1
|
Dietz K, Sagstetter C, Speck M, Roth A, Klamt S, Fabarius JT. A novel engineered strain of Methylorubrum extorquens for methylotrophic production of glycolic acid. Microb Cell Fact 2024; 23:344. [PMID: 39716233 DOI: 10.1186/s12934-024-02583-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
The conversion of CO2 into methanol depicts one of the most promising emerging renewable routes for the chemical and biotech industry. Under this regard, native methylotrophs have a large potential for converting methanol into value-added products but require targeted engineering approaches to enhance their performances and to widen their product spectrum. Here we use a systems-based approach to analyze and engineer M. extorquens TK 0001 for production of glycolic acid. Application of constraint-based metabolic modeling reveals the great potential of M. extorquens for that purpose, which is not yet described in literature. In particular, a superior theoretical product yield of 1.0 C-molGlycolic acid C-molMethanol-1 is predicted by our model, surpassing theoretical yields of sugar fermentation. Following this approach, we show here that strain engineering is viable and present 1st generation strains producing glycolic acid via a heterologous NADPH-dependent glyoxylate reductase. It was found that lactic acid is a surprising by-product of glycolic acid formation in M. extorquens, most likely due to a surplus of available NADH upon glycolic acid synthesis. Finally, the best performing strain was tested in a fed-batch fermentation producing a mixture of up to total 1.2 g L-1 glycolic acid and lactic acid. Several key performance indicators of our glycolic acid producer strain are superior to state-of-the-art synthetic methylotrophs. The presented results open the door for further strain engineering of the native methylotroph M. extorquens and pave the way to produce two promising biopolymer building blocks from green methanol, i.e., glycolic acid and lactic acid.
Collapse
Affiliation(s)
- Katharina Dietz
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Carina Sagstetter
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Melanie Speck
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Arne Roth
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany
| | - Steffen Klamt
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, Magdeburg, Germany
| | - Jonathan Thomas Fabarius
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Straubing Branch BioCat, Schulgasse 11a, Straubing, Germany.
| |
Collapse
|
2
|
Gorniak L, Bucka SL, Nasr B, Cao J, Hellmann S, Schäfer T, Westermann M, Bechwar J, Wegner CE. Changes in growth, lanthanide binding, and gene expression in Pseudomonas alloputida KT2440 in response to light and heavy lanthanides. mSphere 2024; 9:e0068524. [PMID: 39291981 PMCID: PMC11520305 DOI: 10.1128/msphere.00685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
Pseudomonas alloputida KT2440 is a ubiquitous, soil-dwelling bacterium that metabolizes recalcitrant and volatile carbon sources. The latter is utilized by two redundant, Ca- and lanthanide (Ln)-dependent, pyrroloquinoline quinone-dependent alcohol dehydrogenases (PQQ ADH), PedE and PedH, whose expression is regulated by Ln availability. P. alloputida KT2440 is the best-studied non-methylotroph in the context of Ln-utilization. Combined with microfluidic cultivation and single-cell elemental analysis, we studied the impact of light and heavy Ln on transcriptome-wide gene expression when growing P. alloputida KT2440 with 2-phenylethanol as the carbon and energy source. Light Ln (La, Ce, and Nd) and a mixture of light and heavy Ln (La, Ce, Nd, Dy, Ho, Er, and Yb) had a positive effect on growth, whereas supplementation with heavy Ln (Dy, Ho, Er, and Yb) exerted fitness costs. These were likely a consequence of mismetallation and non-utilizable Ln interfering with Ln sensing and signaling. The measured amounts of cell-associated Ln varied between elements. Gene expression analysis suggested that the Ln sensing and signaling machinery, the two-component system PedS2R2 and PedH, responds differently to (non-)utilizable Ln. We expanded our understanding of the lanthanide (Ln) switch in P. alloputida KT2440, demonstrating that it adjusts the levels of pedE and pedH transcripts based on the availability of Ln. We propose that the usability of Ln influences the bacterium's response to different Ln elements.IMPORTANCEThe Ln switch, the inverse regulation of Ca- and Ln-dependent PQQ ADH in response to Ln availability in organisms featuring both, is central to our understanding of Ln utilization. Although the preference of bacteria for light Ln is well known, the effect of different Ln, light and heavy, on growth and gene expression has rarely been studied. We provide evidence for a fine-tuning mechanism of Ca- and Ln-dependent PQQ ADH in P. alloputida KT2440 on the transcriptome level. The response to (non-)utilizable Ln differs depending on the element. Ln commonly co-occur in nature. Our findings underline that Ln-utilizing microbes must be able to discriminate between Ln to use them effectively. Considering the prevalence of Ln-dependent proteins in many microbial taxa, more work addressing Ln sensing and signaling is needed. Ln availability likely necessitates different adaptations regarding Ln utilization.
Collapse
Affiliation(s)
- Linda Gorniak
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Sarah Luise Bucka
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Bayan Nasr
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnique, Technische Universität Ilmenau, Ilmenau, Germany
| | - Jialan Cao
- Department of Physical Chemistry and Microreaction Technology, Institute for Chemistry and Biotechnique, Technische Universität Ilmenau, Ilmenau, Germany
| | - Steffen Hellmann
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
- International Max Planck Research School for Global Biogeochemical Cycles, Department of Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Thorsten Schäfer
- Institute of Geosciences, Applied Geology, Friedrich Schiller University Jena, Jena, Germany
| | | | - Julia Bechwar
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University Jena, Jena, Germany
- Bioinorganic Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Thompson PJ, Boggs DG, Wilson CA, Bruchs AT, Velidandla U, Bridwell-Rabb J, Olshansky L. Structure-driven development of a biomimetic rare earth artificial metalloprotein. Proc Natl Acad Sci U S A 2024; 121:e2405836121. [PMID: 39116128 PMCID: PMC11331073 DOI: 10.1073/pnas.2405836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 μM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.
Collapse
Affiliation(s)
- Peter J. Thompson
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - David G. Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charles A. Wilson
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Austin T. Bruchs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Uditha Velidandla
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Lisa Olshansky
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
4
|
Zytnick AM, Gutenthaler-Tietze SM, Aron AT, Reitz ZL, Phi MT, Good NM, Petras D, Daumann LJ, Martinez-Gomez NC. Identification and characterization of a small-molecule metallophore involved in lanthanide metabolism. Proc Natl Acad Sci U S A 2024; 121:e2322096121. [PMID: 39078674 PMCID: PMC11317620 DOI: 10.1073/pnas.2322096121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024] Open
Abstract
Many bacteria secrete metallophores, low-molecular-weight organic compounds that bind ions with high selectivity and affinity, in order to access essential metals from the environment. Previous work has elucidated the structures and biosynthetic machinery of metallophores specific for iron, zinc, nickel, molybdenum, and copper. No physiologically relevant lanthanide-binding metallophore has been discovered despite the knowledge that lanthanide metals (Ln) have been revealed to be essential cofactors for certain alcohol dehydrogenases across a diverse range of phyla. Here, we report the biosynthetic machinery, the structure, and the physiological relevance of a lanthanophore, methylolanthanin. The structure of methylolanthanin exhibits a unique 4-hydroxybenzoate moiety which has not previously been described in other metallophores. We find that production of methylolanthanin is required for normal levels of Ln accumulation in the methylotrophic bacterium Methylobacterium extorquens AM1, while overexpression of the molecule greatly increases bioaccumulation and adsorption. Our results provide a clearer understanding of how Ln-utilizing bacteria sense, scavenge, and store Ln; essential processes in the environment where Ln are poorly bioavailable. More broadly, the identification of this lanthanophore opens doors for study of how biosynthetic gene clusters are repurposed for additional functions and the complex relationship between metal homeostasis and fitness.
