research. Front Cell Dev Biol 2023; 11:1273923. [PMID: 38077999 PMCID: PMC10704179 DOI: 10.3389/fcell.2023.1273923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 10/16/2024] Open
Abstract
Recently, organoids have emerged as revolutionizing tools with the unprecedented potential to recreate organ-specific microanatomy in vitro. Upon their derivation from human pluripotent stem cells (hPSCs), organoids reveal the blueprints of human organogenesis, further allowing the faithful recapitulation of their physiology. Nevertheless, along with the evolution of this field, advanced research exposed the organoids' shortcomings, particularly regarding poor reproducibility rates and overall immatureness. To resolve these challenges, many studies have started to underscore the relevance of mechanical cues as a relevant source to induce and externally control hPSCs differentiation. Indeed, established organoid generation protocols from hPSCs have mainly relyed on the biochemical induction of fundamental signalling pathways present during kidney formation in mammals, whereas mechanical cues have largely been unexplored. This review aims to discuss the pertinence of (bio) physical cues within hPSCs-derived organoid cultures, while deciphering their effect on morphogenesis. Moreover, we will explore state-of-the-art mechanobiology techniques as revolutionizing means for understanding the underlying role of mechanical forces in biological processes in organoid model systems.
Collapse
Affiliation(s)
- Zarina Nauryzgaliyeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Iphigénie Goux Corredera
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
| | - Nuria Montserrat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
3
|
Sievers J, Mahajan V, Welzel PB, Werner C, Taubenberger A. Precision Hydrogels for the Study of Cancer Cell Mechanobiology. Adv Healthc Mater 2023; 12:e2202514. [PMID: 36826799 PMCID: PMC11468035 DOI: 10.1002/adhm.202202514] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion. This article reviews studies that have explored the impact of different mechanical cues of the cells' 3D microenvironment on cancer cell behavior using hydrogel-based in vitro models. In particular, advanced engineering strategies are highlighted for tailored hydrogel matrices recapitulating the TME's micrometer- and sub-micrometer-scale architectural and mechanical features, while accounting for its intrinsically heterogenic and dynamic nature. It is anticipated that such precision hydrogel systems will further the understanding of cancer mechanobiology.
Collapse
Affiliation(s)
- Jana Sievers
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Vaibhav Mahajan
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| | - Petra B. Welzel
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
| | - Carsten Werner
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center of Regenerative Therapies Dresden and Cluster of Excellence Physics of LifeTU Dresden01062DresdenGermany
| | - Anna Taubenberger
- Max Bergmann Center of Biomaterials DresdenLeibniz Institute for Polymer Research DresdenHohe Str. 601069DresdenGermany
- Center for Molecular and Cellular Bioengineering (CMCB)BIOTECTU Dresden01307DresdenGermany
| |
Collapse
|
4
|
Leartprapun N, Adie SG. Recent advances in optical elastography and emerging opportunities in the basic sciences and translational medicine [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:208-248. [PMID: 36698669 PMCID: PMC9842001 DOI: 10.1364/boe.468932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 05/28/2023]
Abstract
Optical elastography offers a rich body of imaging capabilities that can serve as a bridge between organ-level medical elastography and single-molecule biophysics. We review the methodologies and recent developments in optical coherence elastography, Brillouin microscopy, optical microrheology, and photoacoustic elastography. With an outlook toward maximizing the basic science and translational clinical impact of optical elastography technologies, we discuss potential ways that these techniques can integrate not only with each other, but also with supporting technologies and capabilities in other biomedical fields. By embracing cross-modality and cross-disciplinary interactions with these parallel fields, optical elastography can greatly increase its potential to drive new discoveries in the biomedical sciences as well as the development of novel biomechanics-based clinical diagnostics and therapeutics.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
- Present affiliation: Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
5
|
Mowla A, Li J, Hepburn MS, Maher S, Chin L, Yeoh GC, Choi YS, Kennedy BF. Subcellular mechano-microscopy: high resolution three-dimensional elasticity mapping using optical coherence microscopy. OPTICS LETTERS 2022; 47:3303-3306. [PMID: 35776611 DOI: 10.1364/ol.451681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The importance of cellular-scale mechanical properties is well-established, yet it is challenging to map subcellular elasticity in three dimensions. We present subcellular mechano-microscopy, an optical coherence microscopy (OCM)-based variant of three-dimensional (3-D) compression optical coherence elastography (OCE) that provides an elasticity system resolution of 5 × 5 × 5 µm: a 7-fold improvement in system resolution over previous OCE studies of cells. The improved resolution is achieved through a ∼5-fold improvement in optical resolution, refinement of the strain estimation algorithm, and demonstration that mechanical deformation of subcellular features provides feature resolution far greater than that demonstrated previously on larger features with diameter >250 µm. We use mechano-microscopy to image adipose-derived stem cells encapsulated in gelatin methacryloyl. We compare our results with compression OCE and demonstrate that mechano-microscopy can provide contrast from subcellular features not visible using OCE.
