1
|
Vyas H, Mohi A, Boyce M, Durham EL, Cray JJ. In utero nicotine exposure affects murine palate development. Orthod Craniofac Res 2024; 27:967-973. [PMID: 39092604 PMCID: PMC11540726 DOI: 10.1111/ocr.12844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Despite data linking smoking to increased risk of fetal morbidity and mortality, 11% of pregnant women continue to smoke or use alternative nicotine products. Studies confirm that nicotine exposure during pregnancy increases the incidence of birth defects; however, little research has focused on specific anatomic areas based on timing of exposure. We aim to determine critical in utero and postnatal periods of nicotine exposure that affect craniofacial development, specifically palate growth. Malformation of the palatal structures can result in numerous complications including facial growth disturbance, or impeding airway function. We hypothesized that both in utero and postnatal nicotine exposure will alter palate development. MATERIALS AND METHODS We administered pregnant C57BL6 mice water supplemented with 100 μg/mL nicotine during early pregnancy, throughout pregnancy, during pregnancy and lactation, or lactation only. Postnatal day 15 pups underwent micro-computed tomography (μCT) analyses specific to the palate. RESULTS Resultant pups revealed significant differences in body weight from lactation-only nicotine exposure, and μCT investigation revealed several dimensions affected by lactation-only nicotine exposure, including palate width, palate and cranial base lengths, and mid-palatal suture width. CONCLUSIONS These results demonstrate the direct effects of nicotine on the developing palate beyond simple tobacco use. Nicotine exposure through tobacco alternatives, cessation methods, and electronic nicotine delivery systems (ENDS) may disrupt normal growth and development of the palate during development and the postnatal periods of breastfeeding. Due to the recent dramatic increase in the use of ENDS, future research will focus specifically on this nicotine delivery method.
Collapse
Affiliation(s)
- Heema Vyas
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Amr Mohi
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mark Boyce
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Emily L Durham
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - James J Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio, USA
- The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
2
|
Dabdoub S, Greenlee A, Abboud G, Brengartner L, Zuiker E, Gorr MW, Wold LE, Kumar PS, Cray J. Acute exposure to electronic cigarette components alters mRNA expression of pre-osteoblasts. FASEB J 2024; 38:e70017. [PMID: 39213037 PMCID: PMC11371384 DOI: 10.1096/fj.202302014rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The use of traditional nicotine delivery products such as tobacco has long been linked to detrimental health effects. However, little work to date has focused on the emerging market of aerosolized nicotine delivery known as electronic nicotine delivery systems (ENDS) or electronic cigarettes, and their potential for new effects on human health. Challenges studying these devices include heterogeneity in the formulation of the common components of most available ENDS, including nicotine and a carrier (commonly composed of propylene glycol and vegetable glycerin, or PG/VG). In the present study, we report on experiments interrogating the effects of major identified components in e-cigarettes. Specifically, the potential concomitant effects of nicotine and common carrier ingredients in commercial "vape" products are explored in vitro to inform the potential health effects on the craniofacial skeleton through novel vectors as compared to traditional tobacco products. MC3T3-E1 murine pre-osteoblast cells were cultured in vitro with clinically relevant liquid concentrations of nicotine, propylene glycol (PG), vegetable glycerin (VG), Nicotine+PG/VG, and the vape liquid of a commercial product (Juul). Cells were treated acutely for 24 h and RNA-Seq was utilized to determine segregating alteration in mRNA signaling. Influential gene targets identified with sparse partial least squares discriminant analysis (sPLS-DA) implemented in mixOmics were assessed using the PANTHER Classification system for molecular functions, biological processes, cellular components, and pathways of effect. Additional endpoint functional analyses were used to confirm cell cycle changes. The initial excitatory concentration (EC50) studied defined a target concentration of carrier PG/VG liquid that altered the cell cycle of the calvarial cells. Initial sPLS-DA analysis demonstrated the segregation of nicotine and non-nicotine exposures utilized in our in vitro modeling. Pathway analysis suggests