1
|
Xiao Y, Zhan N, Li J, Tan Y, Ding Y. Highly Selective and Stable Cu Catalysts Based on Ni-Al Catalytic Systems for Bioethanol Upgrading to n-Butanol. Molecules 2023; 28:5683. [PMID: 37570654 PMCID: PMC10419762 DOI: 10.3390/molecules28155683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
The catalytic upgrading of ethanol into butanol through the Guerbet coupling reaction has received increasing attention recently due to the sufficient supply of bioethanol and the versatile applications of butanol. In this work, four different supported Cu catalysts, i.e., Cu/Al2O3, Cu/NiO, Cu/Ni3AlOx, and Cu/Ni1AlOx (Ni2+/Al3+ molar ratios of 3 and 1), were applied to investigate the catalytic performances for ethanol conversion. From the results, Ni-containing catalysts exhibit better reactivity; Al-containing catalysts exhibit better stability; but in terms of ethanol conversion, butanol selectivity, and catalyst stability, a corporative effect between Ni-Al catalytic systems can be clearly observed. Combined characterizations such as XRD, TEM, XPS, H2-TPR, and CO2/NH3-TPD were applied to analyze the properties of different catalysts. Based on the results, Cu species provide the active sites for ethanol dehydrogenation/hydrogenation, and the support derived from Ni-Al-LDH supplies appropriate acid-base sites for the aldol condensation, contributing to the high butanol selectivity. In addition, catalysts with strong reducibility (i.e., Cu/NiO) may be easily deconstructed during catalysis, leading to fast deactivation of the catalysts in the Guerbet coupling process.
Collapse
Affiliation(s)
- Yan Xiao
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Nannan Zhan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Jie Li
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Yuan Tan
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
| | - Yunjie Ding
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, China; (Y.X.); (N.Z.); (J.L.)
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- The State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
Sadh PK, Chawla P, Kumar S, Das A, Kumar R, Bains A, Sridhar K, Duhan JS, Sharma M. Recovery of agricultural waste biomass: A path for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161904. [PMID: 36736404 DOI: 10.1016/j.scitotenv.2023.161904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Circular bio-economy is a significant approach to resolving global issues elevated by environmental pollution. The generation of bioenergy and biomaterials can withstand the energy-environment connection as well as substitute petroleum-based materials as the feed stock production, thereby contributing to a cleaner and low-carbon-safe environment. Open discarding of waste is a major cause of environmental pollution in developing and under developed countries. Agricultural bio-wastes are obtained through various biological sources and industrial processing, signifying a typical renewable source of energy with ample nutrients and readily biodegradable organic substances. These waste materials are competent to decompose under aerobic and anaerobic conditions. The projected global population, urbanization, economic development, and changing production and consumption behavior result in bounteous bio-waste production. These bio-wastes mainly contain starch, cellulose, protein, hemicellulose, and lipids, which can operate as low-cost raw materials to develop new value-added products. Thus, this review discussed specifically the agricultural waste and valorization processes used to convert this waste into value-added products (biofuel, enzymes, antibiotics, ethanol and single cell protein). These value added products are used in the supply chain and enhance the overall performance of agriculture waste management, execution of circular bio-economy has attained significant importance and it explains a closed-loop system in which the potential resources remain in the loop, allowing them to be sustained into a new value.
Collapse
Affiliation(s)
- Pardeep Kumar Sadh
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Prince Chawla
- Department of Food Science and Technology, Lovely Professional University, Phagwara 144 411, Punjab, India
| | - Suresh Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Anamika Das
- Department of Paramedical Sciences, Guru Kashi University, Talwandi Sabo 151 302, Punjab, India
| | - Ravinder Kumar
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara 144 411, Punjab, India
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore 641021, India
| | - Joginder Singh Duhan
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa 125055, Haryana, India.