Collapse
|
6
|
Lin Y, Leartprapun N, Luo JC, Adie SG. Light-sheet photonic force optical coherence elastography for high-throughput quantitative 3D micromechanical imaging. Nat Commun 2022; 13:3465. [PMID: 35710790 PMCID: PMC9203576 DOI: 10.1038/s41467-022-30995-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Quantitative characterisation of micro-scale mechanical properties of the extracellular matrix (ECM) and dynamic cell-ECM interactions can significantly enhance fundamental discoveries and their translational potential in the rapidly growing field of mechanobiology. However, quantitative 3D imaging of ECM mechanics with cellular-scale resolution and dynamic monitoring of cell-mediated changes to pericellular viscoelasticity remain a challenge for existing mechanical characterisation methods. Here, we present light-sheet photonic force optical coherence elastography (LS-pfOCE) to address this need by leveraging a light-sheet for parallelised, non-invasive, and localised mechanical loading. We demonstrate the capabilities of LS-pfOCE by imaging the micromechanical heterogeneity of fibrous collagen matrices and perform live-cell imaging of cell-mediated ECM micromechanical dynamics. By providing access to 4D spatiotemporal variations in the micromechanical properties of 3D biopolymer constructs and engineered cellular systems, LS-pfOCE has the potential to drive new discoveries in mechanobiology and contribute to the development of novel biomechanics-based clinical diagnostics and therapies.
Collapse
Affiliation(s)
- Yuechuan Lin
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nichaluk Leartprapun
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Justin C Luo
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Steven G Adie
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Krecsir A, Richter V, Wagner M, Schneckenburger H. Impact of Doxorubicin on Cell-Substrate Topology. Int J Mol Sci 2022; 23:ijms23116277. [PMID: 35682954 PMCID: PMC9181088 DOI: 10.3390/ijms23116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/03/2022] Open
Abstract
Variable-Angle Total Internal Reflection Fluorescence Microscopy (VA-TIRFM) is applied in view of early detection of cellular responses to the cytostatic drug doxorubicin. Therefore, we determined cell-substrate topology of cultivated CHO cells transfected with a membrane-associated Green Fluorescent Protein (GFP) in the nanometer range prior to and subsequent to the application of doxorubicin. Cell-substrate distances increased up to a factor of 2 after 24 h of application. A reduction of these distances by again a factor 2 was observed upon cell aging, and an influence of the cultivation time is presently discussed. Applicability of VA-TIRFM was supported by measurements of MCF-7 breast cancer cells after membrane staining and incubation with doxorubicin, when cell-substrate distances increased again by a factor ≥ 2. So far, our method needs well-defined cell ages and staining of cell membranes or transfection with GFP or related molecules. Use of intrinsic fluorescence or even light-scattering methods to various cancer cell lines could make this method more universal in the future, e.g., in the context of early detection of apoptosis.
Collapse
|
8
|
Zancla A, Mozetic P, Orsini M, Forte G, Rainer A. A primer to traction force microscopy. J Biol Chem 2022; 298:101867. [PMID: 35351517 PMCID: PMC9092999 DOI: 10.1016/j.jbc.2022.101867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Traction force microscopy (TFM) has emerged as a versatile technique for the measurement of single-cell-generated forces. TFM has gained wide use among mechanobiology laboratories, and several variants of the original methodology have been proposed. However, issues related to the experimental setup and, most importantly, data analysis of cell traction datasets may restrain the adoption of TFM by a wider community. In this review, we summarize the state of the art in TFM-related research, with a focus on the analytical methods underlying data analysis. We aim to provide the reader with a friendly compendium underlying the potential of TFM and emphasizing the methodological framework required for a thorough understanding of experimental data. We also compile a list of data analytics tools freely available to the scientific community for the furtherance of knowledge on this powerful technique.
Collapse
Affiliation(s)
- Andrea Zancla
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy; Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Pamela Mozetic
- Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy; Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Monica Orsini
- Department of Engineering, Università degli Studi Roma Tre, Rome, Italy
| | - Giancarlo Forte
- Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St Anne's University Hospital, Brno, Czechia.
| | - Alberto Rainer
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy; Institute of Nanotechnology (NANOTEC), National Research Council, Lecce, Italy.
| |
Collapse
|
9
|
Krug B, Koukourakis N, Guck J, Czarske J. Nonlinear microscopy using impulsive stimulated Brillouin scattering for high-speed elastography. OPTICS EXPRESS 2022; 30:4748-4758. [PMID: 35209449 DOI: 10.1364/oe.449980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The impulsive stimulated Brillouin microscopy promises fast, non-contact measurements of the elastic properties of biological samples. The used pump-probe approach employs an ultra-short pulse laser and a cw laser to generate Brillouin signals. Modeling of the microscopy technique has already been carried out partially, but not for biomedical applications. The nonlinear relationship between pulse energy and Brillouin signal amplitude is proven with both simulations and experiments. Tayloring of the excitation parameters on the biologically relevant polyacrylamide hydrogels outline sub-ms temporal resolutions at a relative precision of <1%. Brillouin microscopy using the impulsive stimulated scattering therefore exhibits high potential for the measurements of viscoelastic properties of cells and tissues.