a strong influence of nicotine exposures on cellular processes including metabolic processes and response to stimuli including autophagic flux. Further interrogation of the individual treatment conditions demonstrated segregation by treatment modality (Control, Nicotine, Carrier (PG+VG), Nicotine+PG/VG) along three dimensions best characterized by: latent variable 1 (PLSDA-1) showing strong segregation based on nicotine influence on cellular processes associated with cellular adhesion to collagen, osteoblast differentiation, and calcium binding and metabolism; latent variable 2 (PLSDA-2) showing strong segregation of influence based on PG+VG and Control influence on cell migration, survival, and cycle regulation; and latent variable 3 (PLSDA-3) showing strong segregation based on Nicotine and Control exposure influence on cell activity and growth and developmental processes. Further, gene co-expression network analysis implicates targets of the major pathway genes associated with bone growth and development, particularly craniofacial (FGF, Notch, TGFβ, WNT) and analysis of active subnetwork pathways found these additionally overrepresented in the Juul exposure relative to Nicotine+PG/VG. Finally, experimentation confirmed alterations in cell count, and increased evidence of cell stress (markers of autophagy), but no alteration in apoptosis. These data suggest concomitant treatment with Nicotine+PG/VG drives alterations in pre-osteoblast cell cycle signaling, specifically transcriptomic targets related to cell cycle and potentially cell stress. Although we suspected cell stress and well as cytotoxic effects of Nicotine+PG/VG, no great influence on apoptotic factors was observed. Further RNA-Seq analysis allowed for the direct interrogation of molecular targets of major pathways involved in bone and craniofacial development, each demonstrating segregation (altered signaling) due to e-cigarette-type exposure. These data have implications directed toward ENDS formulation as synergistic effects of Nicotine+PG/VG are evidenced here. Thus, future research will continue to interrogate how varied formulation of Nicotine+PG/VG affects overall cell functions in multiple vital systems.
Collapse
Affiliation(s)
- Shareef Dabdoub
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
- Department of Periodontics, College of Dentistry, University of Iowa, Iowa City, Iowa 52242, USA
| | - Ashley Greenlee
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - George Abboud
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Lexie Brengartner
- Undergraduate Biomedical Sciences Major, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Eryn Zuiker
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Matthew W. Gorr
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Loren E. Wold
- Division of Cardiac Surgery, Department of Surgery, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Purnima S. Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, Ohio, 43210, USA
- Divisions of Biosciences and Orthodontics, College of Dentistry, The Ohio State University, Columbus, Ohio, 43210, USA
| |
Collapse
|
3
|
Kishinchand R, Boyce M, Vyas H, Sewell L, Mohi A, Brengartner L, Miller R, Gorr MW, Wold LE, Cray J. In Utero Exposure to Maternal Electronic Nicotine Delivery System use Demonstrate Alterations to Craniofacial Development. Cleft Palate Craniofac J 2024; 61:1389-1397. [PMID: 36916055 DOI: 10.1177/10556656231163400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
OBJECTIVE Develop a model for the study of Electronic Nicotine Device (ENDS) exposure on craniofacial development. DESIGN Experimental preclinical design followed as pregnant murine dams were randomized and exposed to filtered air exposure, carrier exposure consisting of 50% volume of propylene glycol and vegetable glycine (ENDS Carrier) respectively, or carrier exposure with 20 mg/ml of nicotine added to the liquid vaporizer (ENDS carrier with nicotine). SETTING Preclinical murine model exposure using the SciReq exposure system. PARTICIPANTS C57BL6 adult 8 week old female pregnant mice and exposed in utero litters. INTERVENTIONS Exposure to control filtered air, ENDS carrier or ENDS carrier with nicotine added throughout gestation at 1 puff/minute, 4 h/day, five days a week. MAIN OUTCOME MEASURES Cephalometric measures of post-natal day 15 pups born as exposed litters. RESULTS Data suggests alterations to several facial morphology parameters in the developing offspring, suggesting electronic nicotine device systems may alter facial growth if used during pregnancy. CONCLUSIONS Future research should concentrate on varied formulations and exposure regimens of ENDS to determine timing windows of exposures and ENDS formulations that may be harmful to craniofacial development.