Collapse
Affiliation(s)
- Alexa M. Zytnick
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA94720
| | - Sophie M. Gutenthaler-Tietze
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf40225, Germany
| | - Allegra T. Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO80210
| | - Zachary L. Reitz
- Bioinformatics Group, Wageningen University, Wageningen6708PB, The Netherlands
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA93117
| | - Manh Tri Phi
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA94720
| | - Daniel Petras
- Interfaculty Institute of Microbiology and Medicine, Universität Tübingen, Tübingen72074, Germany
| | - Lena J. Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf40225, Germany
| | | |
Collapse
|
5
|
Hying ZT, Miller TJ, Loh CY, Bazurto JV. Glycine betaine metabolism is enabled in Methylorubrum extorquens PA1 by alterations to dimethylglycine dehydrogenase. Appl Environ Microbiol 2024; 90:e0209023. [PMID: 38534142 PMCID: PMC11267896 DOI: 10.1128/aem.02090-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Low nutrient availability is a key characteristic of the phyllosphere (the aerial surface of plants). Phyllospheric bacteria utilize a wide array of carbon sources generated by plant hosts. Glycine betaine (GB) is a plant-derived compound that can be metabolized by certain members of the phyllosphere microbiota. Metabolism of glycine betaine generates formaldehyde, an intermediate of methylotrophic metabolism, leading us to investigate how the ubiquitous plant colonizing bacterium Methylorubrum extorquens PA1 might metabolize GB encountered in its native environment. M. extorquens PA1 cannot utilize GB as a sole carbon source. Through suppressor mutation analysis, we show that M. extorquens PA1 encodes a conserved GB utilization pathway that can be activated by single point mutations conferring GB utilization as a carbon source. We identified the gene cluster encoding the GB catabolic enzymes and found that gene expression was induced in the presence of GB. We show that utilization of GB is conserved among representative Methylobacterium species and generates the one-carbon metabolism intermediate formaldehyde, which M. extorquens utilizes as a source of energy. Our results support a model where suppressor mutations in Mext_3745 or ftsH (Mext_4840) prevent the degradation of the dimethylglycine dehydrogenase subunit DgcB by the membrane integral protease FtsH, conferring the ability to utilize GB by either (i) restoring stable membrane topology of DgcB or (ii) decreasing FtsH protease activity, respectively. Both mutations alleviate the bottleneck at the second step of GB degradation catalyzed by DgcAB.IMPORTANCEOvercoming low nutrient availability is a challenge many bacteria encounter in the environment. Facultative methylotrophs are able to utilize one-carbon and multi-carbon compounds as carbon and energy sources. The utilization of plant-derived glycine betaine (GB) represents a possible source of multi-carbon and one-carbon substrates. The metabolism of glycine betaine produces formaldehyde and glycine, which may be used simultaneously by facultative methylotrophs. However, the genes required for the utilization of GB in the ubiquitous plant-associated bacterium Methylorubrum extorquens have yet to be identified or described. Our work identifies and validates the genes required for glycine betaine metabolism in M. extorquens and shows that it directly intersects with methylotrophic metabolism through the production of formaldehyde.
Collapse
Affiliation(s)
- Zachary T. Hying
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| | - Tyler J. Miller
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| | - Chin Yi Loh
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| | - Jannell V. Bazurto
- Department of Plant and Microbial Biology, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
6
|
Gorniak L, Bechwar J, Westermann M, Steiniger F, Wegner CE. Different lanthanide elements induce strong gene expression changes in a lanthanide-accumulating methylotroph. Microbiol Spectr 2023; 11:e0086723. [PMID: 37909735 PMCID: PMC10848612 DOI: 10.1128/spectrum.00867-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Since its discovery, Ln-dependent metabolism in bacteria attracted a lot of attention due to its bio-metallurgical application potential regarding Ln recycling and circular economy. The physiological role of Ln is mostly studied dependent on presence and absence. Comparisons of how different (utilizable) Ln affect metabolism have rarely been done. We noticed unexpectedly pronounced changes in gene expression caused by different Ln supplementation. Our research suggests that strain RH AL1 distinguishes different Ln elements and that the effect of Ln reaches into many aspects of metabolism, for instance, chemotaxis, motility, and polyhydroxyalkanoate metabolism. Our findings regarding Ln accumulation suggest a distinction between individual Ln elements and provide insights relating to intracellular Ln homeostasis. Understanding comprehensively how microbes distinguish and handle different Ln elements is key for turning knowledge into application regarding Ln-centered biometallurgy.
Collapse
Affiliation(s)
- Linda Gorniak
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | - Julia Bechwar
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| | | | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Jena, Germany
| | - Carl-Eric Wegner
- Institute of Biodiversity, Aquatic Geomicrobiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
7
|
Govindaraju AM, Friel CA, Good NM, Banks SL, Wayne KS, Martinez-Gomez NC. Lanthanide-dependent isolation of phyllosphere methylotrophs selects for a phylogenetically conserved but metabolically diverse community. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546956. [PMID: 38077020 PMCID: PMC10705262 DOI: 10.1101/2023.06.28.546956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The influence of lanthanide biochemistry during methylotrophy demands a reassessment of how the composition and metabolic potential of methylotrophic phyllosphere communities are affected by the presence of these metals. To investigate this, methylotrophs were isolated from soybean leaves by selecting for bacteria capable of methanol oxidation with lanthanide cofactors. Of the 344 pink-pigmented facultative methylotroph isolates, none were obligately lanthanide-dependent. Phylogenetic analyses revealed that all strains were nearly identical to each other and to model strains from the extorquens clade of Methylobacterium, with rpoB providing higher resolution than 16s rRNA for strain-specific identification. Despite the low species diversity, the metabolic capabilities of the community diverged greatly. Strains encoding identical PQQ-dependent alcohol dehydrogenases displayed significantly different growth from each other on alcohols in the presence and absence of lanthanides. Several strains also lacked well-characterized lanthanide-associated genes thought to be important for phyllosphere colonization. Additionally, 3% of our isolates were capable of growth on sugars and 23% were capable of growth on aromatic acids, substantially expanding the range of multicarbon substrates utilized by members of the extorquens clade in the phyllosphere. Whole genome sequences of eleven novel strains are reported. Our findings suggest that the expansion of metabolic capabilities, as well as differential usage of lanthanides and their influence on metabolism among closely related strains, point to evolution of niche partitioning strategies to promote colonization of the phyllosphere.
Collapse
Affiliation(s)
- Alekhya M. Govindaraju
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Colleen A. Friel
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Sidney L. Banks
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kenan S. Wayne
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | | |
Collapse
|
8
|
Sarwar A, Lee EY. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs. Synth Syst Biotechnol 2023; 8:396-415. [PMID: 37384124 PMCID: PMC10293595 DOI: 10.1016/j.synbio.2023.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023] Open
Abstract
Methanol has recently gained significant attention as a potential carbon substrate for the production of fuels and chemicals, owing to its high degree of reduction, abundance, and low price. Native methylotrophic yeasts and bacteria have been investigated for the production of fuels and chemicals. Alternatively, synthetic methylotrophic strains are also being developed by reconstructing methanol utilization pathways in model microorganisms, such as Escherichia coli. Owing to the complex metabolic pathways, limited availability of genetic tools, and methanol/formaldehyde toxicity, the high-level production of target products for industrial applications are still under development to satisfy commercial feasibility. This article reviews the production of biofuels and chemicals by native and synthetic methylotrophic microorganisms. It also highlights the advantages and limitations of both types of methylotrophs and provides an overview of ways to improve their efficiency for the production of fuels and chemicals from methanol.
Collapse
Affiliation(s)
- Arslan Sarwar
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| |
Collapse
|
9
|
Soleimanifar M, Rodriguez-Freire L. Biointeraction of cerium oxide and neodymium oxide nanoparticles with pure culture methylobacterium extorquens AM1. CHEMOSPHERE 2023:139113. [PMID: 37270036 DOI: 10.1016/j.chemosphere.2023.139113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Rare earth elements (REE) are valuable raw materials in our modern life. Extensive REE application from electronic devices to medical instruments and wind turbines, and non-uniform distribution of these resources around the world, make them strategically and economically important for countries. Current REE physical and chemical mining and recycling methods could have negative environmental consequences, and biologically-mediated techniques could be applied to overcome this issue. In this study, the bioextraction of cerium oxide and neodymium oxide nanoparticles (REE-NP) by a pure culture Methylobacterium extorquens AM1 (ATCC®14718™) was investigated in batch experiments. Results show that adding up to 1000 ppm CeO2 or Nd2O3 nanoparticles (REE-NP) did not seem to affect the bacterial growth over 14-days contact time. Effect of methylamine hydrochloride as an essential electron donor and carbon source for microbial oxidation and growth was also observed inasmuch as there was approximately no growth when it does not exist in the medium. Although very low concentrations of cerium and neodymium in the liquid phase were measured, concentrations of 45 μg/gcell Ce and 154 μg/gcell Nd could be extracted by M. extorquens AM1. Furthermore, SEM-EDS and STEM-EDS confirmed surface and intracellular accumulation of nanoparticles. These results confirmed the ability of M. extorquens to accumulate REE nanoparticles.