Collapse
|
10
|
Boghdady CM, Kalashnikov N, Mok S, McCaffrey L, Moraes C. Revisiting tissue tensegrity: Biomaterial-based approaches to measure forces across length scales. APL Bioeng 2021; 5:041501. [PMID: 34632250 PMCID: PMC8487350 DOI: 10.1063/5.0046093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-generated forces play a foundational role in tissue dynamics and homeostasis and are critically important in several biological processes, including cell migration, wound healing, morphogenesis, and cancer metastasis. Quantifying such forces in vivo is technically challenging and requires novel strategies that capture mechanical information across molecular, cellular, and tissue length scales, while allowing these studies to be performed in physiologically realistic biological models. Advanced biomaterials can be designed to non-destructively measure these stresses in vitro, and here, we review mechanical characterizations and force-sensing biomaterial-based technologies to provide insight into the mechanical nature of tissue processes. We specifically and uniquely focus on the use of these techniques to identify characteristics of cell and tissue "tensegrity:" the hierarchical and modular interplay between tension and compression that provide biological tissues with remarkable mechanical properties and behaviors. Based on these observed patterns, we highlight and discuss the emerging role of tensegrity at multiple length scales in tissue dynamics from homeostasis, to morphogenesis, to pathological dysfunction.
Collapse
Affiliation(s)
| | - Nikita Kalashnikov
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | - Stephanie Mok
- Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada
| | | | | |
Collapse
|
11
|
Leartprapun N, Adie SG. Resolution-enhanced OCT and expanded framework of information capacity and resolution in coherent imaging. Sci Rep 2021; 11:20541. [PMID: 34654877 PMCID: PMC8521598 DOI: 10.1038/s41598-021-99889-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/17/2021] [Indexed: 11/09/2022] Open
Abstract
Spatial resolution in conventional optical microscopy has traditionally been treated as a fixed parameter of the optical system. Here, we present an approach to enhance transverse resolution in beam-scanned optical coherence tomography (OCT) beyond its aberration-free resolution limit, without any modification to the optical system. Based on the theorem of invariance of information capacity, resolution-enhanced (RE)-OCT navigates the exchange of information between resolution and signal-to-noise ratio (SNR) by exploiting efficient noise suppression via coherent averaging and a simple computational bandwidth expansion procedure. We demonstrate a resolution enhancement of 1.5 × relative to the aberration-free limit while maintaining comparable SNR in silicone phantom. We show that RE-OCT can significantly enhance the visualization of fine microstructural features in collagen gel and ex vivo mouse brain. Beyond RE-OCT, our analysis in the spatial-frequency domain leads to an expanded framework of information capacity and resolution in coherent imaging that contributes new implications to the theory of coherent imaging. RE-OCT can be readily implemented on most OCT systems worldwide, immediately unlocking information that is beyond their current imaging capabilities, and so has the potential for widespread impact in the numerous areas in which OCT is utilized, including the basic sciences and translational medicine.
Collapse
Affiliation(s)
- Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Steven G Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
12
|
Lekka M, Gnanachandran K, Kubiak A, Zieliński T, Zemła J. Traction force microscopy - Measuring the forces exerted by cells. Micron 2021; 150:103138. [PMID: 34416532 DOI: 10.1016/j.micron.2021.103138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/15/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Cells generate mechanical forces (traction forces, TFs) while interacting with the extracellular matrix or neighbouring cells. Forces are generated by both cells and extracellular matrix (ECM) and transmitted within the cell-ECM or cell-cell contacts involving focal adhesions or adherens junctions. Within more than two decades, substantial progress has been achieved in techniques that measure TFs. One of the techniques is traction force microscopy (TFM). This review discusses the TFM and its advances in measuring TFs exerted by cells (single cells and multicellular systems) at cell-ECM and cell-cell junctional intracellular interfaces. The answers to how cells sense, adapt and respond to mechanical forces unravel their role in controlling and regulating cell behaviour in normal and pathological conditions.