Collapse
Affiliation(s)
- Rajiv Kishinchand
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Mark Boyce
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Heema Vyas
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Leslie Sewell
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Amr Mohi
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Lexie Brengartner
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Roy Miller
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew W Gorr
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Loren E Wold
- School of Nursing, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, OH 43210, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Ohl L, Kuhs A, Pluck R, Durham E, Noji M, Philip ND, Arany Z, Ahrens-Nicklas RC. Partial suppression of BCAA catabolism as a potential therapy for BCKDK deficiency. Mol Genet Metab Rep 2024; 39:101091. [PMID: 38770403 PMCID: PMC11103483 DOI: 10.1016/j.ymgmr.2024.101091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Branched chain ketoacid dehydrogenase kinase (BCKDK) deficiency is a recently described inherited neurometabolic disorder of branched chain amino acid (BCAA) metabolism implying increased BCAA catabolism. It has been hypothesized that a severe reduction in systemic BCAA levels underlies the disease pathophysiology, and that BCAA supplementation may ameliorate disease phenotypes. To test this hypothesis, we characterized a recent mouse model of BCKDK deficiency and evaluated the efficacy of enteral BCAA supplementation in this model. Surprisingly, BCAA supplementation exacerbated neurodevelopmental deficits and did not correct biochemical abnormalities despite increasing systemic BCAA levels. These data suggest that aberrant flux through the BCAA catabolic pathway, not just BCAA insufficiency, may contribute to disease pathology. In support of this conclusion, genetic re-regulation of BCAA catabolism, through Dbt haploinsufficiency, partially rescued biochemical and behavioral phenotypes in BCKDK deficient mice. Collectively, these data raise into question assumptions widely made about the pathophysiology of BCKDK insufficiency and suggest a novel approach to develop potential therapies for this disease.
Collapse
Affiliation(s)
- Laura Ohl
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- College of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amanda Kuhs
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ryan Pluck
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Durham
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Noji
- College of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan D. Philip
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zoltan Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca C. Ahrens-Nicklas
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Maykovich T, Hardy S, Hamann MT, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoclast Function. JOURNAL OF NATURAL PRODUCTS 2024; 87:560-566. [PMID: 38383319 PMCID: PMC11173362 DOI: 10.1021/acs.jnatprod.3c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Manzamine-A is a marine-derived alkaloid that has demonstrated antimalarial and antiproliferative properties and is an emerging drug lead compound as a possible intervention in certain cancers. This compound has been found to modulate SIX1 gene expression, a target that is critical for the proliferation and survival of cells via various developmental pathways. As yet, little research has focused on manzamine-A and how its use may affect tissue systems including bone. Here we hypothesized that manzamine-A, through its interaction with SIX1, would alter precursor cells that give rise to the bone cell responsible for remodeling: the osteoclast. We further hypothesized reduced effects in differentiated osteoclasts, as these cells are generally not mitotic. We interrogated the effects of manzamine-A on preosteoclasts and osteoclasts. qrtPCR, MTS cell viability, Caspase 3/7, and TRAP staining were used as a functional assay. Preosteoclasts show responsiveness to manzamine-A treatment exhibited by decreases in cell viability and an increase in apoptosis. Osteoclasts also proved to be affected by manzamine-A but only at higher concentrations where apoptosis was increased and activation was reduced. In summary, our presented results suggest manzamine-A may have significant effects on bone development and health through multiple cell targets, previously shown in the osteoblast cell lineage, the cell responsible for mineralized tissue formation, and here in the osteoclast, the cell responsible for the removal of mineralized tissue and renewal via precipitation of bone remodeling.