Collapse
Affiliation(s)
- Maedeh Soleimanifar
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States.
| | - Lucia Rodriguez-Freire
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States
| |
Collapse
|
10
|
Firsova YE, Mustakhimov II, Torgonskaya ML. Compartment-related aspects of XoxF protein functionality in Methylorubrum extorquens DM4 analysed using its cytoplasmic targeting. Antonie Van Leeuwenhoek 2023; 116:393-413. [PMID: 36719530 DOI: 10.1007/s10482-023-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
The impact of periplasmic localisation on the functioning of the XoxF protein was evaluated in the well-studied dichloromethane-utilising methylotroph Methylorubrum extorquens DM4, which harbors only one paralogue of the xoxF gene. It was found that the cytoplasmic targeting of XoxF by expression of the corresponding gene without the sequence encoding the N-terminal signal peptide does not impair the activation and lanthanide-dependent regulation of the MxaFI-methanol dehydrogenase genes. Analysis of the viability of ΔxoxF cells complemented with the full-length and truncated xoxF gene also showed that the expression of cytoplasmically targeted XoxF even increases the resistance to acids. These results contradict the proposed function of the XoxF protein as an extracytoplasmic signal sensor. At the same time, the observed dynamics of growth with methanol, as well as with dichloromethane of strains expressing cytoplasmic-targeted XoxF, indicate the probable enzymatic activity of lanthanide-dependent methanol dehydrogenase in this compartment. Herewith, the only available substrate for this enzyme in cells growing with dichloromethane was formaldehyde, which is produced during the primary metabolism of the mentioned halogenated toxicant directly in the cytosol. These findings suggest that the maturation of XoxF-methanol dehydrogenase may occur already in the cytoplasm, while the factors changing affinity of this enzyme for formaldehyde are apparently absent there. Together with the demonstrated functioning of an enhancer-like upstream activating sequence in the promoter region of the xoxF gene in M. extorquens DM4, the obtained information enriches our understanding of the regulation, synthesis and role of the XoxF protein.
Collapse
Affiliation(s)
- Yulia E Firsova
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ildar I Mustakhimov
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Maria L Torgonskaya
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, 142290, Pushchino, Russia
| |
Collapse
|
11
|
Impact of Negative Feedbacks on De Novo Pyrimidines Biosynthesis in Escherichia coli. Int J Mol Sci 2023; 24:ijms24054806. [PMID: 36902235 PMCID: PMC10003070 DOI: 10.3390/ijms24054806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Earlier studies aimed at investigating the metabolism of endogenous nucleoside triphosphates in synchronous cultures of E. coli cells revealed an auto-oscillatory mode of functioning of the pyrimidine and purine nucleotide biosynthesis system, which the authors associated with the dynamics of cell division. Theoretically, this system has an intrinsic oscillatory potential, since the dynamics of its functioning are controlled through feedback mechanisms. The question of whether the nucleotide biosynthesis system has its own oscillatory circuit is still open. To address this issue, an integral mathematical model of pyrimidine biosynthesis was developed, taking into account all experimentally verified negative feedback in the regulation of enzymatic reactions, the data of which were obtained under in vitro conditions. Analysis of the dynamic modes of the model functioning has shown that in the pyrimidine biosynthesis system, both the steady-state and oscillatory functioning modes can be realized under certain sets of kinetic parameters that fit in the physiological boundaries of the investigated metabolic system. It has been demonstrated that the occurrence of the oscillatory nature of metabolite synthesis depended on the ratio of two parameters: the Hill coefficient, hUMP1-the nonlinearity of the UMP effect on the activity of carbamoyl-phosphate synthetase, and the parameter r characterizing the contribution of the noncompetitive mechanism of UTP inhibition to the regulation of the enzymatic reaction of UMP phosphorylation. Thus, it has been theoretically shown that the E. coli pyrimidine biosynthesis system possesses its own oscillatory circuit whose oscillatory potential depends to a significant degree on the mechanism of regulation of UMP kinase activity.
Collapse
|
12
|
Xie R, Takashino M, Igarashi K, Kitagawa W, Kato S. Transcriptional Regulation of Methanol Dehydrogenases in the Methanotrophic Bacterium Methylococcus capsulatus Bath by Soluble and Insoluble Lanthanides. Microbes Environ 2023; 38:ME23065. [PMID: 38092408 PMCID: PMC10728633 DOI: 10.1264/jsme2.me23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023] Open
Abstract
The effects of soluble and insoluble lanthanides on gene expression in Methylococcus capsulatus Bath were investigated. Genes for lanthanide-containing methanol dehydrogenases (XoxF-MDHs) and their calcium-containing counterparts (MxaFI-MDHs) were up- and down-regulated, respectively, by supplementation with soluble lanthanide chlorides, indicating that M. capsulatus has the "lanthanide switch" observed in other methanotrophs. Insoluble lanthanide oxides also induced the lanthanide switch and were dissolved by the spent medium of M. capsulatus, suggesting the presence of lanthanide-chelating compounds. A transcriptome ana-lysis indicated that a gene cluster for the synthesis of an enterobactin-like metal chelator contributed to the dissolution of insoluble lanthanides.
Collapse
Affiliation(s)
- Ruoyun Xie
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Wataru Kitagawa
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| | - Souichiro Kato
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo 060–8589, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, 2–17–2–1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062–8517, Japan
| |
Collapse
|
13
|
Hachisuka SI, Chong JF, Fujiwara T, Takayama A, Kawakami Y, Yoshida S. Ethylene glycol metabolism in the poly(ethylene terephthalate)-degrading bacterium Ideonella sakaiensis. Appl Microbiol Biotechnol 2022; 106:7867-7878. [DOI: 10.1007/s00253-022-12244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
|
14
|
Trindade IB, Coelho A, Cantini F, Piccioli M, Louro RO. NMR of paramagnetic metalloproteins in solution: Ubi venire, quo vadis? J Inorg Biochem 2022; 234:111871. [DOI: 10.1016/j.jinorgbio.2022.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
15
|
Liu S, Yang P, Wang M, Zhang S, Wang J, Pan T, Zhou P. Inhibitory effect of lovastatin on human lung cancer cell proliferation by regulating the ERK1/2 and COX-2 pathways. Transl Cancer Res 2022; 11:813-822. [PMID: 35571660 PMCID: PMC9091021 DOI: 10.21037/tcr-22-346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022]
Abstract
Background Lovastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase, effectively inhibiting cholesterol synthesis. Previous research findings showed that lovastatin markedly suppressed tumor cell proliferation and metastasis and induced apoptosis. The present study aimed to determine the underlying mechanism of the suppressive effect of lovastatin on the growth of human lung cancer cells. Methods The A549 cell line was treated with different concentrations of lovastatin. Subsequently, cell proliferation and colony formation were analyzed, along with the expression of apoptosis-related proteins (ERK1/2, c-JUN, COX-2, BCL-2, and BAX) by western blotting and immunofluorescence staining. Experimental data were analyzed with SPSS 25.0 and expressed as the mean ± SEM. One-way ANOVA or two-way independent samples t-test were used. Results The results confirmed that lovastatin suppressed cell viability and reduced the numbers of cell colonies, and a concentration-dependent response was observed with increasing lovastatin concentrations (P<0.05). Accordingly, these suppressive effects were related to decreased protein expression levels of p-ERK1/2/ERK1/2, p-c-JUN/c-JUN, COX-2, and BCL-2 and increased BAX protein expression (P<0.05). Furthermore, we conducted an experimental intervention with low-dose LPS+ATP to stimulate A549 cell growth, and then examined the proliferation and apoptosis of A549 cells after LPS+ATP+50 µM lovastatin intervention. The principal finding of this research was that lovastatin still suppressed A549 cell growth after LPS+ATP stimulation via modulation of ERK1/2, c-JUN, COX-2, BCL-2, and BAX protein levels (P<0.05). Conclusions Collectively, the findings presented in this study confirmed that lovastatin can inhibit A549 cell proliferation by regulating the ERK1/2 and COX-2 pathways.