Collapse
Affiliation(s)
- Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland.
| | | | - Andrzej Kubiak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| | - Tomasz Zieliński
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342, Cracow, Poland
| |
Collapse
|
13
|
Yu Z, Liu KK. Soft Polymer-Based Technique for Cellular Force Sensing. Polymers (Basel) 2021; 13:2672. [PMID: 34451211 PMCID: PMC8399510 DOI: 10.3390/polym13162672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Soft polymers have emerged as a vital type of material adopted in biomedical engineering to perform various biomechanical characterisations such as sensing cellular forces. Distinct advantages of these materials used in cellular force sensing include maintaining normal functions of cells, resembling in vivo mechanical characteristics, and adapting to the customised functionality demanded in individual applications. A wide range of techniques has been developed with various designs and fabrication processes for the desired soft polymeric structures, as well as measurement methodologies in sensing cellular forces. This review highlights the merits and demerits of these soft polymer-based techniques for measuring cellular contraction force with emphasis on their quantitativeness and cell-friendliness. Moreover, how the viscoelastic properties of soft polymers influence the force measurement is addressed. More importantly, the future trends and advancements of soft polymer-based techniques, such as new designs and fabrication processes for cellular force sensing, are also addressed in this review.
Collapse
Affiliation(s)
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| |
Collapse
|
14
|
Shinde A, Illath K, Gupta P, Shinde P, Lim KT, Nagai M, Santra TS. A Review of Single-Cell Adhesion Force Kinetics and Applications. Cells 2021; 10:577. [PMID: 33808043 PMCID: PMC8000588 DOI: 10.3390/cells10030577] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cells exert, sense, and respond to the different physical forces through diverse mechanisms and translating them into biochemical signals. The adhesion of cells is crucial in various developmental functions, such as to maintain tissue morphogenesis and homeostasis and activate critical signaling pathways regulating survival, migration, gene expression, and differentiation. More importantly, any mutations of adhesion receptors can lead to developmental disorders and diseases. Thus, it is essential to understand the regulation of cell adhesion during development and its contribution to various conditions with the help of quantitative methods. The techniques involved in offering different functionalities such as surface imaging to detect forces present at the cell-matrix and deliver quantitative parameters will help characterize the changes for various diseases. Here, we have briefly reviewed single-cell mechanical properties for mechanotransduction studies using standard and recently developed techniques. This is used to functionalize from the measurement of cellular deformability to the quantification of the interaction forces generated by a cell and exerted on its surroundings at single-cell with attachment and detachment events. The adhesive force measurement for single-cell microorganisms and single-molecules is emphasized as well. This focused review should be useful in laying out experiments which would bring the method to a broader range of research in the future.
Collapse
Affiliation(s)
- Ashwini Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Kavitha Illath
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Gupta
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Pallavi Shinde
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon-Si, Gangwon-Do 24341, Korea;
| | - Moeto Nagai
- Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;
| | - Tuhin Subhra Santra
- Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India; (A.S.); (K.I.); (P.G.); (P.S.)
| |
Collapse
|
15
|
Mulligan JA, Ling L, Leartprapun N, Fischbach C, Adie SG. Computational 4D-OCM for label-free imaging of collective cell invasion and force-mediated deformations in collagen. Sci Rep 2021; 11:2814. [PMID: 33531512 PMCID: PMC7854660 DOI: 10.1038/s41598-021-81470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Traction force microscopy (TFM) is an important family of techniques used to measure and study the role of cellular traction forces (CTFs) associated with many biological processes. However, current standard TFM methods rely on imaging techniques that do not provide the experimental capabilities necessary to study CTFs within 3D collective and dynamic systems embedded within optically scattering media. Traction force optical coherence microscopy (TF-OCM) was developed to address these needs, but has only been demonstrated for the study of isolated cells embedded within optically clear media. Here, we present computational 4D-OCM methods that enable the study of dynamic invasion behavior of large tumor spheroids embedded in collagen. Our multi-day, time-lapse imaging data provided detailed visualizations of evolving spheroid morphology, collagen degradation, and collagen deformation, all using label-free scattering contrast. These capabilities, which provided insights into how stromal cells affect cancer progression, significantly expand access to critical data about biophysical interactions of cells with their environment, and lay the foundation for future efforts toward volumetric, time-lapse reconstructions of collective CTFs with TF-OCM.