Collapse
Affiliation(s)
- Tyler Maykovich
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Samantha Hardy
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
| | - Mark T Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, South Carolina 29425-1410, United States
| | - James Cray
- Department of Biomedical Education and Anatomy, The Ohio State University College of Medicine, Columbus, Ohio 43210, United States
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Ohl L, Kuhs A, Pluck R, Durham E, Noji M, Philip ND, Arany Z, Ahrens-Nicklas RC. Partial suppression of BCAA catabolism as a potential therapy for BCKDK deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.560929. [PMID: 37873402 PMCID: PMC10592755 DOI: 10.1101/2023.10.12.560929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Branched chain ketoacid dehydrogenase kinase (BCKDK) deficiency is a recently described inherited neurometabolic disorder of branched chain amino acid (BCAA) metabolism implying increased BCAA catabolism. It has been hypothesized that a severe reduction in systemic BCAA levels underlies the disease pathophysiology, and that BCAA supplementation may ameliorate disease phenotypes. To test this hypothesis, we characterized a recent mouse model of BCKDK deficiency and evaluated the efficacy of enteral BCAA supplementation in this model. Surprisingly, BCAA supplementation exacerbated neurodevelopmental deficits and did not correct biochemical abnormalities despite increasing systemic BCAA levels. These data suggest that aberrant flux through the BCAA catabolic pathway, not just BCAA insufficiency, may contribute to disease pathology. In support of this conclusion, genetic re-regulation of BCAA catabolism, through Dbt haploinsufficiency, partially rescued biochemical and behavioral phenotypes in BCKDK deficient mice. Collectively, these data raise into question assumptions widely made about the pathophysiology of BCKDK insufficiency and suggest a novel approach to develop potential therapies for this disease.
Collapse
|
7
|
Ozekin YH, Saal ML, Pineda RH, Moehn K, Ordonez-Erives MA, Delgado Figueroa MF, Frazier C, Korth KM, Königshoff M, Bates EA, Vladar EK. Intrauterine exposure to nicotine through maternal vaping disrupts embryonic lung and skeletal development via the Kcnj2 potassium channel. Dev Biol 2023; 501:111-123. [PMID: 37353105 PMCID: PMC10445547 DOI: 10.1016/j.ydbio.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
Smoking cigarettes during pregnancy is associated with adverse effects on infants including low birth weight, defective lung development, and skeletal abnormalities. Pregnant women are increasingly turning to vaping [use of electronic (e)-cigarettes] as a perceived safer alternative to cigarettes. However, nicotine disrupts fetal development, suggesting that like cigarette smoking, nicotine vaping may be detrimental to the fetus. To test the impact of maternal vaping on fetal lung and skeletal development in mice, pregnant dams were exposed to e-cigarette vapor throughout gestation. At embryonic day (E)18.5, vape exposed litter sizes were reduced, and some embryos exhibited growth restriction compared to air exposed controls. Fetal lungs were collected for histology and whole transcriptome sequencing. Maternally nicotine vaped embryos exhibited histological and transcriptional changes consistent with impaired distal lung development. Embryonic lung gene expression changes mimicked transcriptional changes observed in adult mouse lungs exposed to cigarette smoke, suggesting that the developmental defects may be due to direct nicotine exposure. Fetal skeletons were analyzed for craniofacial and long bone lengths. Nicotine directly binds and inhibits the Kcnj2 potassium channel which is important for bone development. The length of the maxilla, palatal shelves, humerus, and femur were reduced in vaped embryos, which was further exacerbated by loss of one copy of the Kcnj2 gene. Nicotine vapor exposed Kcnj2KO/+ embryos also had significantly lower birth weights than unexposed animals of either genotype. Kcnj2 mutants had severely defective lungs with and without vape exposure, suggesting that potassium channels may be broadly involved in mediating the detrimental developmental effects of nicotine vaping. These data indicate that intrauterine nicotine exposure disrupts fetal lung and skeletal development likely through inhibition of Kcnj2.