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 Ath, Belgium.
| |
Collapse
|
3
|
Brindha K, Mohanraj S, Rajaguru P, Pugalenthi V. Simultaneous production of renewable biohydrogen, biobutanol and biopolymer from phytogenic CoNPs-assisted Clostridial fermentation for sustainable energy and environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160002. [PMID: 36356773 DOI: 10.1016/j.scitotenv.2022.160002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Considering the environmental impacts, rapid fossil fuel depletion and production costs, sustainable production of clean biofuels from alternative sources is required to meet the increasing demand for energy while avoiding environmental pollution. In this study, phytogenic cobalt nanoparticles (CoNPs)-assisted dark fermentation process was developed for the simultaneous production of biohydrogen, biobutanol and biopolymer from glucose using Clostridium acetobutylicum NCIM 2337. The maximum biohydrogen yield of 2.89 mol H2/mol glucose was achieved at 1.5 mg of CoNPs, which is 1.6 folds higher than that of the control experiment. The high level of soluble metabolites, specifically acetate and butyrate, confirmed the production of biohydrogen through acetate/butyrate pathways. The modified Gompertz model fitted well with experimental results of CoNPs-assisted biohydrogen production. The CoNPs could act as an electron carrier in intracellular metabolism to enhance the activity of ferredoxin and hydrogenase enzymes, thus improving biohydrogen production. Furthermore, biobutanol and biopolymer yields of 975 ± 2.5 mg/L and 1182 ± 1.4 mg/L were achieved, with 2.0 mg and 2.5 mg of CoNP, respectively, which were 1.27 and 1.19 folds higher than the control values. Hence, the inclusion of CoNPs in the fermentation medium seems to be a promising technique for the enhanced simultaneous production of biohydrogen, biobutanol and biopolymer. The environmental perspectives of the obtained renewable biohydrogen, biobutanol and biopolymer are also discussed.
Collapse
Affiliation(s)
- Kothaimanimaran Brindha
- Department of Biotechnology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Sundaresan Mohanraj
- Department of Biochemistry, KMCH research foundation, Coimbatore 641014, Tamil Nadu, India
| | - Palanichamy Rajaguru
- Department of Biotechnology, Central University of Tamil Nadu, Tiruvarur 610005, India
| | - Velan Pugalenthi
- Department of Biotechnology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli 620 024, Tamil Nadu, India.
| |
Collapse
|
4
|
Chang WL, Hou W, Xu M, Yang ST. High-rate continuous n-butanol production by Clostridium acetobutylicum from glucose and butyric acid in a single-pass fibrous bed bioreactor. Biotechnol Bioeng 2022; 119:3474-3486. [PMID: 36059064 DOI: 10.1002/bit.28223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Abstract
Biobutanol produced in acetone-butanol-ethanol (ABE) fermentation at batch mode cannot compete with chemically derived butanol because of the low reactor productivity. Continuous fermentation can dramatically enhance productivity and lower capital and operating costs but are rarely used in industrial fermentation because of increased risks in culture degeneration, cell washout, and contamination. In this study, cells of the asporogenous Clostridium acetobutylicum ATCC55025 were immobilized in a single-pass fibrous-bed bioreactor (FBB) for continuous production of butanol from glucose and butyrate at various dilution rates. Butyric acid in the feed medium helped maintaining cells in the solventogenic phase for stable continuous butanol production. At the dilution rate of 1.88 h-1 , butanol was produced at 9.55 g/L with a yield of 0.24 g/g and productivity of 16.8 g/L/h, which was the highest productivity ever achieved for biobutanol fermentation and an 80-fold improvement over the conventional ABE fermentation. The extremely high productivity was attributed to the high density of viable cells (~100 g/L at >70% viability) immobilized in the fibrous matrix, which also enabled the cells to better tolerate butanol and butyric acid. The FBB was stable for continuous operation for an extended period of over one month. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wei-Lun Chang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Wenjie Hou
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA.,College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengmeng Xu
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| | - Shang-Tian Yang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, Pang H. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv 2022; 12:18848-18863. [PMID: 35873330 PMCID: PMC9240921 DOI: 10.1039/d1ra09396g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Due to energy and environmental concerns, biobutanol is gaining increasing attention as an alternative renewable fuel owing to its desirable fuel properties. Biobutanol production from lignocellulosic biomass through acetone-butanol-ethanol (ABE) fermentation has gained much interest globally due to its sustainable supply and non-competitiveness with food, but large-scale fermentative production suffers from low product titres and poor selectivity. This review presents recent developments in lignocellulosic butanol production, including pretreatment and hydrolysis of hemicellulose and cellulose during ABE fermentation. Challenges are discussed, including low concentrations of fermentation sugars, inhibitors, detoxification, and carbon catabolite repression. Some key process improvements are also summarised to guide further research and development towards more profitable and commercially viable butanol fermentation.