Collapse
Affiliation(s)
- Sha Liu
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ping Yang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Mingkung Wang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shuang Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jie Wang
- Department of Respiratory Diseases, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tao Pan
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ping Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
16
|
Good NM, Lee HD, Hawker ER, Su MZ, Gilad AA, Martinez-Gomez NC. Hyperaccumulation of Gadolinium by Methylorubrum extorquens AM1 Reveals Impacts of Lanthanides on Cellular Processes Beyond Methylotrophy. Front Microbiol 2022; 13:820327. [PMID: 35369483 PMCID: PMC8969499 DOI: 10.3389/fmicb.2022.820327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
Lanthanides (Ln) are a new group of life metals, and many questions remain regarding how they are acquired and used in biology. Methylotrophic bacteria can acquire, transport, biomineralize, and use Ln as part of a cofactor complex with pyrroloquinoline quinone (PQQ) in alcohol dehydrogenases. For most methylotrophic bacteria use is restricted to the light Ln, which range from lanthanum to samarium (atomic numbers 57–62). Understanding how the cell differentiates between light and heavy Ln, and the impacts of these metals on the metabolic network, will advance the field of Ln biochemistry and give insights into enzyme catalysis, stress homeostasis, and metal biomineralization and compartmentalization. We report robust methanol growth with the heavy Ln gadolinium by a genetic variant of the model methylotrophic bacterium Methylorubrum extorquens AM1, named evo-HLn, for “evolved for Heavy Lanthanides.” A non-synonymous single nucleotide polymorphism in a cytosolic hybrid histidine kinase/response regulator allowed for sweeping transcriptional alterations to heavy metal stress response, methanol oxidation, and central metabolism. Increased expression of genes for Ln acquisition and uptake, production of the Ln-chelating lanthanophore, PQQ biosynthesis, and phosphate transport and metabolism resulted in gadolinium hyperaccumulation of 36-fold with a trade-off for light Ln accumulation. Gadolinium was hyperaccumulated in an enlarged acidocalcisome-like compartment. This is the first evidence of a bacterial intracellular Ln-containing compartment that we name the “lanthasome.” Carotenoid and toblerol biosynthesis were also upregulated. Due to its unique capabilities, evo-HLn can be used to further magnetic resonance imaging (MRI) and bioremediation technologies. In this regard, we show that gadolinium hyperaccumulation was sufficient to produce MRI contrast in whole cells, and that evo-HLn was able to readily acquire the metal from the MRI contrast agent gadopentetic acid. Finally, hyperaccumulation of gadolinium, differential uptake of light and heavy Ln, increased PQQ levels, and phosphate transport provide new insights into strategies for Ln recovery.
Collapse
Affiliation(s)
- Nathan M. Good
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Harvey D. Lee
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Division of Synthetic Biology, The Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
| | - Emily R. Hawker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Morgan Z. Su
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Assaf A. Gilad
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
- Division of Synthetic Biology, The Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, United States
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - N. Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: N. Cecilia Martinez-Gomez,
| |
Collapse
|
17
|
Klein VJ, Irla M, Gil López M, Brautaset T, Fernandes Brito L. Unravelling Formaldehyde Metabolism in Bacteria: Road towards Synthetic Methylotrophy. Microorganisms 2022; 10:microorganisms10020220. [PMID: 35208673 PMCID: PMC8879981 DOI: 10.3390/microorganisms10020220] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 12/26/2022] Open
Abstract
Formaldehyde metabolism is prevalent in all organisms, where the accumulation of formaldehyde can be prevented through the activity of dissimilation pathways. Furthermore, formaldehyde assimilatory pathways play a fundamental role in many methylotrophs, which are microorganisms able to build biomass and obtain energy from single- and multicarbon compounds with no carbon–carbon bonds. Here, we describe how formaldehyde is formed in the environment, the mechanisms of its toxicity to the cells, and the cell’s strategies to circumvent it. While their importance is unquestionable for cell survival in formaldehyde rich environments, we present examples of how the modification of native formaldehyde dissimilation pathways in nonmethylotrophic bacteria can be applied to redirect carbon flux toward heterologous, synthetic formaldehyde assimilation pathways introduced into their metabolism. Attempts to engineer methylotrophy into nonmethylotrophic hosts have gained interest in the past decade, with only limited successes leading to the creation of autonomous synthetic methylotrophy. Here, we discuss how native formaldehyde assimilation pathways can additionally be employed as a premise to achieving synthetic methylotrophy. Lastly, we discuss how emerging knowledge on regulation of formaldehyde metabolism can contribute to creating synthetic regulatory circuits applied in metabolic engineering strategies.
Collapse
|
18
|
Orita I, Unno G, Kato R, Fukui T. Biosynthesis of Polyhydroxyalkanoate Terpolymer from Methanol via the Reverse β-Oxidation Pathway in the Presence of Lanthanide. Microorganisms 2022; 10:microorganisms10010184. [PMID: 35056633 PMCID: PMC8780949 DOI: 10.3390/microorganisms10010184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Methylorubrum extorquens AM1 is the attractive platform for the production of value-added products from methanol. We previously demonstrated that M. extorquens equipped with PHA synthase with broad substrate specificity synthesized polyhydroxyalkanoates (PHAs) composed of (R)-3-hydroxybutyrate and small fraction of (R)-3-hydroxyvalerate (3HV) and (R)-3-hydroxyhexanoate (3HHx) units on methanol. This study further engineered M. extorquens for biosynthesis of PHAs with higher 3HV and 3HHx composition focusing on the EMC pathway involved in C1 assimilation. The introduction of ethylmalonyl-CoA decarboxylase, catalyzing a backward reaction in the EMC pathway, aiming to increase intracellular propionyl/butyryl-CoA precursors did not affect PHA composition. Reverse β-oxidation pathway and subsequent (R)-specific hydration of 2-enoyl-CoA were then enhanced by heterologous expression of four genes derived from Ralstonia eutropha for the conversion of propionyl/butyryl-CoAs to the corresponding (R)-3-hydroxyacyl-CoA monomers. The resulting strains produced PHAs with higher 3HV and 3HHx compositions, while the methylotrophic growth was severely impaired. This growth impairment was interestingly restored by the addition of La3+ without a negative impact on PHA biosynthesis, suggesting the activation of the EMC pathway by La3+. The engineered M. extorquens synthesized PHA terpolymer composed of 5.4 mol% 3HV and 0.9% of 3HHx with 41% content from methanol as a sole carbon source in the presence of La3+.
Collapse
|
19
|
Le TK, Lee YJ, Han GH, Yeom SJ. Methanol Dehydrogenases as a Key Biocatalysts for Synthetic Methylotrophy. Front Bioeng Biotechnol 2022; 9:787791. [PMID: 35004648 PMCID: PMC8741260 DOI: 10.3389/fbioe.2021.787791] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
One-carbon (C1) chemicals are potential building blocks for cheap and sustainable re-sources such as methane, methanol, formaldehyde, formate, carbon monoxide, and more. These resources have the potential to be made into raw materials for various products used in our daily life or precursors for pharmaceuticals through biological and chemical processes. Among the soluble C1 substrates, methanol is regarded as a biorenewable platform feedstock because nearly all bioresources can be converted into methanol through syngas. Synthetic methylotrophy can be exploited to produce fuels and chemicals using methanol as a feedstock that integrates natural or artificial methanol assimilation pathways in platform microorganisms. In the methanol utilization in methylotrophy, methanol dehydrogenase (Mdh) is a primary enzyme that converts methanol to formaldehyde. The discovery of new Mdhs and engineering of present Mdhs have been attempted to develop synthetic methylotrophic bacteria. In this review, we describe Mdhs, including in terms of their enzyme properties and engineering for desired activity. In addition, we specifically focus on the application of various Mdhs for synthetic methylotrophy.
Collapse
Affiliation(s)
- Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea
| | - Yu-Jin Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea.,School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, South Korea
| | - Gui Hwan Han
- Center for Industrialization of Agricultural and Livestock Microorganisms (CIALM), Jeollabuk-do, South Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, South Korea.,School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
20
|
Neodymium as Metal Cofactor for Biological Methanol Oxidation: Structure and Kinetics of an XoxF1-Type Methanol Dehydrogenase. mBio 2021; 12:e0170821. [PMID: 34544276 PMCID: PMC8546591 DOI: 10.1128/mbio.01708-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methane-oxidizing bacterium Methylacidimicrobium thermophilum AP8 thrives in acidic geothermal ecosystems that are characterized by high degassing of methane (CH4), H2, H2S, and by relatively high lanthanide concentrations. Lanthanides (atomic numbers 57 to 71) are essential in a variety of high-tech devices, including mobile phones. Remarkably, the same elements are actively taken up by methanotrophs/methylotrophs in a range of environments, since their XoxF-type methanol dehydrogenases require lanthanides as a metal cofactor. Lanthanide-dependent enzymes seem to prefer the lighter lanthanides (lanthanum, cerium, praseodymium, and neodymium), as slower methanotrophic/methylotrophic growth is observed in medium supplemented with only heavier lanthanides. Here, we purified XoxF1 from the thermoacidophilic methanotroph Methylacidimicrobium thermophilum AP8, which was grown in medium supplemented with neodymium as the sole lanthanide. The neodymium occupancy of the enzyme is 94.5% ± 2.0%, and through X-ray crystallography, we reveal that the structure of the active site shows interesting differences from the active sites of other methanol dehydrogenases, such as an additional aspartate residue in close proximity to the lanthanide. Nd-XoxF1 oxidizes methanol at a maximum rate of metabolism (Vmax) of 0.15 ± 0.01 μmol · min-1 · mg protein-1 and an affinity constant (Km) of 1.4 ± 0.6 μM. The structural analysis of this neodymium-containing XoxF1-type methanol dehydrogenase will expand our knowledge in the exciting new field of lanthanide biochemistry. IMPORTANCE Lanthanides comprise a group of 15 elements with atomic numbers 57 to 71 that are essential in a variety of high-tech devices, such as mobile phones, but were considered biologically inert for a long time. The biological relevance of lanthanides became evident when the acidophilic methanotroph Methylacidiphilum fumariolicum SolV, isolated from a volcanic mud pot, could only grow when lanthanides were supplied to the growth medium. We expanded knowledge in the exciting and rapidly developing field of lanthanide biochemistry by the purification and characterization of a neodymium-containing methanol dehydrogenase from a thermoacidophilic methanotroph.