Collapse
Affiliation(s)
- Jeffrey A. Mulligan
- School of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853 USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Nichaluk Leartprapun
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853 USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
16
|
Yu Z, Smith MJ, Siow RCM, Liu KK. Ageing modulates human dermal fibroblast contractility: Quantification using nano-biomechanical testing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118972. [PMID: 33515646 DOI: 10.1016/j.bbamcr.2021.118972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Dermal fibroblasts play a key role in maintaining homoeostasis and functionality of the skin. Their contractility plays a role in changes observed during ageing, especially in processes such as wound healing, inflammation, wrinkling and scar tissue formation as well as structural changes on extracellular matrix. Although alternations in skin physiology and morphology have been previously described, there remains a paucity of information about the influence of chronological ageing on dermal fibroblast contractility. In this study, we applied a novel nano-biomechanical technique on cell-embedded collagen hydrogels in combination with mathematical modelling and numerical simulation to measure contraction forces of normal human dermal fibroblasts (NHDF). We achieved quantitative differentiation of the contractility of cells derived from 'young' (< 30 years old) and 'aged' (> 60 years old) donors. Transforming growth factor β1 (TGF-β1) was used to stimulate the fibroblasts to assess their contractile potential. NHDF from aged donors exhibited a greater basal contractile force, while in contrast, NHDF from young donors have shown a significantly larger contractile force in response to TGF-β1 treatment. These findings validate our nano-biomechanical measurement technique and provide new insights for considering NHDF contractility in regenerative medicine and as a biomarker of dermal ageing processes.
Collapse
Affiliation(s)
- Zhuonan Yu
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Matthew J Smith
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Richard C M Siow
- School of Cardiovascular Medicine & Sciences, King's British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Kuo-Kang Liu
- School of Engineering, University of Warwick, Coventry, United Kingdom.
| |
Collapse
|
17
|
Ling L, Mulligan JA, Ouyang Y, Shimpi AA, Williams RM, Beeghly GF, Hopkins BD, Spector JA, Adie SG, Fischbach C. Obesity-associated Adipose Stromal Cells Promote Breast Cancer Invasion Through Direct Cell Contact and ECM Remodeling. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910650. [PMID: 33692663 PMCID: PMC7939099 DOI: 10.1002/adfm.201910650] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 05/17/2023]
Abstract
Obesity increases the risk and worsens the prognosis for breast cancer due, in part, to altered adipose stromal cell (ASC) behavior. Whether ASCs from obese individuals increase migration of breast cancer cells relative to their lean counterparts, however, remains unclear. To test this connection, multicellular spheroids composed of MCF10A-derived tumor cell lines of varying malignant potential and lean or obese ASCs were embedded into collagen scaffolds mimicking the elastic moduli of interstitial breast adipose tissue. Confocal image analysis suggests that tumor cells alone migrate insignificantly under these conditions. However, direct cell-cell contact with either lean or obese ASCs enables them to migrate collectively, whereby obese ASCs activate tumor cell migration more effectively than their lean counterparts. Time-resolved optical coherence tomography (OCT) imaging suggests that obese ASCs facilitate tumor cell migration by mediating contraction of local collagen fibers. Matrix metalloproteinase (MMP)-dependent proteolytic activity significantly contributes to ASC-mediated tumor cell invasion and collagen deformation. However, ASC contractility is also important, as co-inhibition of both MMPs and contractility is necessary to completely abrogate ASC-mediated tumor cell migration. These findings imply that obesity-mediated changes of ASC phenotype may impact tumor cell migration and invasion with potential implications for breast cancer malignancy in obese patients.
Collapse
Affiliation(s)
- Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Jeffrey A. Mulligan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- School of Electrical and Computer Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Yunxin Ouyang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Adrian A. Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | | | - Garrett F. Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Benjamin D. Hopkins
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Jason A. Spector
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Division of Plastic Surgery, Weill Cornell Medicine, New York, NY 10021, USA
| | - Steven G. Adie
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Nguyen AK, Kilian KA. Physicochemical Tools for Visualizing and Quantifying Cell-Generated Forces. ACS Chem Biol 2020; 15:1731-1746. [PMID: 32530602 DOI: 10.1021/acschembio.0c00304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To discern how mechanical forces coordinate biological outcomes, methods that map cell-generated forces in a spatiotemporal manner, and at cellular length scales, are critical. In their native environment, whether it be within compact multicellular three-dimensional structures or sparsely populated fibrillar networks of the extracellular matrix, cells are constantly exposed to a slew of physical forces acting on them from all directions. At the same time, cells exert highly localized forces of their own on their surroundings and on neighboring cells. Together, the generation and transmission of these forces can control diverse cellular activities and behavior as well as influence cell fate decisions. To thoroughly understand these processes, we must first be able to characterize and measure such forces. However, our experimental needs and technical capabilities are in discord-while it is apparent that we should study cell-generated forces within more biologically relevant 3D environments, this goal remains challenging because of caveats associated with complex "sensing-transduction-readout" modalities. In this Review, we will discuss the latest techniques for measuring cell-generated forces. We will highlight recent advances in traction force microscopy and examine new alternative approaches for quantifying cell-generated forces, both of individual cells and within 3D tissues. Finally, we will explore the future direction of novel cellular force-sensing tools in the context of mechanobiology and next-generation biomaterials design.