Collapse
Affiliation(s)
- Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Yi Liu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Mingdong Guan
- College of Life Science and Technology, Guangxi University Nanning 530004 China
| | - Hongchi Tang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Zilong Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Hao Pang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| |
Collapse
|
6
|
Patidar P, Prakash T. Decoding the roles of extremophilic microbes in the anaerobic environments: Past, Present, and Future. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100146. [PMID: 35909618 PMCID: PMC9325894 DOI: 10.1016/j.crmicr.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The inaccessible extreme environments harbor a large majority of anaerobic microbes which remain unknown. Anaerobic microbes are used in a variety of industrial applications. In the future, metagenomic-assisted techniques can be used to identify novel anaerobic microbes from the unexplored extreme environments. Genetic engineering can be used to enhance the efficiency of anaerobic microbes for various processes.
The genome of an organism is directly or indirectly correlated with its environment. Consequently, different microbes have evolved to survive and sustain themselves in a variety of environments, including unusual anaerobic environments. It is believed that their genetic material could have played an important role in the early evolution of their existence in the past. Presently, out of the uncountable number of microbes found in different ecosystems we have been able to discover only one percent of the total communities. A large majority of the microbial populations exists in the most unusual and extreme environments. For instance, many anaerobic bacteria are found in the gastrointestinal tract of humans, soil, and hydrothermal vents. The recent advancements in Metagenomics and Next Generation Sequencing technologies have improved the understanding of their roles in these environments. Presently, anaerobic bacteria are used in various industries associated with biofuels, fermentation, production of enzymes, vaccines, vitamins, and dairy products. This broad applicability brings focus to the significant contribution of their genomes in these functions. Although the anaerobic microbes have become an irreplaceable component of our lives, a major and important section of such anaerobic microbes still remain unexplored. Therefore, it can be said that unlocking the role of the microbial genomes of the anaerobes can be a noteworthy discovery not just for mankind but for the entire biosystem as well.
Collapse
Affiliation(s)
- Pratyusha Patidar
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
| | - Tulika Prakash
- School of Basic Sciences, Indian Institute of Technology (IIT) Mandi, HP, India
- Corresponding author.
| |
Collapse
|
7
|
Valles A, Álvarez-Hornos J, Capilla M, San-Valero P, Gabaldón C. Fed-batch simultaneous saccharification and fermentation including in-situ recovery for enhanced butanol production from rice straw. BIORESOURCE TECHNOLOGY 2021; 342:126020. [PMID: 34600316 DOI: 10.1016/j.biortech.2021.126020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
This paper describes a study of fed-batch SSFR (simultaneous saccharification, fermentation and recovery) for butanol production from alkaline-pretreated rice straw (RS) in a 2-L stirred tank reactor. The initial solid (9.2% w/v) and enzyme (19.9 FPU g-dw-1) loadings were previously optimized by 50-mL batch SSF assays. Maximum butanol concentration of 24.80 g L-1 was obtained after three biomass feedings that doubled the RS load (18.4% w/v). Butanol productivity (0.344 g L-1h-1) also increased two-fold in comparison with batch SSF without recovery (0.170 g L-1h-1). Although fed-batch SSFR was able to operate with a single initial enzyme dosage, an extra dosage of nutrients was required with the biomass additions to achieve this high productivity. The study showed that SSFR can efficiently improve butanol production from a lignocellulosic biomass accompanied by the efficient use of the enzyme.