Collapse
|
21
|
Crombie AT. The effect of lanthanum on growth and gene expression in a facultative methanotroph. Environ Microbiol 2021; 24:596-613. [PMID: 34320271 PMCID: PMC9291206 DOI: 10.1111/1462-2920.15685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/25/2021] [Indexed: 11/29/2022]
Abstract
The biological importance of lanthanides has only recently been identified, initially as the active site metal of the alternative methanol dehydrogenase (MDH) Xox‐MDH. So far, the effect of lanthanide (Ln) has only been studied in relatively few organisms. This work investigated the effects of Ln on gene transcription and protein expression in the facultative methanotroph Methylocella silvestris BL2, a widely distributed methane‐oxidizing bacterium with the unique ability to grow not just on methane but also on other typical components of natural gas, ethane and propane. Expression of calcium‐ or Ln‐dependent MDH was controlled by Ln (the lanthanide switch) during growth on one‐, two‐ or three‐carbon substrates, and Ln imparted a considerable advantage during growth on propane, a novel result extending the importance of Ln to consumers of this component of natural gas. Two Xox‐MDHs were expressed and regulated by Ln in M. silvestris, but interestingly Ln repressed rather than induced expression of the second Xox‐MDH. Despite the metabolic versatility of M. silvestris, no other alcohol dehydrogenases were expressed, and in double‐mutant strains lacking genes encoding both Ca‐ and Ln‐dependent MDHs (mxaF and xoxF5 or xoxF1), growth on methanol and ethanol appeared to be enabled by expression of the soluble methane monooxygenase.
Collapse
Affiliation(s)
- Andrew T Crombie
- School of Biological Science, University of East Anglia, Norwich, NR4 7TJ, UK.,School of Environmental Science, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
22
|
Karthikeyan OP, Smith TJ, Dandare SU, Parwin KS, Singh H, Loh HX, Cunningham MR, Williams PN, Nichol T, Subramanian A, Ramasamy K, Kumaresan D. Metal(loid) speciation and transformation by aerobic methanotrophs. MICROBIOME 2021; 9:156. [PMID: 34229757 PMCID: PMC8262016 DOI: 10.1186/s40168-021-01112-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 06/09/2021] [Indexed: 05/06/2023]
Abstract
Manufacturing and resource industries are the key drivers for economic growth with a huge environmental cost (e.g. discharge of industrial effluents and post-mining substrates). Pollutants from waste streams, either organic or inorganic (e.g. heavy metals), are prone to interact with their physical environment that not only affects the ecosystem health but also the livelihood of local communities. Unlike organic pollutants, heavy metals or trace metals (e.g. chromium, mercury) are non-biodegradable, bioaccumulate through food-web interactions and are likely to have a long-term impact on ecosystem health. Microorganisms provide varied ecosystem services including climate regulation, purification of groundwater, rehabilitation of contaminated sites by detoxifying pollutants. Recent studies have highlighted the potential of methanotrophs, a group of bacteria that can use methane as a sole carbon and energy source, to transform toxic metal (loids) such as chromium, mercury and selenium. In this review, we synthesise recent advances in the role of essential metals (e.g. copper) for methanotroph activity, uptake mechanisms alongside their potential to transform toxic heavy metal (loids). Case studies are presented on chromium, selenium and mercury pollution from the tanneries, coal burning and artisanal gold mining, respectively, which are particular problems in the developing economy that we propose may be suitable for remediation by methanotrophs. Video Abstract.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
- Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI USA
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX USA
| | - Thomas J. Smith
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Shamsudeen Umar Dandare
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Kamaludeen Sara Parwin
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, India
| | - Heetasmin Singh
- Department of Chemistry, University of Guyana, Georgetown, Guyana
| | - Hui Xin Loh
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Mark R Cunningham
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Paul Nicholas Williams
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| | - Tim Nichol
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | | - Deepak Kumaresan
- School of Biological Sciences & Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, UK
| |
Collapse
|
23
|
Sarmiento-Pavía PD, Sosa-Torres ME. Bioinorganic insights of the PQQ-dependent alcohol dehydrogenases. J Biol Inorg Chem 2021; 26:177-203. [PMID: 33606117 DOI: 10.1007/s00775-021-01852-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Abstract
Among the several alcohol dehydrogenases, PQQ-dependent enzymes are mainly found in the α, β, and γ-proteobacteria. These proteins are classified into three main groups. Type I ADHs are localized in the periplasm and contain one Ca2+-PQQ moiety, being the methanol dehydrogenase (MDH) the most representative. In recent years, several lanthanide-dependent MDHs have been discovered exploding the understanding of the natural role of lanthanide ions. Type II ADHs are localized in the periplasm and possess one Ca2+-PQQ moiety and one heme c group. Finally, type III ADHs are complexes of two or three subunits localized in the cytoplasmic membrane and possess one Ca2+-PQQ moiety and four heme c groups, and in one of these proteins, an additional [2Fe-2S] cluster has been discovered recently. From the bioinorganic point of view, PQQ-dependent alcohol dehydrogenases have been revived recently mainly due to the discovery of the lanthanide-dependent enzymes. Here, we review the three types of PQQ-dependent ADHs with special focus on their structural features and electron transfer processes. The PQQ-Alcohol dehydrogenases are classified into three main groups. Type I and type II ADHs are located in the periplasm, while type III ADHs are in the cytoplasmic membrane. ADH-I have a Ca-PQQ or a Ln-PQQ, ADH-II a Ca-PQQ and one heme-c and ADH-III a Ca-PQQ and four hemes-c. This review focuses on their structural features and electron transfer processes.
Collapse
Affiliation(s)
- Pedro D Sarmiento-Pavía
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Martha E Sosa-Torres
- Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|
24
|
Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, Stott MB. Growth on Formic Acid Is Dependent on Intracellular pH Homeostasis for the Thermoacidophilic Methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol 2021; 12:651744. [PMID: 33841379 PMCID: PMC8024496 DOI: 10.3389/fmicb.2021.651744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Methylacidiphilum, a clade of metabolically flexible thermoacidophilic methanotrophs from the phylum Verrucomicrobia, can utilize a variety of substrates including methane, methanol, and hydrogen for growth. However, despite sequentially oxidizing methane to carbon dioxide via methanol and formate intermediates, growth on formate as the only source of reducing equivalents (i.e., NADH) has not yet been demonstrated. In many acidophiles, the inability to grow on organic acids has presumed that diffusion of the protonated form (e.g., formic acid) into the cell is accompanied by deprotonation prompting cytosolic acidification, which leads to the denaturation of vital proteins and the collapse of the proton motive force. In this work, we used a combination of biochemical, physiological, chemostat, and transcriptomic approaches to demonstrate that Methylacidiphilum sp. RTK17.1 can utilize formate as a substrate when cells are able to maintain pH homeostasis. Our findings show that Methylacidiphilum sp. RTK17.1 grows optimally with a circumneutral intracellular pH (pH 6.52 ± 0.04) across an extracellular range of pH 1.5–3.0. In batch experiments, formic acid addition resulted in no observable cell growth and cell death due to acidification of the cytosol. Nevertheless, stable growth on formic acid as the only source of energy was demonstrated in continuous chemostat cultures (D = 0.0052 h−1, td = 133 h). During growth on formic acid, biomass yields remained nearly identical to methanol-grown chemostat cultures when normalized per mole electron equivalent. Transcriptome analysis revealed the key genes associated with stress response: methane, methanol, and formate metabolism were differentially expressed in response to growth on formic acid. Collectively, these results show formic acid represents a utilizable source of energy/carbon to the acidophilic methanotrophs within geothermal environments. Findings expand the known metabolic flexibility of verrucomicrobial methanotrophs to include organic acids and provide insight into potential survival strategies used by these species during methane starvation.