Collapse
Affiliation(s)
- Yunus H Ozekin
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Maxwell L Saal
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ricardo H Pineda
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kayla Moehn
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madison A Ordonez-Erives
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Maria F Delgado Figueroa
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caleb Frazier
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kamryn M Korth
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Melanie Königshoff
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily A Bates
- Section of Developmental Biology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Eszter K Vladar
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
8
|
Stanton E, Urata M, Chen JF, Chai Y. The clinical manifestations, molecular mechanisms and treatment of craniosynostosis. Dis Model Mech 2022; 15:dmm049390. [PMID: 35451466 PMCID: PMC9044212 DOI: 10.1242/dmm.049390] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Craniosynostosis is a major congenital craniofacial disorder characterized by the premature fusion of cranial suture(s). Patients with severe craniosynostosis often have impairments in hearing, vision, intracranial pressure and/or neurocognitive functions. Craniosynostosis can result from mutations, chromosomal abnormalities or adverse environmental effects, and can occur in isolation or in association with numerous syndromes. To date, surgical correction remains the primary treatment for craniosynostosis, but it is associated with complications and with the potential for re-synostosis. There is, therefore, a strong unmet need for new therapies. Here, we provide a comprehensive review of our current understanding of craniosynostosis, including typical craniosynostosis types, their clinical manifestations, cranial suture development, and genetic and environmental causes. Based on studies from animal models, we present a framework for understanding the pathogenesis of craniosynostosis, with an emphasis on the loss of postnatal suture mesenchymal stem cells as an emerging disease-driving mechanism. We evaluate emerging treatment options and highlight the potential of mesenchymal stem cell-based suture regeneration as a therapeutic approach for craniosynostosis.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark Urata
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Ozekin YH, Isner T, Bates EA. Ion Channel Contributions to Morphological Development: Insights From the Role of Kir2.1 in Bone Development. Front Mol Neurosci 2020; 13:99. [PMID: 32581710 PMCID: PMC7296152 DOI: 10.3389/fnmol.2020.00099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
The role of ion channels in neurons and muscles has been well characterized. However, recent work has demonstrated both the presence and necessity of ion channels in diverse cell types for morphological development. For example, mutations that disrupt ion channels give rise to abnormal structural development in species of flies, frogs, fish, mice, and humans. Furthermore, medications and recreational drugs that target ion channels are associated with higher incidence of birth defects in humans. In this review we establish the effects of several teratogens on development including epilepsy treatment drugs (topiramate, valproate, ethosuximide, phenobarbital, phenytoin, and carbamazepine), nicotine, heat, and cannabinoids. We then propose potential links between these teratogenic agents and ion channels with mechanistic insights from model organisms. Finally, we talk about the role of a particular ion channel, Kir2.1, in the formation and development of bone as an example of how ion channels can be used to uncover important processes in morphogenesis. Because ion channels are common targets of many currently used medications, understanding how ion channels impact morphological development will be important for prevention of birth defects. It is becoming increasingly clear that ion channels have functional roles outside of tissues that have been classically considered excitable.
Collapse
Affiliation(s)
- Yunus H Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Trevor Isner
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emily A Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
10
|
Schwerd T, Krause F, Twigg SRF, Aschenbrenner D, Chen YH, Borgmeyer U, Müller M, Manrique S, Schumacher N, Wall SA, Jung J, Damm T, Glüer CC, Scheller J, Rose-John S, Jones EY, Laurence A, Wilkie AOM, Schmidt-Arras D, Uhlig HH. A variant in IL6ST with a selective IL-11 signaling defect in human and mouse. Bone Res 2020; 8:24. [PMID: 32566365 PMCID: PMC7289831 DOI: 10.1038/s41413-020-0098-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
The GP130 cytokine receptor subunit encoded by IL6ST is the shared receptor for ten cytokines of the IL-6 family. We describe a homozygous non-synonymous variant in IL6ST (p.R281Q) in a patient with craniosynostosis and retained deciduous teeth. We characterize the impact of the variant on cytokine signaling in vitro using transfected cell lines as well as primary patient-derived cells and support these findings using a mouse model with the corresponding genome-edited variant Il6st p.R279Q. We show that human GP130 p.R281Q is associated with selective loss of IL-11 signaling without affecting IL-6, IL-27, OSM, LIF, CT1, CLC, and CNTF signaling. In mice Il6st p.R279Q lowers litter size and causes facial synostosis and teeth abnormalities. The effect on IL-11 signaling caused by the GP130 variant shows incomplete penetrance but phenocopies aspects of IL11RA deficiency in humans and mice. Our data show that a genetic variant in a pleiotropic cytokine receptor can have remarkably selective defects.