Collapse
Affiliation(s)
- Alejo Valles
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. De la Universitat S/N, 46100, Burjassot, Spain
| | - Javier Álvarez-Hornos
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. De la Universitat S/N, 46100, Burjassot, Spain.
| | - Miguel Capilla
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. De la Universitat S/N, 46100, Burjassot, Spain
| | - Pau San-Valero
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. De la Universitat S/N, 46100, Burjassot, Spain
| | - Carmen Gabaldón
- Research Group GI(2)AM, Department of Chemical Engineering, Universitat de València, Av. De la Universitat S/N, 46100, Burjassot, Spain
| |
Collapse
|
8
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
9
|
Thieme N, Panitz JC, Held C, Lewandowski B, Schwarz WH, Liebl W, Zverlov V. Milling byproducts are an economically viable substrate for butanol production using clostridial ABE fermentation. Appl Microbiol Biotechnol 2020; 104:8679-8689. [PMID: 32915256 PMCID: PMC7502454 DOI: 10.1007/s00253-020-10882-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022]
Abstract
Butanol is a platform chemical that is utilized in a wide range of industrial products and is considered a suitable replacement or additive to liquid fuels. So far, it is mainly produced through petrochemical routes. Alternative production routes, for example through biorefinery, are under investigation but are currently not at a market competitive level. Possible alternatives, such as acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia are not market-ready to this day either, because of their low butanol titer and the high costs of feedstocks. Here, we analyzed wheat middlings and wheat red dog, two wheat milling byproducts available in large quantities, as substrates for clostridial ABE fermentation. We could identify ten strains that exhibited good butanol yields on wheat red dog. Two of the best ABE producing strains, Clostridium beijerinckii NCIMB 8052 and Clostridium diolis DSM 15410, were used to optimize a laboratory-scale fermentation process. In addition, enzymatic pretreatment of both milling byproducts significantly enhanced ABE production rates of the strains C. beijerinckii NCIMB 8052 and C. diolis DSM 15410. Finally, a profitability analysis was performed for small- to mid-scale ABE fermentation plants that utilize enzymatically pretreated wheat red dog as substrate. The estimations show that such a plant could be commercially successful.Key points• Wheat milling byproducts are suitable substrates for clostridial ABE fermentation.• Enzymatic pretreatment of wheat red dog and middlings increases ABE yield.• ABE fermentation plants using wheat red dog as substrate are economically viable. Graphical abstract.
Collapse
Affiliation(s)
- Nils Thieme
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Johanna C Panitz
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- Technical University of Munich, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Claudia Held
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- TDK Electronics AG, Rosenheimer Str. 141e, 81671, Munich, Germany
| | - Birgit Lewandowski
- Fritzmeier Umwelttechnik GmbH & Co KG, Dorfstraße 7, 85653, Aying, Germany
- Electrochaea GmbH, Semmelweisstrasse 3, 82152, Planegg, Germany
| | - Wolfgang H Schwarz
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
- aspratis GmbH, Huebnerstrasse 11, 80637, Munich, Germany
| | - Wolfgang Liebl
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Vladimir Zverlov
- Technical University of Munich, Emil-Ramann-Str. 4, 85354, Freising, Germany.
- Institute of Molecular Genetics, RAS, Kurchatov Sq 2, 123128, Moscow, Russia.
| |
Collapse
|
10
|
Meramo-Hurtado S, González-Delgado ÁD, Rehmann L, Quiñones-Bolaños E, Mehrvar M. Comparison of Biobutanol Production Pathways via Acetone-Butanol-Ethanol Fermentation Using a Sustainability Exergy-Based Metric. ACS OMEGA 2020; 5:18710-18730. [PMID: 32775873 PMCID: PMC7407575 DOI: 10.1021/acsomega.0c01656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The incorporation of sustainability aspects into the design of chemical processes has been increasing since the last century. Hence, there are several proposed methodologies and indicators to assess chemical facilities through process analysis techniques. A comprehensive assessment involving economic, environmental, safety, and exergy parameters of two alternatives for butanol production from Manihot esculenta Crantz (cassava waste) is presented in this study. The modeling of process topologies involved using Aspen Plus software. Topology 1 generated a product flow rate of 316,477 t/y of butanol, while this value was 367,037 t/y for topology 2. Both processes used a feed flow of 3,131,439 t/y of biomass. This study used seven technical indicators to evaluate both alternatives, which include the return of investment, discounted payback period, global warming potential, renewability material index, inherent safety index, exergy efficiency, and exergy of waste ratio. Otherwise, this study implemented an aggregate index to assess overall sustainability performance. The results revealed that topology 2 presented higher economic normalized scores for evaluated indicators, but the most crucial difference between these designs came from the safety and exergetic indexes. Topology 1 and topology 2 obtained weighted scores equaling to 0.48 and 0.53; therefore, this study found that the second alternative gives a more sustainable design for butanol production under evaluated conditions.