Collapse
Affiliation(s)
- Ashley K. Nguyen
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Kristopher A. Kilian
- School of Chemistry, School of Materials Science and Engineering, Australian Centre for Nanomedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
19
|
Kang YG, Jang H, Park Y, Kim BM. Development of a 3-D Physical Dynamics Monitoring System Using OCM with DVC for Quantification of Sprouting Endothelial Cells Interacting with a Collagen Matrix. MATERIALS 2020; 13:ma13122693. [PMID: 32545667 PMCID: PMC7345655 DOI: 10.3390/ma13122693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) plays a key role during cell migration, proliferation, and differentiation by providing adhesion sites and serving as a physical scaffold. Elucidating the interaction between the cell and ECM can reveal the underlying mechanisms of cellular behavior that are currently unclear. Analysis of the deformation of the ECM due to cell-matrix interactions requires microscopic, three-dimensional (3-D) imaging methods, such as confocal microscopy and second-harmonic generation microscopy, which are currently limited by phototoxicity and bleaching as a result of the point-scanning approach. In this study, we suggest the use of optical coherence microscopy (OCM) as a live-cell, volumetric, fast imaging tool for analyzing the deformation of fibrous ECM. We optimized such OCM parameters as the sampling rate to obtain images of the best quality that meet the requirements for robust digital volume correlation (DVC) analysis. Visualization and analysis of the mechanical interaction between collagen ECM and human umbilical vein endothelial cells (HUVECs) show that cellular adhesion during protrusion can be analyzed and quantified. The advantages of OCM, such as fine isotropic spatial resolution, fast time resolution, and low phototoxicity, make it the ideal optic tool for 3-D traction force microscopy.
Collapse
Affiliation(s)
- Yong Guk Kang
- Department of Bio-Convergence Engineering, College of Health Science, Korea University, Seoul 02841, Korea;
| | - Hwanseok Jang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
- Correspondence: (Y.P.); (B.-M.K.); +82-2-2286-1460 (Y.P.); +82-2-940-2771 (B.-M.K.)
| | - Beop-Min Kim
- Department of Bio-Convergence Engineering, College of Health Science, Korea University, Seoul 02841, Korea;
- Correspondence: (Y.P.); (B.-M.K.); +82-2-2286-1460 (Y.P.); +82-2-940-2771 (B.-M.K.)
| |
Collapse
|
20
|
Hepburn MS, Wijesinghe P, Major LG, Li J, Mowla A, Astell C, Park HW, Hwang Y, Choi YS, Kennedy BF. Three-dimensional imaging of cell and extracellular matrix elasticity using quantitative micro-elastography. BIOMEDICAL OPTICS EXPRESS 2020; 11:867-884. [PMID: 32133228 PMCID: PMC7041482 DOI: 10.1364/boe.383419] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 05/08/2023]
Abstract
Recent studies in mechanobiology have revealed the importance of cellular and extracellular mechanical properties in regulating cellular function in normal and disease states. Although it is established that cells should be investigated in a three-dimensional (3-D) environment, most techniques available to study mechanical properties on the microscopic scale are unable to do so. In this study, for the first time, we present volumetric images of cellular and extracellular elasticity in 3-D biomaterials using quantitative micro-elastography (QME). We achieve this by developing a novel strain estimation algorithm based on 3-D linear regression to improve QME system resolution. We show that QME can reveal elevated elasticity surrounding human adipose-derived stem cells (ASCs) embedded in soft hydrogels. We observe, for the first time in 3-D, further elevation of extracellular elasticity around ASCs with overexpressed TAZ; a mechanosensitive transcription factor which regulates cell volume. Our results demonstrate that QME has the potential to study the effects of extracellular mechanical properties on cellular functions in a 3-D micro-environment.
Collapse
Affiliation(s)
- Matt S. Hepburn
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Philip Wijesinghe
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Current address: SUPA, School of Physics and Astronomy, University of St. Andrews, KY16 9SS, UK
| | - Luke G. Major
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Jiayue Li
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Alireza Mowla
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
| | - Chrissie Astell
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, South Korea
| | - Yongsung Hwang
- Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungcheongnam-do 31538, South Korea
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan-si, Chungcheongnam-do 31151, South Korea
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Brendan F. Kennedy
- BRITElab, Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, 6009, Australia and Centre for Medical Research, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Department of Electrical, Electronic & Computer Engineering, School of Engineering, The University of Western Australia, 35, Stirling Highway, Perth, Western Australia, 6009, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| |
Collapse
|
21
|
Larin KV, Scarcelli G, Yakovlev VV. Optical elastography and tissue biomechanics. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-9. [PMID: 31758675 PMCID: PMC6873628 DOI: 10.1117/1.jbo.24.11.110901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/31/2019] [Indexed: 05/18/2023]
Abstract
Mechanical forces play an important role in the behavior and development of biological systems and disease at all spatial scales, from cells and their constituents to tissues and organs. Such forces have a profound influence on the health, structural integrity, and normal function of cells and organs. Accurate knowledge of cell and tissue biomechanical properties is essential to map the distribution of forces and mechanical cues in biological systems. Cell and tissue biomechanical properties are also known to be important on their own as indicators of health or diseases state. Hence, optical elastography and biomechanics methods can aid in the understanding and clinical diagnosis of a wide variety of diseases. We provide a brief overview and highlight of the Optical Elastography and Tissue Biomechanics VI conference, which took place in San Francisco, February 2 and 3, 2019, as a part of Photonics West symposium.