Collapse
Affiliation(s)
- Tobias Schwerd
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Pediatrics, Dr von Hauner Children’s Hospital, LMU Munich, Munich, Germany
| | - Freia Krause
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Stephen R. F. Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Dominik Aschenbrenner
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Yin-Huai Chen
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Uwe Borgmeyer
- Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miryam Müller
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
- Present Address: The Beatson Institute for Cancer Research, Glasgow, UK
| | - Santiago Manrique
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Neele Schumacher
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Steven A. Wall
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Jonathan Jung
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Present Address: School of Medicine, University of Glasgow, Glasgow, UK
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefan Rose-John
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - E. Yvonne Jones
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Arian Laurence
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andrew O. M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Craniofacial Unit, Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| | - Dirk Schmidt-Arras
- Christian-Albrechts-University Kiel, Institute of Biochemistry, Kiel, Germany
| | - Holm H. Uhlig
- Translational Gastroenterology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
11
|
Pharmacological exposures may precipitate craniosynostosis through targeted stem cell depletion. Stem Cell Res 2019; 40:101528. [PMID: 31415959 PMCID: PMC6915957 DOI: 10.1016/j.scr.2019.101528] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/03/2023] Open
Abstract
The Centers for Disease Control and Prevention, National Birth Defects Study suggests that environmental exposures including maternal thyroid diseases, maternal nicotine use, and use of selective serotonin reuptake inhibitors (SSRIs) may exacerbate incidence and or severity of craniofacial abnormalities including craniosynostosis. Premature fusion of a suture(s) of the skull defines the birth defect craniosynostosis which occurs in 1:1800–2500 births. A proposed mechanism of craniosynostosis is the disruption of proliferation and differentiation of cells in the perisutural area. Here, we hypothesize that pharmacological exposures including excess thyroid hormone, nicotine, and SSRIs lead to an alteration of stem cells within the sutures resulting in premature fusion. In utero exposure to nicotine and citalopram (SSRI) increased the risk of premature suture fusion in a wild-type murine model. Gli1+ stem cells were reduced, stem cell populations were depleted, and homeostasis of the suture mesenchyme was altered with exposure. Thus, although these pharmacological exposures can deplete calvarial stem cell populations leading to craniosynostosis, depletion of stem cells is not a unifying mechanism for pharmacological exposure associated craniosynostosis.
Collapse
|
12
|
Effects of nicotine exposure on murine mandibular development. PLoS One 2019; 14:e0218376. [PMID: 31194840 PMCID: PMC6564027 DOI: 10.1371/journal.pone.0218376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 01/03/2023] Open
Abstract
Nicotine is known to affect cell proliferation and differentiation, two processes vital to proper development of the mandible. The mandible, the lower jaw in mammals and fish, plays a crucial role in craniofacial development. Malformation of the jaw can precipitate a plethora of complications including disrupting development of the upper jaw, the palate, and or impeding airway function. The purpose of this study was to test the hypothesis that in utero nicotine exposure alters the development of the murine mandible in a dose dependent manner. To test this hypothesis, wild type C57BL6 mice were used to produce in utero nicotine exposed litters by adding nicotine to the drinking water of pregnant dams at concentrations of 0 μg/ml (control), 50 μg/ml (low), 100 μg/ml (medium), 200 μg/ml (high) throughout pregnancy to birth of litters mimicking clinically relevant nicotine exposures. Resultant pups revealed no significant differences in body weight however, cephalometric investigation revealed several dimensions affected by nicotine exposure including mandibular ramus height, mandibular body height, and molar length. Histological investigation of molars revealed an increase in proliferation and a decrease in apoptosis with nicotine exposure. These results demonstrate the direct effects of nicotine on the developing mandible outside the context of tobacco use, indicating that nicotine use including tobacco alternatives, cessation methods, and electronic nicotine delivering products may disrupt normal growth and development of the craniofacial complex.
Collapse
|