Collapse
Affiliation(s)
- Samir
I. Meramo-Hurtado
- Bussines Management
and Productivity Research Group, Industrial Engineering Program, Fundación Universitaria Colombo International, Av. Pedro Heredia Sector Cuatro
Vientos #31-50, Cartagena 130000, Colombia
| | - Ángel D. González-Delgado
- Nanomaterials and
Computer-Aided Process Engineering, Chemical Engineering Program, Universidad de Cartagena, Piedra
de Bolívar. Street 30 # 48-152, Cartagena 130000, Colombia
| | - Lars Rehmann
- Department
of Chemical and Biochemical Engineering, Western University, London N6A 5B9, Canada
| | | | - Mehrab Mehrvar
- Department
of Chemical Engineering, Ryerson University, Toronto M5B 2K3, Canada
| |
Collapse
|
11
|
Antunes F, Marçal S, Taofiq O, M. M. B. Morais A, Freitas AC, C. F. R. Ferreira I, Pintado M. Valorization of Mushroom By-Products as a Source of Value-Added Compounds and Potential Applications. Molecules 2020; 25:molecules25112672. [PMID: 32526879 PMCID: PMC7321189 DOI: 10.3390/molecules25112672] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the food sector is highly concerned with environmental issues and foreseen to develop strategies to reduce waste and losses resulting from activities developed in the food system. An approach is to increment added value to the agro-industrial wastes, which might provide economic growth and environmental protection, contributing to a circular economy. Mushroom by-products represent a disposal problem, but they are also promising sources of important compounds, which may be used due to their functional and nutritional properties. Research has been developed in different fields to obtain value added solutions for the by-products generated during mushroom production and processing. Bioactive compounds have been obtained and applied in the development of nutraceutical and pharmaceutical formulations. Additionally, other applications have been explored and include animal feed, fertilizer, bioremediation, energy production, bio-based materials, cosmetics and cosmeceuticals. The main purpose of this review is to highlight the relevant composition of mushroom by-products and discuss their potential as a source of functional compounds and other applications. Future research needs to explore pilot and industrial scale extraction methods to understand the technological feasibility and the economic sustainability of the bioactive compounds extraction and valorization towards different applications.
Collapse
Affiliation(s)
- Filipa Antunes
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Sara Marçal
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Oludemi Taofiq
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Alcina M. M. B. Morais
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Ana Cristina Freitas
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (O.T.); (I.C.F.R.F.)
| | - Manuela Pintado
- CBQF–Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.A.); (S.M.); (A.M.M.B.M.); (A.C.F.)
- Correspondence:
| |
Collapse
|
12
|
Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: the Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6020042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The numerous environmental problems caused by the extensive use of fossil resources have led to the formation of the circular bioeconomy concept. Renewable resources will constitute the cornerstone of this new, sustainable model, with biomass presenting a huge potential for the production of fuels and chemicals. In this context, waste and by-product streams from the food industry will be treated not as “wastes” but as resources. Rice production generates various by-product streams which currently are highly unexploited, leading to environmental problems especially in the countries that are the main producers. The main by-product streams include the straw, the husks, and the rice bran. Among these streams, rice bran finds applications in the food industry and cosmetics, mainly due to its high oil content. The high demand for rice bran oil generates huge amounts of defatted rice bran (DRB), the main by-product of the oil extraction process. The sustainable utilisation of this by-product has been a topic of research, either as a food additive or via its bioconversion into value-added products and chemicals. This review describes all the processes involved in the efficient bioconversion of DRB into biotechnological products. The detailed description of the production process, yields and productivities, as well as strains used for the production of bioethanol, lactic acid and biobutanol, among others, are discussed.