Collapse
Affiliation(s)
- Carlo R Carere
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Kathryn Wigley
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Luke Carman
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| | - Karen M Houghton
- Geomicrobiology Research Group, Department of Geothermal Sciences, GNS Science, Taupō, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, Auckland, New Zealand
| | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
25
|
Featherston ER, Mattocks JA, Tirsch JL, Cotruvo JA. Heterologous expression, purification, and characterization of proteins in the lanthanome. Methods Enzymol 2021; 650:119-157. [PMID: 33867019 DOI: 10.1016/bs.mie.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent work has revealed that certain lanthanides-in particular, the more earth-abundant, lighter lanthanides-play essential roles in pyrroloquinoline quinone (PQQ) dependent alcohol dehydrogenases from methylotrophic and non-methylotrophic bacteria. More recently, efforts of several laboratories have begun to identify the molecular players (the lanthanome) involved in selective uptake, recognition, and utilization of lanthanides within the cell. In this chapter, we present protocols for the heterologous expression in Escherichia coli, purification, and characterization of many of the currently known proteins that comprise the lanthanome of the model facultative methylotroph, Methylorubrum extorquens AM1. In addition to the methanol dehydrogenase XoxF, these proteins include the associated c-type cytochrome, XoxG, and solute binding protein, XoxJ. We also present new, streamlined protocols for purification of the highly selective lanthanide-binding protein, lanmodulin, and a solute binding protein for PQQ, PqqT. Finally, we discuss simple, spectroscopic methods for determining lanthanide- and PQQ-binding stoichiometry of proteins. We envision that these protocols will be useful to investigators identifying and characterizing novel members of the lanthanome in many organisms.
Collapse
Affiliation(s)
- Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Jonathan L Tirsch
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
26
|
Good NM, Martinez-Gomez NC. Expression, purification and testing of lanthanide-dependent enzymes in Methylorubrum extorquens AM1. Methods Enzymol 2021; 650:97-118. [PMID: 33867027 DOI: 10.1016/bs.mie.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With mounting evidence of the importance of lanthanide metals in biology and among diverse bacterial phyla, a platform for high-throughput microbial growth for expression and purification of lanthanide-dependent enzymes is increasingly important. Presented in this chapter is a stream-lined approach for growth of the model methylotrophic bacterium Methylorubrum extorquens AM1 for the expression of lanthanide-dependent enzymes. Growth is optimized for both high-throughput phenotypic characterization facilitating in vivo studies, as well as for scaled-up batch cultivation for enzyme purification allowing for in vitro enzymatic studies. Both approaches have been shown to be important to understanding the function and structure of these enzymes. Expression systems have been designed for production of enzymes with and without lanthanide metals, allowing for detection of lanthanide dependence. The protocol described herein is expected to accelerate the discovery of novel lanthanide-dependent enzymes and our understanding of the role of these metals in the greater biological world.
Collapse
Affiliation(s)
- Nathan M Good
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States
| | - N Cecilia Martinez-Gomez
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
27
|
Vu HN, Subuyuj GA, Crisostomo RV, Skovran E. Transposon mutagenesis for methylotrophic bacteria using Methylorubrum extorquens AM1 as a model system. Methods Enzymol 2021; 650:159-184. [PMID: 33867020 DOI: 10.1016/bs.mie.2021.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transposon mutagenesis utilizes transposable genetic elements that integrate into a recipient genome to generate random insertion mutations which are easily identified. This forward genetic approach has proven powerful in elucidating complex processes, such as various pathways in methylotrophy. In the past decade, many methylotrophic bacteria have been shown to possess alcohol dehydrogenase enzymes that use lanthanides (Lns) as cofactors. Using Methylorubrum extorquens AM1 as a model organism, we discuss the experimental designs, protocols, and results of three transposon mutagenesis studies to identify genes involved in different aspects of Ln-dependent methanol oxidation. These studies include a selection for transposon insertions that prevent toxic intracellular formaldehyde accumulation, a fluorescence-imaging screen to identify regulatory processes for a primary Ln-dependent methanol dehydrogenase, and a phenotypic screen for genes necessary for function of a Ln-dependent ethanol dehydrogenase. We anticipate that the methods described in this chapter can be applied to understand other metabolic systems in diverse bacteria.
Collapse
Affiliation(s)
- Huong N Vu
- Department of Biological Sciences, San José State University, San José, CA, United States
| | - Gabriel A Subuyuj
- Department of Biological Sciences, San José State University, San José, CA, United States
| | | | - Elizabeth Skovran
- Department of Biological Sciences, San José State University, San José, CA, United States.
| |
Collapse
|
28
|
Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, Op den Camp HJM. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev 2021; 45:6125968. [PMID: 33524112 PMCID: PMC8498564 DOI: 10.1093/femsre/fuab007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022] Open
Abstract
Methanotrophs are an important group of microorganisms that counteract methane emissions to the atmosphere. Methane-oxidising bacteria of the Alpha- and Gammaproteobacteria have been studied for over a century, while methanotrophs of the phylum Verrucomicrobia are a more recent discovery. Verrucomicrobial methanotrophs are extremophiles that live in very acidic geothermal ecosystems. Currently, more than a dozen strains have been isolated, belonging to the genera Methylacidiphilum and Methylacidimicrobium. Initially, these methanotrophs were thought to be metabolically confined. However, genomic analyses and physiological and biochemical experiments over the past years revealed that verrucomicrobial methanotrophs, as well as proteobacterial methanotrophs, are much more metabolically versatile than previously assumed. Several inorganic gases and other molecules present in acidic geothermal ecosystems can be utilised, such as methane, hydrogen gas, carbon dioxide, ammonium, nitrogen gas and perhaps also hydrogen sulfide. Verrucomicrobial methanotrophs could therefore represent key players in multiple volcanic nutrient cycles and in the mitigation of greenhouse gas emissions from geothermal ecosystems. Here, we summarise the current knowledge on verrucomicrobial methanotrophs with respect to their metabolic versatility and discuss the factors that determine their diversity in their natural environment. In addition, key metabolic, morphological and ecological characteristics of verrucomicrobial and proteobacterial methanotrophs are reviewed.
Collapse
Affiliation(s)
- Rob A Schmitz
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Stijn H Peeters
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Nunzia Picone
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Arjan Pol
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Pastawan V, Suganuma S, Mizuno K, Wang L, Tani A, Mitsui R, Nakamura K, Shimada M, Hayakawa T, Fitriyanto NA, Nakagawa T. Regulation of lanthanide-dependent methanol oxidation pathway in the legume symbiotic nitrogen-fixing bacterium Bradyrhizobium sp. strain Ce-3. J Biosci Bioeng 2020; 130:582-587. [DOI: 10.1016/j.jbiosc.2020.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
30
|
Halim MA, Rahman MM, Megharaj M, Naidu R. Cadmium Immobilization in the Rhizosphere and Plant Cellular Detoxification: Role of Plant-Growth-Promoting Rhizobacteria as a Sustainable Solution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13497-13529. [PMID: 33170689 DOI: 10.1021/acs.jafc.0c04579] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Food is the major cadmium (Cd)-exposure pathway from agricultural soils to humans and other living entities and must be reduced in an effective way. A plant can select beneficial microbes, like plant-growth-promoting rhizobacteria (PGPR), depending upon the nature of root exudates in the rhizosphere, for its own benefits, such as plant growth promotion as well as protection from metal toxicity. This review intends to seek out information on the rhizo-immobilization of Cd in polluted soils using the PGPR along with plant nutrient fertilizers. This review suggests that the rhizo-immobilization of Cd by a combination of PGPR and nanohybrid-based plant nutrient fertilizers would be a potential and sustainable technology for phytoavailable Cd immobilization in the rhizosphere and plant cellular detoxification, by keeping the plant nutrition flow and green dynamics of plant nutrition and boosting the plant growth and development under Cd stress.