Collapse
Affiliation(s)
- Kirill V. Larin
- University of Houston, Department of Biomedical Engineering, Houston, Texas, United States
| | - Giuliano Scarcelli
- University of Maryland, Department of Biomedical Engineering, College Park, Maryland, United States
| | - Vladislav V. Yakovlev
- Texas A&M University, Department of Biomedical Engineering, College Station, Texas, United States
| |
Collapse
|
22
|
Wu M, Small DM, Nishimura N, Adie SG. Computed optical coherence microscopy of mouse brain ex vivo. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-18. [PMID: 31773937 PMCID: PMC6880187 DOI: 10.1117/1.jbo.24.11.116002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/18/2019] [Indexed: 05/25/2023]
Abstract
The compromise between lateral resolution and usable imaging depth range is a bottleneck for optical coherence tomography (OCT). Existing solutions for optical coherence microscopy (OCM) suffer from either large data size and long acquisition time or a nonideal point spread function. We present volumetric OCM of mouse brain ex vivo with a large depth coverage by leveraging computational adaptive optics (CAO) to significantly reduce the number of OCM volumes that need to be acquired with a Gaussian beam focused at different depths. We demonstrate volumetric reconstruction of ex-vivo mouse brain with lateral resolution of 2.2 μm, axial resolution of 4.7 μm, and depth range of ∼1.2 mm optical path length, using only 11 OCT data volumes acquired on a spectral-domain OCM system. Compared to focus scanning with step size equal to the Rayleigh length of the beam, this is a factor of 4 fewer datasets required for volumetric imaging. Coregistered two-photon microscopy confirmed that CAO-OCM reconstructions can visualize various tissue microstructures in the brain. Our results also highlight the limitations of CAO in highly scattering media, particularly when attempting to reconstruct far from the focal plane or when imaging deep within the sample.
Collapse
Affiliation(s)
- Meiqi Wu
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, New York, United States
| | - David M. Small
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, New York, United States
| | - Nozomi Nishimura
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, New York, United States
| | - Steven G. Adie
- Cornell University, Meinig School of Biomedical Engineering, Ithaca, New York, United States
| |
Collapse
|
23
|
Krug B, Koukourakis N, Czarske JW. Impulsive stimulated Brillouin microscopy for non-contact, fast mechanical investigations of hydrogels. OPTICS EXPRESS 2019; 27:26910-26923. [PMID: 31674562 DOI: 10.1364/oe.27.026910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanical properties of tissues and cells are increasingly recognized as an important feature for the understanding of pathological processes and as a diagnostic tool in biomedicine. Impulsive stimulated Brillouin scattering (ISBS) is promising to overcome shortcomings of other measurement methods such as invasiveness, low spatial resolution and long acquisition time. In this paper, we present for the first time ISBS measurements of hydrogels, which are model materials for biological samples. We demonstrate ISBS measurements discriminating hydrogels of different stiffness. ISBS measurements with lateral resolution close to cellular level are presented. These results underline that ISBS microscopy has a high potential for biomedical applications.
Collapse
|
24
|
Leartprapun N, Lin Y, Adie SG. Microrheological quantification of viscoelastic properties with photonic force optical coherence elastography. OPTICS EXPRESS 2019; 27:22615-22630. [PMID: 31510549 PMCID: PMC6825604 DOI: 10.1364/oe.27.022615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Photonic force optical coherence elastography (PF-OCE) is a new approach for volumetric characterization of microscopic mechanical properties of three-dimensional viscoelastic medium. It is based on measurements of the complex mechanical response of embedded micro-beads to harmonically modulated radiation-pressure force from a weakly-focused beam. Here, we utilize the Generalized Stokes-Einstein relation to reconstruct local complex shear modulus in polyacrylamide gels by combining PF-OCE measurements of bead mechanical responses and experimentally measured depth-resolved radiation-pressure force profile of our forcing beam. Data exclusion criteria for quantitative PF-OCE based on three noise-related parameters were identified from the analysis of measurement noise at key processing steps. Shear storage modulus measured by quantitative PF-OCE was found to be in good agreement with standard shear rheometry, whereas shear loss modulus was in agreement with previously published atomic force microscopy results. The analysis and results presented here may serve to inform practical, application-specific implementations of PF-OCE, and establish the technique as a viable tool for quantitative mechanical microscopy.