Collapse
|
13
|
Nawab S, Wang N, Ma X, Huo YX. Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microb Cell Fact 2020; 19:79. [PMID: 32220254 PMCID: PMC7099781 DOI: 10.1186/s12934-020-01337-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/18/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Owing to the increase in energy consumption, fossil fuel resources are gradually depleting which has led to the growing environmental concerns; therefore, scientists are being urged to produce sustainable and ecofriendly fuels. Thus, there is a growing interest in the generation of biofuels from renewable energy resources using microbial fermentation. MAIN TEXT Butanol is a promising biofuel that can substitute for gasoline; unfortunately, natural microorganisms pose challenges for the economical production of 1-butanol at an industrial scale. The availability of genetic and molecular tools to engineer existing native pathways or create synthetic pathways have made non-native hosts a good choice for the production of 1-butanol from renewable resources. Non-native hosts have several distinct advantages, including using of cost-efficient feedstock, solvent tolerant and reduction of contamination risk. Therefore, engineering non-native hosts to produce biofuels is a promising approach towards achieving sustainability. This paper reviews the currently employed strategies and synthetic biology approaches used to produce 1-butanol in non-native hosts over the past few years. In addition, current challenges faced in using non-native hosts and the possible solutions that can help improve 1-butanol production are also discussed. CONCLUSION Non-native organisms have the potential to realize commercial production of 1- butanol from renewable resources. Future research should focus on substrate utilization, cofactor imbalance, and promoter selection to boost 1-butanol production in non-native hosts. Moreover, the application of robust genetic engineering approaches is required for metabolic engineering of microorganisms to make them industrially feasible for 1-butanol production.
Collapse
Affiliation(s)
- Said Nawab
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
| | - Ning Wang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing, 100081, People's Republic of China
- Biology Institute, Shandong Province Key Laboratory for Biosensors, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
14
|
Kumar V, Yadav SK, Kumar J, Ahluwalia V. A critical review on current strategies and trends employed for removal of inhibitors and toxic materials generated during biomass pretreatment. BIORESOURCE TECHNOLOGY 2020; 299:122633. [PMID: 31918972 DOI: 10.1016/j.biortech.2019.122633] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The main objective of biomass pretreatment is to separate biomass components and provide easier access with ultimate aim for lignin removal, hemicellulose protection and cellulose crystallinity reduction. Effective bioconversion with least inhibitory compound production would play a considerable role in economic practicability of the process in order to achieve economic sustainability. In this regard, detoxification is an important condition to make biomass hydrolysate acquiescent to bioconversion; also, understanding of inhibitors effect on growth and fermentation are necessary requirements for system detoxification. A number of physical, chemical and biological methods like feedstock selection, membrane selection, neutralization, use of activated charcoal etc have been recommended and developed for removal or minimizing the inhibitory compounds effect. This work reviews various inhibitory compounds produced during pretreatment methods and their removal by various processes.
Collapse
Affiliation(s)
- Vinod Kumar
- Centre of Innovative and Applied Bioprocessing, Mohali, Punjab 160 071, India
| | - Sudesh K Yadav
- Centre of Innovative and Applied Bioprocessing, Mohali, Punjab 160 071, India
| | - Jitendra Kumar
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India
| | - Vivek Ahluwalia
- Institute of Pesticide Formulation Technology, Gurugram, Haryana 122 016, India.
| |
Collapse
|
15
|
Acetone–butanol–ethanol fermentation from sugarcane bagasse hydrolysates: Utilization of C5 and C6 sugars. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Vivek N, Nair LM, Mohan B, Nair SC, Sindhu R, Pandey A, Shurpali N, Binod P. Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100224] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|