Collapse
Affiliation(s)
- Md Abdul Halim
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Department of Biotechnology, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), The University of Newcastle, Callaghan, New South Wales 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
31
|
Mattocks JA, Cotruvo JA. Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chem Soc Rev 2020; 49:8315-8334. [PMID: 33057507 DOI: 10.1039/d0cs00653j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lanthanides and actinides are elements of ever-increasing technological importance in the modern world. However, the similar chemical and physical properties within these groups make purification of individual elements a challenge. Current industrial standards for the extraction, separation, and purification of these metals from natural sources, recycled materials, and industrial waste are inefficient, relying upon harsh conditions, repetitive steps, and ligands with only modest selectivity. Biological, biomolecular, and bio-inspired strategies towards improving these separations and making them more environmentally sustainable have been researched for many years; however, these methods often have insufficient selectivity for practical application. Recent developments in the understanding of how lanthanides are selectively acquired and used by certain bacteria offer the opportunity for a newer, more efficient take on these designs, as well as the possibility for fundamentally new designs and strategies. Herein, we review current cell-based and biomolecular (primarily small-molecule and protein-based) methods for detection, extraction, and separations of f-block elements. We discuss how the increasing knowledge regarding the selective recognition, uptake, trafficking, and storage of these elements in biological systems has informed and will continue to promote development of novel approaches to achieve these ends.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|
32
|
Featherston ER, Cotruvo JA. The biochemistry of lanthanide acquisition, trafficking, and utilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118864. [PMID: 32979423 DOI: 10.1016/j.bbamcr.2020.118864] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/07/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
Lanthanides are relative newcomers to the field of cell biology of metals; their specific incorporation into enzymes was only demonstrated in 2011, with the isolation of a bacterial lanthanide- and pyrroloquinoline quinone-dependent methanol dehydrogenase. Since that discovery, the efforts of many investigators have revealed that lanthanide utilization is widespread in environmentally important bacteria, and parallel efforts have focused on elucidating the molecular details involved in selective recognition and utilization of these metals. In this review, we discuss the particular chemical challenges and advantages associated with biology's use of lanthanides, as well as the currently known lanthano-enzymes and -proteins (the lanthanome). We also review the emerging understanding of the coordination chemistry and biology of lanthanide acquisition, trafficking, and regulatory pathways. These studies have revealed significant parallels with pathways for utilization of other metals in biology. Finally, we discuss some of the many unresolved questions in this burgeoning field and their potentially far-reaching applications.
Collapse
Affiliation(s)
- Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, United States of America.
| |
Collapse
|
33
|
Roszczenko-Jasińska P, Vu HN, Subuyuj GA, Crisostomo RV, Cai J, Lien NF, Clippard EJ, Ayala EM, Ngo RT, Yarza F, Wingett JP, Raghuraman C, Hoeber CA, Martinez-Gomez NC, Skovran E. Gene products and processes contributing to lanthanide homeostasis and methanol metabolism in Methylorubrum extorquens AM1. Sci Rep 2020; 10:12663. [PMID: 32728125 PMCID: PMC7391723 DOI: 10.1038/s41598-020-69401-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 11/08/2022] Open
Abstract
Lanthanide elements have been recently recognized as "new life metals" yet much remains unknown regarding lanthanide acquisition and homeostasis. In Methylorubrum extorquens AM1, the periplasmic lanthanide-dependent methanol dehydrogenase XoxF1 produces formaldehyde, which is lethal if allowed to accumulate. This property enabled a transposon mutagenesis study and growth studies to confirm novel gene products required for XoxF1 function. The identified genes encode an MxaD homolog, an ABC-type transporter, an aminopeptidase, a putative homospermidine synthase, and two genes of unknown function annotated as orf6 and orf7. Lanthanide transport and trafficking genes were also identified. Growth and lanthanide uptake were measured using strains lacking individual lanthanide transport cluster genes, and transmission electron microscopy was used to visualize lanthanide localization. We corroborated previous reports that a TonB-ABC transport system is required for lanthanide incorporation to the cytoplasm. However, cells were able to acclimate over time and bypass the requirement for the TonB outer membrane transporter to allow expression of xoxF1 and growth. Transcriptional reporter fusions show that excess lanthanides repress the gene encoding the TonB-receptor. Using growth studies along with energy dispersive X-ray spectroscopy and transmission electron microscopy, we demonstrate that lanthanides are stored as cytoplasmic inclusions that resemble polyphosphate granules.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA
- Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Huong N Vu
- Department of Biological Sciences, San José State University, San José, CA, USA
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Gabriel A Subuyuj
- Department of Biological Sciences, San José State University, San José, CA, USA
- Department of Microbiology and Molecular Genetics, University of California At Davis, Davis, CA, USA
| | - Ralph Valentine Crisostomo
- Department of Biological Sciences, San José State University, San José, CA, USA
- Molecular Biology Institute, University of California At Los Angeles, Los Angeles, CA, USA
| | - James Cai
- Department of Biological Sciences, San José State University, San José, CA, USA
| | - Nicholas F Lien
- Department of Biological Sciences, San José State University, San José, CA, USA
| | - Erik J Clippard
- Department of Biological Sciences, San José State University, San José, CA, USA
| | - Elena M Ayala
- Department of Biological Sciences, San José State University, San José, CA, USA
| | - Richard T Ngo
- Department of Biological Sciences, San José State University, San José, CA, USA
| | - Fauna Yarza
- Department of Biological Sciences, San José State University, San José, CA, USA
- Department of Biochemistry and Biophysics, University of California At San Francisco, San Francisco, CA, USA
| | - Justin P Wingett
- Department of Biological Sciences, San José State University, San José, CA, USA
| | | | - Caitlin A Hoeber
- Department of Biological Sciences, San José State University, San José, CA, USA
| | - Norma C Martinez-Gomez
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA.
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, California, USA.
| | - Elizabeth Skovran
- Department of Biological Sciences, San José State University, San José, CA, USA.
| |
Collapse
|
34
|
Good NM, Fellner M, Demirer K, Hu J, Hausinger RP, Martinez-Gomez NC. Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. J Biol Chem 2020; 295:8272-8284. [PMID: 32366463 PMCID: PMC7294098 DOI: 10.1074/jbc.ra120.013227] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/30/2020] [Indexed: 01/07/2023] Open
Abstract
The lanthanide elements (Ln3+), those with atomic numbers 57-63 (excluding promethium, Pm3+), form a cofactor complex with pyrroloquinoline quinone (PQQ) in bacterial XoxF methanol dehydrogenases (MDHs) and ExaF ethanol dehydrogenases (EDHs), expanding the range of biological elements and opening novel areas of metabolism and ecology. Other MDHs, known as MxaFIs, are related in sequence and structure to these proteins, yet they instead possess a Ca2+-PQQ cofactor. An important missing piece of the Ln3+ puzzle is defining what features distinguish enzymes that use Ln3+-PQQ cofactors from those that do not. Here, using XoxF1 MDH from the model methylotrophic bacterium Methylorubrum extorquens AM1, we investigated the functional importance of a proposed lanthanide-coordinating aspartate residue. We report two crystal structures of XoxF1, one with and another without PQQ, both with La3+ bound in the active-site region and coordinated by Asp320 Using constructs to produce either recombinant XoxF1 or its D320A variant, we show that Asp320 is needed for in vivo catalytic function, in vitro activity, and La3+ coordination. XoxF1 and XoxF1 D320A, when produced in the absence of La3+, coordinated Ca2+ but exhibited little or no catalytic activity. We also generated the parallel substitution in ExaF to produce ExaF D319S and found that this variant loses the capacity for efficient ethanol oxidation with La3+ These results provide evidence that a Ln3+-coordinating aspartate is essential for the enzymatic functions of XoxF MDHs and ExaF EDHs, supporting the notion that sequences of these enzymes, and the genes that encode them, are markers for Ln3+ metabolism.