Collapse
|
25
|
Morley CD, Ellison ST, Bhattacharjee T, O'Bryan CS, Zhang Y, Smith KF, Kabb CP, Sebastian M, Moore GL, Schulze KD, Niemi S, Sawyer WG, Tran DD, Mitchell DA, Sumerlin BS, Flores CT, Angelini TE. Quantitative characterization of 3D bioprinted structural elements under cell generated forces. Nat Commun 2019; 10:3029. [PMID: 31292444 PMCID: PMC6620298 DOI: 10.1038/s41467-019-10919-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/03/2019] [Indexed: 12/31/2022] Open
Abstract
With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future.
Collapse
Affiliation(s)
- Cameron D Morley
- University of Florida, Herbert Wertheim College of Engineering, Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32611, USA
| | - S Tori Ellison
- University of Florida, Herbert Wertheim College of Engineering, Department of Materials Science and Engineering, Gainesville, FL, 32611, USA
| | - Tapomoy Bhattacharjee
- Princeton University, Department of Chemical and Biological Engineering, Princeton, NJ, 08540, USA
| | - Christopher S O'Bryan
- University of Florida, Herbert Wertheim College of Engineering, Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32611, USA
| | - Yifan Zhang
- University of Florida, Herbert Wertheim College of Engineering, Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32611, USA
| | - Kourtney F Smith
- University of Florida, Herbert Wertheim College of Engineering, Department of Materials Science and Engineering, Gainesville, FL, 32611, USA
| | - Christopher P Kabb
- University of Florida, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, Gainesville, FL, 32611, USA
| | - Mathew Sebastian
- Division of Neuro-Oncology, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, 32611, USA
| | - Ginger L Moore
- University of Florida, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, Gainesville, FL, 32611, USA
| | - Kyle D Schulze
- Auburn University, Department of Mechanical Engineering, Auburn, AL, 36849, USA
| | - Sean Niemi
- University of Florida, Herbert Wertheim College of Engineering, Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32611, USA
| | - W Gregory Sawyer
- University of Florida, Herbert Wertheim College of Engineering, Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32611, USA
- University of Florida, Herbert Wertheim College of Engineering, Department of Materials Science and Engineering, Gainesville, FL, 32611, USA
| | - David D Tran
- Division of Neuro-Oncology, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL, 32611, USA
| | - Duane A Mitchell
- University of Florida, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, Gainesville, FL, 32611, USA
| | - Brent S Sumerlin
- University of Florida, George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, Gainesville, FL, 32611, USA
| | - Catherine T Flores
- University of Florida, Brain Tumor Immunotherapy Program, Preston A. Wells Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, Gainesville, FL, 32611, USA
| | - Thomas E Angelini
- University of Florida, Herbert Wertheim College of Engineering, Department of Mechanical and Aerospace Engineering, Gainesville, FL, 32611, USA.
- University of Florida, Herbert Wertheim College of Engineering, Department of Materials Science and Engineering, Gainesville, FL, 32611, USA.
- University of Florida, Herbert Wertheim College of Engineering, J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, FL, 32611, USA.
| |
Collapse
|
26
|
Iyer RR, Liu YZ, Boppart SA. Automated sensorless single-shot closed-loop adaptive optics microscopy with feedback from computational adaptive optics. OPTICS EXPRESS 2019; 27:12998-13014. [PMID: 31052832 PMCID: PMC6825599 DOI: 10.1364/oe.27.012998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 05/02/2023]
Abstract
Traditional wavefront-sensor-based adaptive optics (AO) techniques face numerous challenges that cause poor performance in scattering samples. Sensorless closed-loop AO techniques overcome these challenges by optimizing an image metric at different states of a deformable mirror (DM). This requires acquisition of a series of images continuously for optimization - an arduous task in dynamic in vivo samples. We present a technique where the different states of the DM are instead simulated using computational adaptive optics (CAO). The optimal wavefront is estimated by performing CAO on an initial volume to minimize an image metric, and then the pattern is translated to the DM. In this paper, we have demonstrated this technique on a spectral-domain optical coherence microscope for three applications: real-time depth-wise aberration correction, single-shot volumetric aberration correction, and extension of depth-of-focus. Our technique overcomes the disadvantages of sensor-based AO, reduces the number of image acquisitions compared to traditional sensorless AO, and retains the advantages of both computational and hardware-based AO.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Yuan-Zhi Liu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
USA
| |
Collapse
|