Collapse
Affiliation(s)
- Nathan M Good
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthias Fellner
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Kemal Demirer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Okemos High School, Okemos, Michigan, USA
| | - Jian Hu
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, USA
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Department of Biochemistry, Michigan State University, East Lansing, Michigan, USA
| | - N Cecilia Martinez-Gomez
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
35
|
Yanpirat P, Nakatsuji Y, Hiraga S, Fujitani Y, Izumi T, Masuda S, Mitsui R, Nakagawa T, Tani A. Lanthanide-Dependent Methanol and Formaldehyde Oxidation in Methylobacterium aquaticum Strain 22A. Microorganisms 2020; 8:microorganisms8060822. [PMID: 32486139 PMCID: PMC7356819 DOI: 10.3390/microorganisms8060822] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 01/06/2023] Open
Abstract
Lanthanides (Ln) are an essential cofactor for XoxF-type methanol dehydrogenases (MDHs) in Gram-negative methylotrophs. The Ln3+ dependency of XoxF has expanded knowledge and raised new questions in methylotrophy, including the differences in characteristics of XoxF-type MDHs, their regulation, and the methylotrophic metabolism including formaldehyde oxidation. In this study, we genetically identified one set of Ln3+- and Ca2+-dependent MDHs (XoxF1 and MxaFI), that are involved in methylotrophy, and an ExaF-type Ln3+-dependent ethanol dehydrogenase, among six MDH-like genes in Methylobacterium aquaticum strain 22A. We also identified the causative mutations in MxbD, a sensor kinase necessary for mxaF expression and xoxF1 repression, for suppressive phenotypes in xoxF1 mutants defective in methanol growth even in the absence of Ln3+. Furthermore, we examined the phenotypes of a series of formaldehyde oxidation-pathway mutants (fae1, fae2, mch in the tetrahydromethanopterin (H4MPT) pathway and hgd in the glutathione-dependent formaldehyde dehydrogenase (GSH) pathway). We found that MxaF produces formaldehyde to a toxic level in the absence of the formaldehyde oxidation pathways and that either XoxF1 or ExaF can oxidize formaldehyde to alleviate formaldehyde toxicity in vivo. Furthermore, the GSH pathway has a supportive role for the net formaldehyde oxidation in addition to the H4MPT pathway that has primary importance. Studies on methylotrophy in Methylobacterium species have a long history, and this study provides further insights into genetic and physiological diversity and the differences in methylotrophy within the plant-colonizing methylotrophs.
Collapse
Affiliation(s)
- Patcha Yanpirat
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; (P.Y.); (Y.N.); (S.H.); (Y.F.); (T.I.); (S.M.)
| | - Yukari Nakatsuji
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; (P.Y.); (Y.N.); (S.H.); (Y.F.); (T.I.); (S.M.)
| | - Shota Hiraga
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; (P.Y.); (Y.N.); (S.H.); (Y.F.); (T.I.); (S.M.)
| | - Yoshiko Fujitani
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; (P.Y.); (Y.N.); (S.H.); (Y.F.); (T.I.); (S.M.)
| | - Terumi Izumi
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; (P.Y.); (Y.N.); (S.H.); (Y.F.); (T.I.); (S.M.)
| | - Sachiko Masuda
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; (P.Y.); (Y.N.); (S.H.); (Y.F.); (T.I.); (S.M.)
- Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency, Tokyo 102-0076, Japan
- RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Ryoji Mitsui
- Department of Biochemistry, Faculty of Science, Okayama University of Science, Okayama 700-8530, Japan;
| | - Tomoyuki Nakagawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu 501-1193, Japan;
- The Graduate School of Natural Sciences and Technologies, Gifu University, Gifu 501-1193, Japan
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University, Okayama 710-0046, Japan; (P.Y.); (Y.N.); (S.H.); (Y.F.); (T.I.); (S.M.)
- Correspondence:
| |
Collapse
|
36
|
Wang L, Hibino A, Suganuma S, Ebihara A, Iwamoto S, Mitsui R, Tani A, Shimada M, Hayakawa T, Nakagawa T. Preference for particular lanthanide species and thermal stability of XoxFs in Methylorubrum extorquens strain AM1. Enzyme Microb Technol 2020; 136:109518. [DOI: 10.1016/j.enzmictec.2020.109518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
|
37
|
Cotruvo JA. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS CENTRAL SCIENCE 2019; 5:1496-1506. [PMID: 31572776 PMCID: PMC6764073 DOI: 10.1021/acscentsci.9b00642] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/18/2023]
Abstract
The essential biological role of rare earth elements lay hidden until the discovery in 2011 that lanthanides are specifically incorporated into a bacterial methanol dehydrogenase. Only recently has this observation gone from a curiosity to a major research area, with the appreciation for the widespread nature of lanthanide-utilizing organisms in the environment and the discovery of other lanthanide-binding proteins and systems for selective uptake. While seemingly exotic at first glance, biological utilization of lanthanides is very logical from a chemical perspective. The early lanthanides (La, Ce, Pr, Nd) primarily used by biology are abundant in the environment, perform similar chemistry to other biologically useful metals and do so more efficiently due to higher Lewis acidity, and possess sufficiently distinct coordination chemistry to allow for selective uptake, trafficking, and incorporation into enzymes. Indeed, recent advances in the field illustrate clear analogies with the biological coordination chemistry of other metals, particularly CaII and FeIII, but with unique twists-including cooperative metal binding to magnify the effects of small ionic radius differences-enabling selectivity. This Outlook summarizes the recent developments in this young but rapidly expanding field and looks forward to potential future discoveries, emphasizing continuity with principles of bioinorganic chemistry established by studies of other metals. We also highlight how a more thorough understanding of the central chemical question-selective lanthanide recognition in biology-may impact the challenging problems of sensing, capture, recycling, and separations of rare earths.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State
University, University Park, Pennsylvania 16802, United
States
| |
Collapse
|
38
|
Featherston ER, Rose HR, McBride MJ, Taylor EM, Boal AK, Cotruvo JA. Biochemical and Structural Characterization of XoxG and XoxJ and Their Roles in Lanthanide-Dependent Methanol Dehydrogenase Activity. Chembiochem 2019; 20:2360-2372. [PMID: 31017712 PMCID: PMC6814260 DOI: 10.1002/cbic.201900184] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 12/31/2022]
Abstract
Lanthanide (Ln)-dependent methanol dehydrogenases (MDHs) have recently been shown to be widespread in methylotrophic bacteria. Along with the core MDH protein, XoxF, these systems contain two other proteins, XoxG (a c-type cytochrome) and XoxJ (a periplasmic binding protein of unknown function), about which little is known. In this work, we have biochemically and structurally characterized these proteins from the methyltroph Methylobacterium extorquens AM1. In contrast to results obtained in an artificial assay system, assays of XoxFs metallated with LaIII , CeIII , and NdIII using their physiological electron acceptor, XoxG, display Ln-independent activities, but the Km for XoxG markedly increases from La to Nd. This result suggests that XoxG's redox properties are tuned specifically for lighter Lns in XoxF, an interpretation supported by the unusually low reduction potential of XoxG (+172 mV). The X-ray crystal structure of XoxG provides a structural basis for this reduction potential and insight into the XoxG-XoxF interaction. Finally, the X-ray crystal structure of XoxJ reveals a large hydrophobic cleft and suggests a role in the activation of XoxF. These studies enrich our understanding of the underlying chemical principles that enable the activity of XoxF with multiple lanthanides in vitro and in vivo.
Collapse
Affiliation(s)
- Emily R. Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hannah R. Rose
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Molly J. McBride
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elle M. Taylor
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
39
|
Daumann LJ. Essential and Ubiquitous: The Emergence of Lanthanide Metallobiochemistry. Angew Chem Int Ed Engl 2019; 58:12795-12802. [DOI: 10.1002/anie.201904090] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Lena J. Daumann
- Department of Chemistry Ludwig-Maximilians-Universität München Butenandtstr. 5–13 81377 Munich Germany
| |
Collapse
|
40
|
Affiliation(s)
- Lena J. Daumann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
41
|
Affiliation(s)
- Jackson V. Ho
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
42
|
Rare earth element alcohol dehydrogenases widely occur among globally distributed, numerically abundant and environmentally important microbes. ISME JOURNAL 2019; 13:2005-2017. [PMID: 30952993 DOI: 10.1038/s41396-019-0414-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 11/08/2022]
Abstract
Lanthanides (Ln3+), known as rare earth elements, have recently emerged as enzyme cofactors, contrary to prior assumption of their biological inertia. Several bacterial alcohol dehydrogenases have been characterized so far that depend on Ln3+ for activity and expression, belonging to the methanol dehydrogenase clade XoxF and the ethanol dehydrogenase clade ExaF/PedH. Here we compile an inventory of genes potentially encoding Ln3+-dependent enzymes, closely related to the previously characterized XoxF and ExaF/PedH enzymes. We demonstrate their wide distribution among some of the most numerically abundant and environmentally important taxa, such as the phylogenetically disparate rhizobial species and metabolically versatile bacteria inhabiting world's oceans, suggesting that reliance on Ln3+-mediated biochemistry is much more widespread in the microbial world than previously assumed. Through protein expression and analysis, we here more than double the extant collection of the biochemically characterized Ln3+-dependent enzymes, demonstrating a range of catalytic properties and substrate and cofactor specificities. Many of these enzymes reveal propensity for oxidation of methanol. This observation, in combination with genome-based reconstruction of methylotrophy pathways for select species suggests a much wider occurrence of this metabolic capability among bacterial species, and thus further suggests the importance of methylated compounds as parts of the global carbon cycling.
Collapse
|